2023 Vol. 32, No. 3
Article Contents

HUANG Cong-bao, DAI Zhang-yin, GAO Wei-ting, LUO Qing-li. SHEAR STRENGTH CHARACTERISTICS OF SOIL IN THE SLIDING ZONE ON HIGHWAY SLOPE IN GUIZHOU PROVINCE[J]. Geology and Resources, 2023, 32(3): 366-372. doi: 10.13686/j.cnki.dzyzy.2023.03.014
Citation: HUANG Cong-bao, DAI Zhang-yin, GAO Wei-ting, LUO Qing-li. SHEAR STRENGTH CHARACTERISTICS OF SOIL IN THE SLIDING ZONE ON HIGHWAY SLOPE IN GUIZHOU PROVINCE[J]. Geology and Resources, 2023, 32(3): 366-372. doi: 10.13686/j.cnki.dzyzy.2023.03.014

SHEAR STRENGTH CHARACTERISTICS OF SOIL IN THE SLIDING ZONE ON HIGHWAY SLOPE IN GUIZHOU PROVINCE

More Information
  • To explore the change rule of strength and normal deformation properties of soil in the sliding zone on highway slopes, taking the mountainous highway in Guizhou Province as an example, the paper studies the shear strength characteristics of sliding zone soil under different water content and normal stress by ring shear apparatus. The results show that there is a good linear relation between the peak strength and residual strength of sliding zone soil with different water content and the normal stress. The larger the normal stress is, the larger the shear displacement required for the specimen to reach the peak strength will be. Under the condition of high water content, the shear stress tends to increase when the sliding zone soil decreases from peak strength to residual strength. With the increase of water content, the cohesion shows an increasing trend, and the internal friction angle reaches the peak near the plastic limit and then gradually decreases. The study on the properties of sliding zone soil will provide scientific basis for the identification and prevention of highway landslides.

  • 加载中
  • [1] 刘伟. 我国地质灾害调查统计与分析[J]. 采矿技术, 2021, 21(5): 100-103.

    Google Scholar

    Liu W. Investigation statistics and analysis of geological hazards in China[J]. Mining Technology, 2021, 21(5): 100-103. (in Chinese)

    Google Scholar

    [2] 郑伟, 王中美. 贵州喀斯特地区降雨强度对土壤侵蚀特征的影响[J]. 水土保持研究, 2016, 23(6): 333-339.

    Google Scholar

    Zheng W, Wang Z M. Laboratorial simulation influences of different rainfall intensities on soil erosion in karst area, China[J]. Research of Soil and Water Conservation, 2016, 23(6): 333-339.

    Google Scholar

    [3] 杨玲, 张柳金, 吴青波. 降雨型红层滑坡形成机理研究[J]. 地质与资源, 2021, 30(4): 485-491, 520.

    Google Scholar

    Yang L, Zhang L J, Wu Q B. Formation mechanism of rainfall-induced redbed landslide[J]. Geology and Resources, 2021, 30(4): 485-491, 520.

    Google Scholar

    [4] 孙萍萍, 张茂省, 江睿君, 等. 降雨诱发浅层黄土滑坡变形破坏机制[J]. 地质通报, 2021, 40(10): 1617-1625.

    Google Scholar

    Sun P P, Zhang M S, Jiang R J, et al. Deformation and failure mechanism of rainfall-induced shallow loess landslide[J]. Geological Bulletin of China, 2021, 40(10): 1617-1625.

    Google Scholar

    [5] Vithana S B, Nakamura S, Gibo S, et al. Correlation of large displacement drained shear strength of landslide soils measured by direct shear and ring shear devices[J]. Landslides, 2012, 9(3): 305-314. doi: 10.1007/s10346-011-0301-9

    CrossRef Google Scholar

    [6] Wang C X, Yamasaki H, Watanabe N, et al. Analysis of failure mechanics of the 2012 Kokugawa landslide caused by snowmelt, Niigata Prefecture[J]. Journal of the Japan Landslide Society, 2016, 53(2): 50-57. doi: 10.3313/jls.53.50

    CrossRef Google Scholar

    [7] 汤文, 姚志宾, 李邵军, 等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学, 2016, 37(10): 2885-2892.

    Google Scholar

    Tang W, Yao Z B, Li S J, et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: An experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885-2892.

    Google Scholar

    [8] 赵利云, 张茂省, 孙萍萍, 等. 基于原位监测的浅层黄土斜坡水分运移规律分析[J]. 地质与资源, 2021, 30(4): 492-498.

    Google Scholar

    Zhao L Y, Zhang M S, Sun P P, et al. Analysis of water movement law in shallow loess slope based on in-situ monitoring[J]. Geology and Resources, 2021, 30(4): 492-498.

    Google Scholar

    [9] 赵志强. 含水量对黄土强度特性影响的研究[D]. 郑州: 华北水利水电大学, 2016.

    Google Scholar

    Zhao Z Q. Influence of moisture content on shear strength of loess[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2016.

    Google Scholar

    [10] 赵晓铭, 李锦辉. 降雨诱发滑坡的实时概率分析[J]. 地下空间与工程学报, 2012, 8(S2): 1690-1694.

    Google Scholar

    Zhao X M, Li J H. Real-time probability analysis of rainfall-induced landslide[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(S2): 1690-1694.

    Google Scholar

    [11] 任三绍, 郭长宝, 张永双, 等. 川西巴塘茶树山滑坡发育特征及形成机理[J]. 现代地质, 2017, 31(5): 978-989.

    Google Scholar

    Ren S S, Guo C B, Zhang Y S, et al. Development characteristics and formation mechanism of Chashushan landslide in Batang, western Sichuan[J]. Geoscience, 2017, 31(5): 978-989.

    Google Scholar

    [12] 张怡颖, 郭长宝, 杨志华, 等. 四川茂县周场坪深层滑坡滑带土环剪试验强度研究[J]. 工程地质学报, 2021, 29(3): 764-776.

    Google Scholar

    Zhang Y Y, Guo C B, Yang Z H, et al. Study on shear strength of deep-seated sliding zone soil of Zhouchangping landslide in Maoxian, Sichuan[J]. Journal of Engineering Geology, 2021, 29(3): 764-776.

    Google Scholar

    [13] Bao H, Qi Q, Lan H X, et al. Sliding mechanical properties of fault gouge studied from ring shear test-based microscopic morphology characterization[J]. Engineering Geology, 2020, 279: 105879.

    Google Scholar

    [14] 刘虎虎, 缪海波, 陈志伟, 等. 含水率和离子浓度对滑带土抗剪强度的影响[J]. 地质科技情报, 2019, 38(1): 228-234.

    Google Scholar

    Liu H H, Miao H B, Chen Z W, et al. Effect of water content and ion concentration on shear strength of sliding zone soil[J]. Geological Science and Technology Information, 2019, 38(1): 228-234.

    Google Scholar

    [15] 范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706.

    Google Scholar

    Fan Z Q, Tang H M, Tan Q W, et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706.

    Google Scholar

    [16] 谢强, 张国栋, 胡学文, 等. 饱和粉质黏土残余强度剪切速率效应试验研究[J]. 三峡大学学报(自然科学版), 2019, 41(1): 52-55.

    Google Scholar

    Xie Q, Zhang G D, Hu X W, et al. Experimental researches on residual strength of saturated silty clay at different shear rates[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(1): 52-55.

    Google Scholar

    [17] 陈洁, 雷学文, 孟庆山, 等. 重塑红棕色玄武岩残积土的残余强度试验研究[J]. 人民长江, 2016, 47(7): 86-90.

    Google Scholar

    Chen J, Lei X W, Meng Q S, et al. Study of residual strength test on remodeling reddish brown basalt residual soil[J]. Yangtze River, 2016, 47(7): 86-90.

    Google Scholar

    [18] 谢辉辉, 刘清秉, 胡桂阳. 基于环剪试验的滑带土抗剪强度特性研究[J]. 人民长江, 2018, 49(11): 108-113.

    Google Scholar

    Xie H H, Liu Q B, Hu G Y. Research on shear strength characteristics of slide soil based on ring-shear test[J]. Yangtze River, 2018, 49(11): 108-113.

    Google Scholar

    [19] 李姝, 张立展, 许强, 等. 基于环剪试验的黄土完全软化强度研究[J]. 人民长江, 2015, 46(21): 84-87.

    Google Scholar

    Li S, Zhang L Z, Xu Q, et al. Research on fully softened strength of loess based on ring shear tests[J]. Yangtze River, 2015, 46(21): 84-87.

    Google Scholar

    [20] 王炜, 骆亚生. 重塑黄土抗剪强度的环剪试验研究[J]. 水土保持通报, 2017, 37(5): 110-113, 122.

    Google Scholar

    Wang W, Luo Y S. Experimental study on shear strength of remolded loess by ring shear test[J]. Bulletin of Soil and Water Conservation, 2017, 37(5): 110-113, 122.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(1113) PDF downloads(225) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint