Citation: | LIU Jian-yu, HUANG Wei, GAO Bo, ZHU Rong-li. EXPERIMENTAL STUDY ON THE COMPRESSIVE AND SHEAR STRENGTH OF SEASONAL FROZEN SOIL IN DONGNING AREA, HEILONGJIANG PROVINCE[J]. Geology and Resources, 2023, 32(5): 592-598. doi: 10.13686/j.cnki.dzyzy.2023.05.009 |
Taking the soil layers including silt, silty clay and clay in Dongning area of Mudanjiang City as the research object, collecting and selecting the undisturbed soil samples with different moisture content and soil texture, the paper studies the physical and mechanical properties of soil such as uniaxial compressive strength and triaxial shear strength under different negative temperature conditions. The results show that the uniaxial compressive strength of undisturbed soil increases with the decrease of temperature after freezing under different negative temperature conditions; the cohesion increases exponentially with the increase of moisture content; while the internal friction angle first increases and then tends to be stable with the increase of moisture content. Under the negative temperature conditions, -20℃ is the change point. When the temperature is below -20℃, the uniaxial compressive strength of frozen soil first increases and then decreases with the increase of moisture content, and the cohesion increases with the decrease of freezing temperature; At -10℃ or -20℃, the internal friction angle of frozen soil follows a similar rule, no obvious change with the fluctuation of water content, and the shear strength of frozen soil increases with the decrease of freezing temperature; When it is above -20℃, the uniaxial compressive strength of frozen soil increases with the increase of water content, and the cohesion does not increase with the decrease of freezing temperature, while the internal friction angle increases with the decrease of freezing temperature, and the shear strength of frozen soil gradually increases and tends to that of ice with the decrease of freezing temperature.
[1] | 李海鹏, 杨维好, 黄家会, 等. 试件形状对冻结粉土抗压强度影响的试验研究[J]. 冰川冻土, 2005, 27(6): 920-925. doi: 10.3969/j.issn.1000-0240.2005.06.020 Li H P, Yang W H, Huang J H, et al. An experimental study of the effect of specimen shape on compressive strength of frozen silt[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 920-925. doi: 10.3969/j.issn.1000-0240.2005.06.020 |
[2] | 毛然, 王翠英. 中南地区冻土抗剪强度影响因素研究[J]. 安全与环境工程, 2010, 17(5): 102-105. Mao R, Wang C Y. Study on the influential factors of frozen soil shear strength of central south region[J]. Safety and Environmental Engineering, 2010, 17(5): 102-105. |
[3] | 赵景峰. 冻土抗拉强度与冻温及含水率关系的试验研究[J]. 地质与勘探, 2011, 47(6): 1158-1161. Zhao J F. An experimental study on the relationship between tensile strength and temperature and water ratio of frozen soil[J]. Geology and exploration, 2011, 47(6): 1158-1161. |
[4] | 李顺群, 高凌霞, 柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. 岩土力学, 2012, 33(4): 1173-1177. doi: 10.3969/j.issn.1000-7598.2012.04.031 Li S Q, Gao L X, Chai S X. Significance and interaction of factors on mechanical properties of frozen soil[J]. Rock and Soil Mechanics, 2012, 33(4): 1173-1177. doi: 10.3969/j.issn.1000-7598.2012.04.031 |
[5] | 王儒默, 马芹永. 冻结时间对冻土抗压强度影响的试验分析[J]. 安徽理工大学学报(自然科学版), 2019, 39(1): 74-79. Wang R M, Ma Q Y. Experimental analysis of the influence of freezing time on compressive strength of frozen silty clay[J]. Journal of Anhui University of Science and Technology (Natural Science), 2019, 39(1): 74-79. |
[6] | 张宏. 高温冻土力学特性试验研究[J]. 人民黄河, 2019, 41(8): 144-147. Zhang H. Experimental research on mechanical characteristics of high-temperature frozen soils[J]. Yellow River, 2019, 41(8): 144-147. |
[7] | 黄道良, 林斌. 人工冻土力学性能影响因素敏感性分析[J]. 力学与实践, 2012, 34(4): 63-65, 48. Huang D L, Lin B. Sensitivity analysis on the influence factors of the mechanical properties of the artificial frozen soil[J]. Mechanics in Engineering, 2012, 34(4): 63-65, 48. |
[8] | 程培峰, 陈景龙, 韩春鹏, 等. 季冻区路基土回弹模量影响因素分析[J]. 公路, 2013(10): 174-178. Cheng P F, Chen J L, Han C P, et al. Influencing factor analysis of subgrade resilience in the seasonal freezing region[J]. Highway, 2013(10): 174-178. |
[9] | 马玉涛. 张家口季冻区公路路基填土的静动力学特性研究[D]. 张家口: 河北建筑工程学院, 2017. Ma Y T. Study on static and dynamic mechanical behavior of highway subgrade soil in Zhangjiakou seasonally-frozen area[D]. Zhangjiakou: Hebei University of Architecture, 2017. |
[10] | 房建宏, 陈鑫, 徐安花, 等. 冻融循环对青藏红黏土物理力学性质影响试验研究[J]. 冰川冻土, 2018, 40(1): 62-69. Fang J H, Chen X, Xu A H, et al. Experimental study of the influence of freezing-thawing cycles on physical and mechanical properties of Qinghai-Tibet red clay[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 62-69. |
[11] | 高娟, 廖孟柯, 常丹, 等. 冻结砂土体积变形影响因素的敏感性分析[J]. 冰川冻土, 2018, 40(2): 346-354. Gao J, Liao M K, Chang D, et al. Sensitivity analysis of the factors affecting the volumetric deformation of frozen sandy soil[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 346-354. |
[12] | 崔宏环, 王文涛, 杨兴然, 等. 季节冻土区正融粉质黏土强度影响因素敏感性分析[J]. 冰川冻土, 2020, 42(3): 899-908. Cui H H, Wang W T, Yang X R, et al. Sensitivity analysis of the influencing factors on strength of silty clay in seasonally frozen regions[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 899-908. |
[13] | 王宁. 黑龙江省季节冻土厚度的时空变化及其对气温、土地利用变化的响应[D]. 哈尔滨: 哈尔滨师范大学, 2018: 9-15. Wang N. The spatial and temporal variation of seasonal frozen soil thickness in Heilongjiang Province and its response to temperature and land use change[D]. Harbin: Harbin Normal University, 2018: 9-15. |
[14] | 程培峰, 王锐, 韩春鹏. 大兴安岭人工冻土抗压抗剪强度试验研究[J]. 中外公路, 2016, 36(5): 5-8. Cheng P F, Wang R, Han C P. Experimental study on compressive and shear strength of artificial frozen soil of Daxinganling Mountains[J]. Journal of China&Foreign Highway, 2016, 36(5): 5-8. (in Chinese) |
[15] | 陈士威, 林斌. 原状与重塑冻结黏土单轴抗压对比试验[J]. 煤矿安全, 2019, 50(6): 62-66. Chen S W, Lin B. Contrast test on uniaxial compression of undisturbed and remolded frozen clay[J]. Safety in Coal Mines, 2019, 50(6): 62-66. |
[16] | 王锐. 高纬度多年冻土地区路基工后沉降变化规律研究[D]. 哈尔滨: 东北林业大学, 2016: 17. Wang R. Study on the roadbed settlement change rule after constructed in permafrost regions of the high altitude[D]. Harbin: Northeast Forestry University, 2016: 17. |
[17] | 贾霄. 天津地区人工冻土力学特性试验及其工程应用[D]. 天津: 天津大学, 2014: 46. Jia X. The mechanical properties test of artificial frozen soil and project application in Tianjin[D]. Tianjin: Tianjin University, 2014: 46. |
[18] | 赵文美. 高纬度多年冻土物理力学性质研究[J]. 森林工程, 2015, 31(3): 128-130, 135. Zhao W M. Study on physical and mechanical properties of permafrost at high altitudes[J]. Forest Engineering, 2015, 31(3): 128-130, 135. |
[19] | 肖海斌. 人工冻土单轴抗压强度与温度和含水率的关系[J]. 岩土工程界, 2008, 11(4): 62-63, 76. Xiao H B. Relationship between uniaxial compressive strength and temperature and water content of artificial frozen soil[J]. Geotechnical Engineering World, 2008, 11(4): 62-63, 76. (in Chinese) |
[20] | 蒋代军. 多年冻土地基桩土界面特性及桩基竖向承载性状研究[D]. 兰州: 兰州交通大学, 2019: 139-140. Jiang D J. Study on pile-soil interface property and vertical bearing behavior of pile foundation in permafrost[D]. Lanzhou: Lanzhou Jiaotong University, 2019: 139-140. |
[21] | 蒋慎. 冻融循环作用对路基粉质粘土抗剪强度的影响分析[J]. 湖南交通科技, 2017, 43(2): 59-62. Jiang S. Analysis of influence of freeze-thaw cycles on shear strength of subgrade silty clay[J]. Hunan Communication Science and Technology, 2017, 43(2): 59-62. |
Geological sketch map of the study area with distribution of sampling locations
Uniaxial compressive strength vs. moisture content under different negative temperature conditions
Cohesion vs. moisture content under different negative temperature conditions
Internal friction angle vs. moisture content under different negative temperature conditions
Relationship between compressive strength, shear strength and soil texture at temperature of –10 ℃