2023 Vol. 32, No. 2
Article Contents

CHEN Cong, WU Tao-tao, ZHOU Yong-heng, BAO Qing-zhong, CHAI Lu, JIANG Ping. ZIRCON U-Pb CHRONOLOGY, GEOCHEMISTRY AND PETROGENESIS OF ORE-BEARING GRANODIORITE IN TSAV SILVER POLYMETALLIC DEPOSIT, MONGOLIA[J]. Geology and Resources, 2023, 32(2): 127-139. doi: 10.13686/j.cnki.dzyzy.2023.02.001
Citation: CHEN Cong, WU Tao-tao, ZHOU Yong-heng, BAO Qing-zhong, CHAI Lu, JIANG Ping. ZIRCON U-Pb CHRONOLOGY, GEOCHEMISTRY AND PETROGENESIS OF ORE-BEARING GRANODIORITE IN TSAV SILVER POLYMETALLIC DEPOSIT, MONGOLIA[J]. Geology and Resources, 2023, 32(2): 127-139. doi: 10.13686/j.cnki.dzyzy.2023.02.001

ZIRCON U-Pb CHRONOLOGY, GEOCHEMISTRY AND PETROGENESIS OF ORE-BEARING GRANODIORITE IN TSAV SILVER POLYMETALLIC DEPOSIT, MONGOLIA

More Information
  • The research on magmatic rocks related to mineralization was weak in Tsav-Jiawula Ag polymetallic ore concentration area on the China-Mongolia border. Taking the ore-bearing granodiorite and its dioritic enclaves in Tsav Ag polymetallic deposit as object, the paper studies the petrology, zircon U-Pb chronology, geochemistry and in-situ Lu-Hf isotopes. The zircon 206Pb/238U weighted average ages of 195.7±1.3 Ma and 196.5±2.4 Ma for granodiorite and diorite enclaves respectively are consistent within the error range, indicating that both were products of the Early Jurassic magmatism. The host granodiorite belongs to I-type granite of quasi aluminous-weakly peraluminous and high K calc alkaline-calc alkaline series. The diorite enclaves are of consanguineous magma mixing origin. The host granodiorite has broad εHf(t) values (4.4-10.7) with the two-stage Hf model ages ranging from 550 to 960 Ma, reflecting the primary magma of host granodiorites originated from the partial melting of new crustal accretion from depleted mantle in Neoproterozoic with mantle-derived materials mixed. Combined with the regional tectonic evolution data, it is considered that the Tsav Ag polymetallic deposit was formed in the active continental margin setting caused by the subduction of Mongolia-Okhotsk oceanic plate.

  • 加载中
  • [1] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991: 1-725.

    Google Scholar

    Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional geology of Inner Mongolia Autonomous Region[M]. Beijing: Geological Publishing House, 1991: 1-725. (in Chinese)

    Google Scholar

    [2] 聂凤军, 刘勇, 刘翼飞, 等. 中蒙边境查夫-甲乌拉地区中生代银多金属矿床成矿作用[J]. 吉林大学学报(地球科学版), 2011, 41(6): 1715-1725.

    Google Scholar

    Nie F J, Liu Y, Liu Y F, et al. Ore-forming processes of silver-polymetallic deposits occurring within Tsav-Jiawula region along China-Mongolian border[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6): 1715-1725.

    Google Scholar

    [3] 张璟, 邵军, 鲍庆中, 等. 蒙古国乌兰铅锌矿地质特征、岩石地球化学特征及U-Pb年龄[J]. 中国地质, 2014, 41(4): 1124-1135.

    Google Scholar

    Zhang J, Shao J, Bao Q Z, et al. Geological and rock geochemical characteristics and U-Pb age of the Ullan lead-zinc deposit in Mongolia[J]. Geology in China, 2014, 41(4): 1124-1135.

    Google Scholar

    [4] 张璟, 邵军, 鲍庆中, 等. 中蒙克鲁伦-满洲里成矿带铅锌矿地球化学特征及LA-ICP-MS锆石U-Pb年龄对比[J]. 地质通报, 2015, 34(4): 663-674.

    Google Scholar

    Zhang J, Shao J, Bao Q Z, et al. A comparative study of lithgeochemical characteristics and LA-ICP-MS zircon U-Pb age of lead-zinc deposits in the Herlen-Manzhouli metallogenic belt along China-Mongolia border area[J]. Geological Bulletin of China, 2015, 34(4): 663-674.

    Google Scholar

    [5] 李铁刚, 武广, 刘军, 等. 大兴安岭北部甲乌拉铅锌银矿床Rb-Sr同位素测年及其地质意义[J]. 岩石学报, 2014, 30(1): 557-570.

    Google Scholar

    Li T G, Wu G, Liu J, et al. Rb-Sr isochron age of the Jiawula Pb-Zn-Ag deposit in the Manzhouli area and its geological significance[J]. Acta Petrologica Sinica, 2014, 30(1): 257-270.

    Google Scholar

    [6] 牛斯达, 李胜荣, 郭健. 内蒙古甲乌拉铅锌银矿绢云母40Ar-39Ar年龄及其地质意义[J]. 地质与勘探, 2020, 56(1): 59-67.

    Google Scholar

    Niu S D, Li S R, Guo J. 40Ar-39Ar ages of the sericite in the Jiawula Pb-Zn-Ag deposit, Inner Mongolia and their geological significance[J]. Geology and Exploration, 2020, 56(1): 59-67.

    Google Scholar

    [7] 杨梅, 孙景贵, 王忠禹, 等. 大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义: 锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 477-496.

    Google Scholar

    Yang M, Sun J G, Wang Z Y, et al. Petrogenesis and Geological Significance of the alkali-rich granite porphyry in the Jiawula Cu-Ag-Pb-Zn deposit in the western slope of the Great Xing'an Range: Zircon U-Pb dating and geochemical characteristics[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2): 477-496.

    Google Scholar

    [8] 许立权, 刘翠, 邓晋福, 等. 内蒙古额仁陶勒盖银矿区火成岩岩石地球化学特征及锆石SHRIMP U-Pb同位素定年[J]. 岩石学报, 2014, 30(11): 3203-3212.

    Google Scholar

    Xu L Q, Liu C, Deng J F, et al. Geochemical characteristics and zircon U-Pb SHRIMP age of igneous rocks in Erentaolegai silver deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 2014, 30(11): 3203-3212.

    Google Scholar

    [9] Tang J, Xu W. Mesozoic intrusive rocks in the Erguna Massif, NE China[J]. Gondwana Research, 2016, 31: 218-240. doi: 10.1016/j.gr.2014.12.010

    CrossRef Google Scholar

    [10] 曹宏经. 查夫矿床的含矿构造(东蒙古)[J]. 国外铀金地质, 1996, 13(1): 58-65.

    Google Scholar

    Cao H J. The ore-bearing structure of the Tsav deposit (Eastern Mongolia)[J]. Overseas Uranium and Gold Geology, 1996, 13(1): 58-65. (in Chinese)

    Google Scholar

    [11] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [12] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [13] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2: 63-114.

    Google Scholar

    [14] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [15] Ministry of Industry and Trade, Mongolia (MITM). Mongolia: Investor's forum[C]//Internal Mining and Oil Industry Information Bulletin, 2002: 1-350.

    Google Scholar

    [16] 郭晓东, 牛翠袆, 王治华, 等. 滇西马厂箐岩体及其中深源包体地球化学特征[J]. 吉林大学学报(地球科学版), 2011, 41(S1): 141-153.

    Google Scholar

    Guo X D, Niu C Y, Wang Z H, et al. Geochemical characteristics of the Machangqing intrusive and its deep-derived enclaves, western Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(S1): 141-153.

    Google Scholar

    [17] Didier J, Barbarin B. Macroscopic features of mafic microgranular enclaves[J]. Enclaves and Granite Petrology, 1991: 253-262.

    Google Scholar

    [18] 张俊杰, 王光杰, 杨晓勇, 等. 皖南旌德花岗闪长岩与暗色包体的成因: 地球化学、锆石U-Pb年代学与Hf同位素制约[J]. 岩石学报, 2012, 28(12): 4047-4063.

    Google Scholar

    Zhang J J, Wang G J, Yang X Y, et al. The petrogenesis of the Jingde granodiorite and its MMEs: Constraints from geochemistry, zircon U-Pb dating and Hf isotopic compositions[J]. Acta Petrologica Sinica, 2012, 28(12): 4047-4063.

    Google Scholar

    [19] 陈伟, 宋杨, 刘洪章, 等. 同源岩浆不同期次之间混合产生的暗色包体——以北拉萨地块中部晚白垩世桑心日岩体为例[J]. 岩石学报, 2019, 35(7): 2143-2157.

    Google Scholar

    Chen W, Song Y, Liu H Z, et al. MMEs formed by magma mixing of different episodes of the same sourced magma: A case study of the Late Cretaceous Sangxinri pluton in the middle part of the northern Lhasa block[J]. Acta Petrologica Sinica, 2019, 35(7): 2143-2157.

    Google Scholar

    [20] 周金城, 徐夕生, 陶仙聪. 寄主花岗岩对微花岗岩类包体的地球化学制约[J]. 地球化学, 1994, 23(3): 254-261.

    Google Scholar

    Zhou J C, Xu X S, Tao X C. Geochemical constraints on microgranitoid enclaves by host granites[J]. Geochimica, 1994, 23(3): 254-261.

    Google Scholar

    [21] Zorpi M J, Coulon C, Orsini J B, et al. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons[J]. Tectonophysics, 1989, 157(4): 315-329.

    Google Scholar

    [22] Foley S F. Liquid immiscibility and melt segregation in alkaline lamprophyres from Labrador[J]. Lithos, 1984, 17: 127-137.

    Google Scholar

    [23] Vernon R H. Restite, xenoliths and microgranitoid enclaves in granites[J]. Journal & Proceedings, Royal Society of New South Wales, 1983, 116(3/4): 77-103.

    Google Scholar

    [24] Amelin Y, Lee D C, Halliday A N, et al. Nature of the earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399(6733): 252-255.

    Google Scholar

    [25] Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003(3): 1-64.

    Google Scholar

    [26] Jochum K P, McDonough W F, Palme H, et al. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths[J]. Nature, 1989, 340(6234): 548-550.

    Google Scholar

    [27] Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 2007, 315(5814): 980-983.

    Google Scholar

    [28] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356.

    Google Scholar

    [29] Metelkin D V, Gordienko I V, Klimuk V S. Paleomagnetism of Upper Jurassic basalts from Transbaikalia: New data on the time of closure of the Mongol-Okhotsk Ocean and Mesozoic intraplate tectonics of Central Asia[J]. Russian Geology and Geophysics, 2007, 48(10): 825-834.

    Google Scholar

    [30] Kravchinsky V A, Cogné J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1): 34-57.

    Google Scholar

    [31] Sorokin A A, Sorokin A P, Ponomarchuk V A, et al. The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan-Ogodzha volcanoplutonic belt (Amur Region)[J]. Russian Geology and Geophysics, 2010, 51(4): 369-379.

    Google Scholar

    [32] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646.

    Google Scholar

    Xu W L, Sun C Y, Tang J, et al. Basement nature and tectonic evolution of the Xing'an-Mongolian orogenic belt[J]. Earth Science, 2019, 44(5): 1620-1646.

    Google Scholar

    [33] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353.

    Google Scholar

    Xu W L, Wang F, Pei F P, et al. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353.

    Google Scholar

    [34] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1/4): 43-55.

    Google Scholar

    [35] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(1662) PDF downloads(71) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint