2023 Vol. 32, No. 5
Article Contents

YU Xiao-lei, ZHANG Xiao-hui, LIU Zhen-wei, CAI Xin-ming, YANG Hui, SUN Lei, CHEN Jun-dian, MU Jun-hao. HOT DRY ROCKS IN LIAONING PROVINCE: Occurrence Conditions and Primary Selection of Target Areas[J]. Geology and Resources, 2023, 32(5): 608-615. doi: 10.13686/j.cnki.dzyzy.2023.05.011
Citation: YU Xiao-lei, ZHANG Xiao-hui, LIU Zhen-wei, CAI Xin-ming, YANG Hui, SUN Lei, CHEN Jun-dian, MU Jun-hao. HOT DRY ROCKS IN LIAONING PROVINCE: Occurrence Conditions and Primary Selection of Target Areas[J]. Geology and Resources, 2023, 32(5): 608-615. doi: 10.13686/j.cnki.dzyzy.2023.05.011

HOT DRY ROCKS IN LIAONING PROVINCE: Occurrence Conditions and Primary Selection of Target Areas

More Information
  • As a renewable high-temperature geothermal resource, dry hot rock has received increasing attention in China. The temperature of dry hot rock cannot be measured directly except by deep drilling methods. However, the underground thermal anomalies can be indirectly reflected by the indicators such as terrestrial heat flow, buried depth of Curie surface, distribution of acid rock mass, crust low-velocity and high-conduction zone, as well as tectonic stress field. The high value points of terrestrial heat flow in Liaoning Province are mainly distributed in Liaoyang-Haicheng-Gaizhou region, followed by the western sag of Lower Liaohe Basin. The Curie surface uplift area of the province is distributed around the north Liaoning depression area, with the buried depth of Curie surface at the uplift center above 18 km. The highly radioactive granites are mainly Early Cretaceous granites, distributed in eastern and southern Liaoning regions. There are crust low-velocity and high-conduction zones within about 40 km from the east and west sides of Haicheng area, with the buried depth of 10-20 km. The extensional faults in the area are mainly NE-NEE trending. The Tancheng-Lujiang fault zone is a NE-trending lithospheric fault going through Liaoning Province, and large NE-NEE deep crustal faults are mainly distributed in eastern Liaoning. Based on the analysis of occurrence indexes of hot dry rocks in Liaoning Province and classification of hot dry rock resources in China, the Anshan-Haicheng area is selected as the target of highly radioactive hot dry rock resources, and the Lower Liaohe Basin as the target area of sedimentary basin-type hot dry rock resources.

  • 加载中
  • [1] 国家能源局. NB/T 10097-2018地热能术语[S]. 北京: 中国石化出版社, 2018.

    Google Scholar

    National Energy Administration. NB/T 10097-2018 Terminology of geothermal energy[S]. Beijing: China Petrochemical Press, 2018.

    Google Scholar

    [2] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31.

    Google Scholar

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science&Technology Review, 2012, 30(32): 25-31.

    Google Scholar

    [3] 甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19): 22-27.

    Google Scholar

    Gan H N, Wang G L, Lin W J, et al. Research on the occurrence types and genetic models of hot dry rock resources in China[J]. Science&Technology Review, 2015, 33(19): 22-27.

    Google Scholar

    [4] 中国地质调查局. 青海共和盆地钻获236℃干热岩[J]. 地质装备, 2017, 18(6): 8.

    Google Scholar

    China Geological Survey. 236℃ dry hot rock drilled in Gonghe basin, Qinghai[J]. Geological Equipment, 2017, 18(6): 8. (in Chinese)

    Google Scholar

    [5] 刘德民, 张根袁, 关俊朋, 等. 苏北盆地干热岩地热资源前景分析[J]. 地学前缘, 2020, 27(1): 48-54.

    Google Scholar

    Liu D M, Zhang G Y, Guan J P, et al. Analysis of geothermal resources potential for hot dry rock in the Subei Basin[J]. Earth Science Frontiers, 2020, 27(1): 48-54.

    Google Scholar

    [6] 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425, 341.

    Google Scholar

    Wang G L, Lu C. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 2022, 31(3): 412-425, 341.

    Google Scholar

    [7] 毕德利. 辽宁省发展绿色经济的战略政策研究[J]. 社会科学辑刊, 2010(6): 148-152.

    Google Scholar

    Bi D L. Study on the strategic policy of developing green economy in Liaoning Province[J]. Social Science Journal, 2010(6): 148-152. (in Chinese)

    Google Scholar

    [8] 庞忠和, 罗霁, 程远志, 等. 中国深层地热能开采的地质条件评价[J]. 地学前缘, 2020, 27(1): 134-151.

    Google Scholar

    Pang Z H, Luo J, Cheng Y Z, et al. Evaluation of geological conditions for the development of deep geothermal energy in China[J]. Earth Science Frontiers, 2020, 27(1): 134-151.

    Google Scholar

    [9] 刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11.

    Google Scholar

    Liu D M, Zhang C S, Sun M X, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11.

    Google Scholar

    [10] 郝春艳, 刘绍文, 王华玉, 等. 全球大地热流研究进展[J]. 地质科学, 2014, 49(3): 754-770.

    Google Scholar

    Hao C Y, Liu S W, Wang H Y, et al. Global heat flow: An overview over past 20 years[J]. Chinese Journal of Geology, 2014, 49(3): 754-770.

    Google Scholar

    [11] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910.

    Google Scholar

    Jiang G Z, Gao P, Rao S, et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910.

    Google Scholar

    [12] 胡圣标, 何丽娟, 汪集旸. 中国大陆地区大地热流数据汇编(第三版)[J]. 地球物理学报, 2001, 44(5): 611-626.

    Google Scholar

    Hu S B, He L J, Wang J Y. Compilation of heat flow data in the China continental area (3rd edition)[J]. Chinese Journal of Geophysics, 2001, 44(5): 611-626.

    Google Scholar

    [13] 汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编(第二版)[J]. 地震地质, 1990, 12(4): 351-363, 366.

    Google Scholar

    Wang J Y, Huang S P. Compilation of heat flow data in the China continental area (2nd edition)[J]. Seismology and Geology, 1990, 12(4): 351-363, 366.

    Google Scholar

    [14] 汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编[J]. 地质科学, 1988, 23(2): 196-204.

    Google Scholar

    Wang J Y, Huang S P. Compilation of heat flow data for continental area of China[J]. Chinese Journal of Geology, 1988, 23(2): 196-204.

    Google Scholar

    [15] 高维, 舒晴, 郭志宏, 等. 辽宁及其邻区高精度航磁数据分析: 对区域性断裂带与岩石圈热结构约束[J]. 地球科学, 2022, 47(9): 3401-3416.

    Google Scholar

    Gao W, Shu Q, Guo Z H, et al. Analysis of high precision aeromagnetic data in Liaoning and its adjacent areas: Constraints on regional fault zones and lithospheric thermal structure[J]. Earth Science, 2021, 47(9): 3401-3416.

    Google Scholar

    [16] 蔺文静, 王凤元, 甘浩男, 等. 福建漳州干热岩资源选址与开发前景分析[J]. 科技导报, 2015, 33(19): 28-34.

    Google Scholar

    Lin W J, Wang F Y, Gan H N, et al. Site selection and development prospect of a hot dry rock resource project in Zhangzhou geothermal field, Fujian Province[J]. Science&Technology Review, 2015, 33(19): 28-34.

    Google Scholar

    [17] 赵平, 汪集旸, 汪缉安, 等. 中国东南地区岩石生热率分布特征[J]. 岩石学报, 1995, 11(3): 292-305.

    Google Scholar

    Zhao P, Wang J Y, Wang J A, et al. Characteristics of heat production distribution in SE China[J]. Acta Petrologica Sinica, 1995, 11(3): 292-305.

    Google Scholar

    [18] 辽宁省地质勘查院. 中国区域地质志·辽宁志[M]. 北京: 地质出版社, 2017.

    Google Scholar

    Liaoning Geological Exploration Institute. Regional geology of China: Liaoning[M]. Beijing: Geological Publishing House, 2017. (in Chinese)

    Google Scholar

    [19] 蔺文静, 甘浩男, 王贵玲, 等. 我国东南沿海干热岩赋存前景及与靶区选址研究[J]. 地质学报, 2016, 90(8): 2043-2058.

    Google Scholar

    Lin W J, Gan H N, Wang G L, et al. Occurrence prospect of HDR and target site selection study in southeastern of China[J]. Acta Geologica Sinica, 2016, 90(8): 2043-2058.

    Google Scholar

    [20] 李文庆. 辽宁东部地区地热特征及岩石放射性生热对地热资源潜力的影响[D]. 长春: 吉林大学, 2015.

    Google Scholar

    Li W Q. The influence of geothermal features and radioactive heat production of rocks to potential of geothermal resources in Eastern area of Liaoning Province[D]. Changchun: Jilin University, 2015.

    Google Scholar

    [21] 高平. 中国华北地区壳内低速高导层(体)成因模式的探讨[J]. 中国地震, 1997, 13(3): 29-37.

    Google Scholar

    Gao P. Study on the origin of low velocity and high conductivity layer (body) in North China[J]. Earthquake Research in China, 1997, 13(3): 29-37.

    Google Scholar

    [22] 彭伟, 黄晓葛, 白武明. 上地幔低速高导层成因的探讨——水和熔体的作用[J]. 地球物理学进展, 2012, 27(5): 1970-1980.

    Google Scholar

    Peng W, Huang X G, Bai W M. The role of water and melt on the low-velocity and high-conductivity zones in the upper mantle[J]. Progress in Geophysics, 2012, 27(5): 1970-1980.

    Google Scholar

    [23] 卢造勋, 夏怀宽. 内蒙古东乌珠穆沁旗-辽宁东沟地学断面[J]. 地球物理学报, 1993, 36(6): 765-772.

    Google Scholar

    Lu Z X, Xia H K. Geoscience transect from Dong Ujimqinqi, Nei Mongol, to Donggou, Liaoning, China[J]. Chinese Journal of Geophysics, 1993, 36(6): 765-772.

    Google Scholar

    [24] 朱光, 宋传中, 牛漫兰, 等. 郯庐断裂带的岩石圈结构及其成因分析[J]. 高校地质学报, 2002, 8(3): 248-256.

    Google Scholar

    Zhu G, Song C Z, Niu M L, et al. Lithospheric textures of the Tan-Lu fault zone and their genetic analysis[J]. Geological Journal of China Universities, 2002, 8(3): 248-256.

    Google Scholar

    [25] 王一波, 胡圣标, 聂栋刚, 等. 郯庐断裂带是热异常带吗: 来自断裂带南段热流的约束[J]. 地球物理学报, 2019, 62(8): 3078-3094.

    Google Scholar

    Wang Y B, Hu S B, Nie D G, et al. Is the Tan-Lu fault zone a thermal anomaly belt: Constraints from heat flow in its southern section[J]. Chinese Journal of Geophysics, 2019, 62(8): 3078-3094.

    Google Scholar

    [26] 张先泽, 欧阳杰, 王金明, 等. 辽宁地区现今构造应力场特征[J]. 辽宁地质, 1997(4): 37-42.

    Google Scholar

    Zhang X Z, Ouyang J, Wang J M, et al. The characteristic of the existing structure stress field in Liaoning region[J]. Liaoning Geology, 1997(4): 37-42.

    Google Scholar

    [27] 戴盈磊, 张文静, 王承伟, 等. 基于MSATSI的辽宁地区构造应力场特征[J]. 防灾减灾学报, 2021, 37(3): 1-8.

    Google Scholar

    Dai Y L, Zhang W J, Wang C W, et al. Characteristics of tectonic stress field in Liaoning based on MSATSI[J]. Journal of Disaster Prevention and Reduction, 2021, 37(3): 1-8.

    Google Scholar

    [28] 姜德录, 白云, 卢造勋, 等. 中朝地台东北缘及其邻区软流圈分布特征与构造运动的关系[J]. 中国地震, 2000, 16(1): 14-21.

    Google Scholar

    Jiang D L, Bai Y, Lu Z X, et al. The relations between the asthenosphere thickness distributed characteristics and tectogenesis of Sino-Korean platform and its neighboring area[J]. Earthquake Research in China, 2000, 16(1): 14-21.

    Google Scholar

    [29] 蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 1366-1381.

    Google Scholar

    Lin W J, Wang G L, Shao J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration[J]. Acta Geologica Sinica, 2021, 95(5): 1366-1381.

    Google Scholar

    [30] 王锡魁, 裘善文, 宋长春, 等. 中国东北新生代火山活动与地热资源[J]. 地质论评, 1999, 45(S1): 190-195.

    Google Scholar

    Wang X K, Qiu S W, Song C C, et al. Cenozoic volcanism and geothermal resources in Northeast China[J]. Geological Review, 1999, 45(S1): 190-195.

    Google Scholar

    [31] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑: 地球科学), 2003, 33(S1): 12-20.

    Google Scholar

    Zhang P Z, Deng Q D, Zhang G M, et al. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 2003, 46(2): 13-24.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(604) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint