2023 Vol. 32, No. 5
Article Contents

SHI Lei, ZONG Wen-ming, SUN Qiu-shi, GAO Xiao-yong, LI Yong-fei, SUN Shou-liang, ZHANG Tao. THE SOURCE ROCKS OF MESOPROTEROZOIC TIELING FORMATION IN LINGYUAN-NINGCHENG BASIN: Biomarker Characteristics and Implication[J]. Geology and Resources, 2023, 32(5): 547-554. doi: 10.13686/j.cnki.dzyzy.2023.05.004
Citation: SHI Lei, ZONG Wen-ming, SUN Qiu-shi, GAO Xiao-yong, LI Yong-fei, SUN Shou-liang, ZHANG Tao. THE SOURCE ROCKS OF MESOPROTEROZOIC TIELING FORMATION IN LINGYUAN-NINGCHENG BASIN: Biomarker Characteristics and Implication[J]. Geology and Resources, 2023, 32(5): 547-554. doi: 10.13686/j.cnki.dzyzy.2023.05.004

THE SOURCE ROCKS OF MESOPROTEROZOIC TIELING FORMATION IN LINGYUAN-NINGCHENG BASIN: Biomarker Characteristics and Implication

More Information
  • Based on gas chromatography and gas chromatography-mass spectrometry, the paper studies the characteristics of biomarker compounds in the source rocks of Tieling Formation in Lingyuan-ningcheng Basin, and analyzes the organic source, sedimentary environment and thermal evolution degree of organic matter, as well as geochemical implication. The saturated hydrocarbon gas chromatography of source rocks is front-peak type unimodal distribution dominated, with the main peak carbon mostly nC18, indicating that the organic matter is mainly derived from lower organism. The Pr/Ph ratio mainly ranges from 0.16 to 0.73, with obviously more phytane, indicating a strongly reducing sedimentary environment. The source rocks of Tieling Formation are characterized by abundant long-side chain tricyclic terpane, high content of gamacerane and dominant distribution of C27 sterane, with Ga/C30H of 0.10-0.31, averagely 0.19, reflecting the source rocks were formed in slight saline water-brackish water environment. The Ts/Tm ratio of 0.54-1.19 (averagely 0.88) shows the thermal evolution degree of source rocks is relatively high. The ratio of sterane/hopane contents is mainly in the range of 0.24-0.59, averagely 0.42, reflecting the lower organism of algae contributes little to organic matter, while the microorganisms such as bacteria contribute a lot. The sterane in the source rocks are L-shape with dominant C27 sterane, indicating the hydrocarbon generating parent material is of lower aquatic biological organism origin.

  • 加载中
  • [1] 赵文智, 胡素云, 汪泽成, 等. 中国元古界-寒武系油气地质条件与勘探地位[J]. 石油勘探与开发, 2018, 45(1): 1-13.

    Google Scholar

    Zhao W Z, Hu S Y, Wang Z C, et al. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-13.

    Google Scholar

    [2] 叶云涛, 王华建, 翟俪娜, 等. 新元古代重大地质事件及其与生物演化的耦合关系[J]. 沉积学报, 2017, 35(2): 203-216.

    Google Scholar

    Ye Y T, Wang H J, Zhai L N, et al. Geological events and their biological responses during the Neoproterozoic Era[J]. Acta Sedimentologica Sinica, 2017, 35(2): 203-216.

    Google Scholar

    [3] 谢树成, 殷鸿福. 地球生物学前沿: 进展与问题[J]. 中国科学: 地球科学, 2014, 44(6): 1072-1086.

    Google Scholar

    Xie S C, Yin H F. Progress and perspective on frontiers of geobiology[J]. Science China Earth Sciences, 2014, 57(5): 855-868.

    Google Scholar

    [4] 王鸿祯. 地球的节律与大陆动力学的思考[J]. 地学前缘, 1997, 4(3/4): 1-12.

    Google Scholar

    Wang H Z. Speculations on Earth's rhythms and continental dynamics[J]. Earth Science Frontiers, 1997, 4(3/4): 1-12.

    Google Scholar

    [5] 沈树忠, 朱茂炎, 王向东, 等. 新元古代-寒武纪与二叠-三叠纪转折时期生物和地质事件及其环境背景之比较[J]. 中国科学: 地球科学, 2010, 40(9): 1228-1240.

    Google Scholar

    Shen S Z, Zhu M Y, Wang X D, et al. A comparison of the biological, geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions[J]. Science China Earth Sciences, 2010, 53(12): 1873-1884.

    Google Scholar

    [6] Craig J, Thurow J, Thusu B, et al. Global Neoproterozoic petroleum systems: the emerging potential in North Africa[M]. London: Geological Society Special Publication, 2009: 1-25.

    Google Scholar

    [7] 王铁冠, 韩克猷. 论中-新元古界的原生油气资源[J]. 石油学报, 2011, 32(1): 1-7.

    Google Scholar

    Wang T G, Han K Y. On Meso-Neoproterozoic primary petroleum resources[J]. Acta Petrolei Sinica, 2011, 32(1): 1-7.

    Google Scholar

    [8] 王铁冠. 一种新发现的三环萜烷生物标志物系列[J]. 江汉石油学院学报, 1989, 11(3): 117-118.

    Google Scholar

    Wang T G. A new series of tricyclic terpane biomarkers[J]. Journal of Jianghan Petroleum Institute, 1989, 11(3): 117-118. (in Chinese)

    Google Scholar

    [9] 王泽九, 苗培实, 马秀兰. 2001第七次李四光地质科学奖获得者主要科学技术成就与贡献[M]. 北京: 地质出版社, 2003: 151-161.

    Google Scholar

    Wang Z J, Miao P S, Ma X L. Achievements and contributions of the 7th Li Siguang prize for geoscience in 2001[M]. Beijing: Geological Publishing House, 2003: 151-161. (in Chinese)

    Google Scholar

    [10] 卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 177-212.

    Google Scholar

    Lu S F, Zhang M. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2008: 177-212. (in Chinese)

    Google Scholar

    [11] 唐友军, 陈践发. 内蒙古西部额济纳旗苦水沟地区下石炭统白山组烃源岩分子化石的特征[J]. 地质通报, 2011, 30(6): 888-894.

    Google Scholar

    Tang Y J, Chen J F. Characteristics of molecular fossils in source rocks of Lower Carboniferous Baishan Formation in Kushuigou area of Ejin Banner, western Inner Mongolia[J]. Geological Bulletin of China, 2011, 30(6): 888-894.

    Google Scholar

    [12] 孙枢, 王铁冠. 中国东部中-新元古界地质学与油气资源[M]. 北京: 科学出版社, 2015: 449-467.

    Google Scholar

    Sun S, Wang T G. Meso-Neoproterozoic geology and petroleum resources in Eastern China[M]. Beijing: Science Press, 2015. (in Chinese)

    Google Scholar

    [13] 王晓梅, 张水昌, 王华建, 等. 烃源岩非均质性及其意义——以中国元古界下马岭组页岩为例[J]. 石油勘探与开发, 2017, 44(1): 32-39.

    Google Scholar

    Wang X M, Zhang S C, Wang H J, et al. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China[J]. Petroleum Exploration and Development, 2017, 44(1): 32-39.

    Google Scholar

    [14] 博蒙特E A, 福斯特N H. 油气圈闭勘探[M]. 刘德来, 王永兴, 薛良清, 等译. 北京: 石油工业出版社, 2002: 201-215.

    Google Scholar

    Beaumont E A, Foster N H. Exploring for oil and gas traps[M]. Liu D L, Wang Y X, Xue L Q, et al, trans. Beijing: Petroleum Industry Press, 2002: 201-215.

    Google Scholar

    [15] 侯读杰, 冯子辉. 油气地球化学[M]. 北京: 石油工业出版社, 2011: 201-242.

    Google Scholar

    Hou D J, Feng Z H. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2011: 201-242. (in Chinese)

    Google Scholar

    [16] Aquino Neot F R, Bjorφy M. Advances in Organic Geochemistry[C]. New York: Wiley, 1983: 659-667.

    Google Scholar

    [17] 张立平, 黄第藩, 廖志勤. 伽马蜡烷-水体分层的地球化学标志[J]. 沉积学报, 1999, 17(1): 136-140.

    Google Scholar

    Zhang L P, Huang D F, Liao Z Q. Gammacerane-geochemical indicator of water column stratification[J]. Acta Sedimentologica Sinica, 1999, 17(1): 136-140.

    Google Scholar

    [18] Huang W Y, Meinschein W G. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745.

    Google Scholar

    [19] 唐友军, 马忠梅, 蒋兴超. 内蒙古扎鲁特盆地陶海营子剖面林西组烃源岩生物标志化合物特征及意义[J]. 地质通报, 2013, 32(8): 1315-1321.

    Google Scholar

    Tang Y J, Ma Z M, Jiang X C. Characteristics and significance of biomarker compounds of Linxi Formation hydrocarbon source rocks along Taohaiyingzi section in Zhalute basin, Inner Mongolia[J]. Geological Bulletin of China, 2013, 32(8): 1315-1321.

    Google Scholar

    [20] 段云鹏, 包建平, 马安来, 等. 辽河双南油田油气地球化学特征[J]. 天然气地球科学, 2003, 14(6): 496-501.

    Google Scholar

    Duan Y P, Bao J P, Ma A L, et al. Geochemical characteristics of oil and gas from Shuangnan oilfield, Liaohe basin[J]. Natural Gas Geoscience, 2003, 14(6): 496-501.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(712) PDF downloads(40) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint