2023 Vol. 32, No. 1
Article Contents

WANG Gui-ling, LU Chuan. STIMULATION TECHNOLOGY DEVELOPMENT OF HOT DRY ROCK AND ENHANCED GEOTHERMAL SYSTEM DRIVEN BY CARBON NEUTRALITY TARGET[J]. Geology and Resources, 2023, 32(1): 85-95. doi: 10.13686/j.cnki.dzyzy.2023.01.011
Citation: WANG Gui-ling, LU Chuan. STIMULATION TECHNOLOGY DEVELOPMENT OF HOT DRY ROCK AND ENHANCED GEOTHERMAL SYSTEM DRIVEN BY CARBON NEUTRALITY TARGET[J]. Geology and Resources, 2023, 32(1): 85-95. doi: 10.13686/j.cnki.dzyzy.2023.01.011

STIMULATION TECHNOLOGY DEVELOPMENT OF HOT DRY ROCK AND ENHANCED GEOTHERMAL SYSTEM DRIVEN BY CARBON NEUTRALITY TARGET

More Information
  • As a kind of clean, low-carbon, stable and continuous non-carbon-based energy, geothermal resource can provide a significant guarantee for the target of carbon neutrality and carbon peak. With a review on the development status of hot dry rock and enhanced geothermal system at home and abroad, as well as the status and development of reservoir construction and enhancement technology, the development of microseismic monitoring technology and progress of induced earthquake disaster evaluation methods, and the progress of tracer technique and monitoring potential of electromagnetic method, this paper prospects the development and direction of stimulation technology of hot dry rock and enhanced geothermal system, which provides reference for related engineering technology and researchers.

  • 加载中
  • [1] 国家能源局. 关于促进地热能开发利用的若干意见(征求意见稿) [EB/OL]. http://www.nea.gov.cn/2021-04/14/c_139880250.htm,2021-04-14.

    Google Scholar

    Nation Energy Administration. Opinions on promoting the development and utilization of geothermal energy[EB/OL]. http://www.nea.gov.cn/2021-04/14/c_139880250.htm,2021-04-14. (in Chinese)

    Google Scholar

    [2] 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425, 341. doi: 10.13686/j.cnki.dzyzy.2022.03.017

    CrossRef Google Scholar

    Wang G L, Lu C. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 2022, 31(3): 412-425, 341. doi: 10.13686/j.cnki.dzyzy.2022.03.017

    CrossRef Google Scholar

    [3] Tester J W, Anderson B J. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st Century[R]. Boston, USA: Massachusetts Institute of Technology, 2006.

    Google Scholar

    [4] Brown D. The US hot dry rock program: 20 years of experience in reservoir testing[C]//Proceedings of the World Geothermal Congress. Florence, Italy, 1995.

    Google Scholar

    [5] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459.

    Google Scholar

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. ActaGeoscienticaSinica, 2017, 38(4): 449-459.

    Google Scholar

    [6] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    CrossRef Google Scholar

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    CrossRef Google Scholar

    [7] Olasolo P, Juárez M C, Morales M P, et al. Enhanced geothermal systems (EGS): A review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144. doi: 10.1016/j.rser.2015.11.031

    CrossRef Google Scholar

    [8] Brown D. 1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico[R]. Los Alamos, NM, United States: Los Alamos National Laboratory, 1995.

    Google Scholar

    [9] Xu T F, Liang X, Xia Y, et al. Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data[J]. Renewable Energy, 2022, 181: 1197-1208. doi: 10.1016/j.renene.2021.09.111

    CrossRef Google Scholar

    [10] 陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13-21. doi: 10.3981/j.issn.1000-7857.2015.19.001

    CrossRef Google Scholar

    Lu C, Wang G L. Current status and prospect of hot dry rock research [J]. Science & Technology Review, 2015, 33(19): 13-21. doi: 10.3981/j.issn.1000-7857.2015.19.001

    CrossRef Google Scholar

    [11] Schill E, Cuenot N, Genter A, et al. Review of the hydraulic development in the multi-reservoir/multi-well EGS project of Soultzsous-Forêts[C]//Proceedings World Geothermal Congress 2015. Melbourne, Australia, 2015.

    Google Scholar

    [12] Jung R, Rummel F, Jupe A, et al. Large scale hydraulic injections in the granitic basement in the European HDR programme at Soultz, France[C]//Proc3rd Int HDR Forum, Santa Fe, 1996.

    Google Scholar

    [13] Hori Y, Kitano K, Kaieda H, et al. Present status of the Ogachi HDR Project, Japan, and future plans[J]. Geothermics, 1999, 28(4/5): 637-645.

    Google Scholar

    [14] Schroeder R, Swenson D, Shinohara N, et al. Strategies for the Hijiori long term flow test[C]//Proc 23rd Workshop on Geothermal Reservoir Engineering Stanford University, 1998.

    Google Scholar

    [15] Economides M J, Nolte K G. Reservoir stimulation[M]. 2nd ed. Englewood Cliffs, New Jersey: Prentice Hall, 1989.

    Google Scholar

    [16] 王鸿勋, 张士诚. 水力压裂设计数值计算方法[M]. 北京: 石油工业出版社, 1998: 363.

    Google Scholar

    Wang H X, Zhang S C. Numerical calculation methods of hydraulic fracturing design[M]. Beijing: Petroleum Industry Press, 1998: 363.

    Google Scholar

    [17] Valkó P, Economides M J. Hydraulic fracture mechanics[M]. Chichester: Wiley, 1995.

    Google Scholar

    [18] 王仲茂, 胡江明. 水力压裂形成裂缝形态的研究[J]. 石油勘探与开发, 1994, 21(6): 66-69.

    Google Scholar

    Wang Z M, Hu J M. A study on the fracture types induced by hydro-fracturing[J]. Petroleum Exploration and Development, 1994, 21(6): 66-69.

    Google Scholar

    [19] Batchelor A S. Reservoir behaviour in a stimulated hot dry rock system[R]. England: Cambrone School of Mines, 1986.

    Google Scholar

    [20] Jung H B, Carroll K C, Kabilan S, et al. Stimuli-responsive/rheoreversible hydraulic fracturing fluids as a greener alternative to support geothermal and fossil energy production[J]. Green Chemistry, 2015, 17(5): 2799-2812. doi: 10.1039/C4GC01917B

    CrossRef Google Scholar

    [21] 朱丽君, 刘国良. 酸化压裂工艺技术综述[J]. 安徽化工, 2015, 41(2): 9-12. doi: 10.3969/j.issn.1008-553X.2015.02.004

    CrossRef Google Scholar

    Zhu L J, Liu G L. Summary of acidizing fracturing technology[J]. Anhui Chemical Industry, 2015, 41(2): 9-12. doi: 10.3969/j.issn.1008-553X.2015.02.004

    CrossRef Google Scholar

    [22] 王静波, 赵立强, 方泽本, 等. 多级交替注入酸压优化新方法研究[J]. 天然气勘探与开发, 2011, 34(3): 41-44. doi: 10.3969/j.issn.1673-3177.2011.03.012

    CrossRef Google Scholar

    Wang J B, Zhao L Q, Fang Z B, et al. A new method to optimize multistage alternating injection of acid fracturing[J]. Natural Gas Exploration & Development, 2011, 34(3): 41-44. (in Chinese) (in Chinese) doi: 10.3969/j.issn.1673-3177.2011.03.012

    CrossRef Google Scholar

    [23] Tinker S J. 碳酸盐岩地层酸压新技术: 平衡酸压[J]. 曲良泉, 译. 油气田开发工程译丛, 1991(5): 21-28.

    Google Scholar

    Tinker S J. Equilibrium acid fracturing: A new fracture acidizing technique for carbonate formations[J]. SPE Production Engineering, 1991, 6(1): 25-32.

    Google Scholar

    [24] Grubelich M C, King D, Knudsen S, et al. An overview of a high energy stimulation technique for geothermal applications[C]//Proceedings World Geothermal Congress. Melbourne, Australia, 2015.

    Google Scholar

    [25] 王安仕, 秦发动. 高能气体压裂技术[M]. 西安: 西北大学出版社, 1998: 190.

    Google Scholar

    Wang A S, Qin F D. High energy gas fracturing technology[M]. Xi' an: Northwest University Press, 1998. (in Chinese)

    Google Scholar

    [26] 陈华彬, 马自强, 艾生军, 等. 射孔高能气体压裂技术研究及应用[J]. 钻采工艺, 2020, 43(3): 67-69. doi: 10.3969/J.ISSN.1006-768X.2020.03.20

    CrossRef Google Scholar

    Chen H B, Ma Z Q, Ai S J, et al. Research & application of perforating high energy gas fracturing technology[J]. Drilling & Production Technology, 2020, 43(3): 67-69. doi: 10.3969/J.ISSN.1006-768X.2020.03.20

    CrossRef Google Scholar

    [27] Chen Y Q, Nagaya Y, Ishida T. Observations of fractures induced by hydraulic fracturing in anisotropic granite[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1455-1461. doi: 10.1007/s00603-015-0727-9

    CrossRef Google Scholar

    [28] 赵旭. 高能气体压裂过程中压井液运动计算模型研究[J]. 爆破器材, 2020, 49(2): 29-33. doi: 10.3969/j.issn.1001-8352.2020.02.005

    CrossRef Google Scholar

    Zhao X. Modeling of controlling fluid movement during high-energy gas fracturing[J]. Explosive Materials, 2020, 49(2): 29-33. doi: 10.3969/j.issn.1001-8352.2020.02.005

    CrossRef Google Scholar

    [29] 吴飞鹏. 高能气体压裂过程动力学模型与工艺技术优化决策研究[D]. 青岛: 中国石油大学(华东), 2009.

    Google Scholar

    Wu F P. The kinetic model and the technology optimization of HEGF process[D]. Qingdao: China University of Petroleum (EastChina), 2009.

    Google Scholar

    [30] Hou L, Zhang S, Elsworth D, et al. Review of fundamental studies of CO2 fracturing: Fracture propagation, propping and permeating[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108823. doi: 10.1016/j.petrol.2021.108823

    CrossRef Google Scholar

    [31] Middleton R S, Carey J W, Currier R P, et al. Shale gas and nonaqueous fracturing fluids: Opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015, 147: 500-509. doi: 10.1016/j.apenergy.2015.03.023

    CrossRef Google Scholar

    [32] Sampath K H S M, Perera M S A, Ranjith P G, et al. CH4-CO2 gas exchange and supercritical CO2 based hydraulic fracturing as CBM production-accelerating techniques: A review[J]. Journal of CO2 Utilization, 2017, 22: 212-230. doi: 10.1016/j.jcou.2017.10.004

    CrossRef Google Scholar

    [33] 程宇雄, 李根生, 王海柱, 等. 超临界CO2连续油管喷射压裂可行性分析[J]. 石油钻采工艺, 2013, 35(6): 73-77.

    Google Scholar

    Cheng Y X, Li G S, Wang H Z, et al. Feasibility analysis on coiled-tubing jet fracturing with supercritical CO2[J]. Oil Drilling & Production Technology, 2013, 35(6): 73-77.

    Google Scholar

    [34] 李根生, 王海柱, 沈忠厚, 等. 超临界CO2射流在石油工程中应用研究与前景展望[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 76-80, 87. doi: 10.3969/j.issn.1673-5005.2013.05.011

    CrossRef Google Scholar

    Li G S, Wang H Z, Shen Z H, et al. Application investigations and prospects of supercritical carbon dioxide jet in petroleum engineering [J]. Journal of China University of Petroleum, 2013, 37(5): 76-80, 87. doi: 10.3969/j.issn.1673-5005.2013.05.011

    CrossRef Google Scholar

    [35] 张毅. 超临界CO2压裂在页岩气开发中的优势与挑战[J]. 现代化工, 2021, 41(1): 1-6.

    Google Scholar

    Zhang Y. Advantages and challenges of supercritical CO2 fracturing in shale gas exploitation[J]. Modern Chemical Industry, 2021, 41(1): 1-6.

    Google Scholar

    [36] Kolle J J. Coiled-tubing drilling with supercritical carbon dioxide[C]//SPE/CIM International Conference on Horizontal Well Technology. Calgary, Alberta, Canada: SPE, 2000.

    Google Scholar

    [37] Ishida T, Aoyagi K, Niwa T, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39(16): L16309.

    Google Scholar

    [38] Watanabe N, Sakaguchi K, Goto R, et al. Cloud-fracture networks as a means of accessing superhot geothermal energy[J]. Scientific Reports, 2019, 9(1): 939. doi: 10.1038/s41598-018-37634-z

    CrossRef Google Scholar

    [39] Pramudyo E, Goto R, Watanabe N, et al. CO2 injection-induced complex cloud-fracture networks in granite at conventional and superhot geothermal conditions[J]. Geothermics, 2021, 97: 102265. doi: 10.1016/j.geothermics.2021.102265

    CrossRef Google Scholar

    [40] 王磊, 梁卫国. 超临界CO2/清水压裂煤体起裂和裂缝扩展试验研究[J]. 岩石力学与工程学报, 2019, 38(S1): 2680-2689.

    Google Scholar

    Wang L, Liang W G. Experimental study on fracture initiation and growth in coal using hydraulic fracturing with supercritical CO2 and normal water[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2680-2689.

    Google Scholar

    [41] Ma X F, Li N, Yin C B, et al. Hydraulic fracture propagation geometry and acoustic emission interpretation: A case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(6): 1030-1037. doi: 10.1016/S1876-3804(17)30116-7

    CrossRef Google Scholar

    [42] Wang YY, Deng H C, Deng Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420. doi: 10.1016/j.petrol.2021.108420

    CrossRef Google Scholar

    [43] Calò M, Dorbath C. Different behaviours of the seismic velocity field at Soultz-sous-Forêts revealed by 4-D seismic tomography: case study of GPK3 and GPK2 injection tests[J]. Geophysical Journal International, 2013, 194(2): 1119-1137. doi: 10.1093/gji/ggt153

    CrossRef Google Scholar

    [44] Abdulaziz A M. Microseismic imaging of hydraulically induced-fractures in gas reservoirs: A case study in Barnett shale gas reservoir, Texas, USA[J]. Open Journal of Geology, 2013, 3(5): 361-369. doi: 10.4236/ojg.2013.35041

    CrossRef Google Scholar

    [45] 吴顺川, 黄小庆, 陈钒, 等. 岩体破裂矩张量反演方法及其应用[J]. 岩土力学, 2016, 37(S1): 1-18. doi: 10.16285/j.rsm.2016.S1.001

    CrossRef Google Scholar

    Wu S C, Huang X Q, Chen F, et al. Moment tensor inversion of rock failure and its application[J]. Rock and Soil Mechanics, 2016, 37(S1): 1-18. doi: 10.16285/j.rsm.2016.S1.001

    CrossRef Google Scholar

    [46] Hudson J A, Pearce R G, Rogers R M. Source type plot for inversion of the moment tensor[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B1): 765-774. doi: 10.1029/JB094iB01p00765

    CrossRef Google Scholar

    [47] Foulger G R, Julian B R, Hill D P, et al. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing[J]. Journal of Volcanology and Geothermal Research, 2004, 132(1): 45-71. doi: 10.1016/S0377-0273(03)00420-7

    CrossRef Google Scholar

    [48] Baig A, Urbancic T. Microseismic moment tensors: A path to understanding fracgrowth[J]. The Leading Edge, 2010, 29(3): 320-324. doi: 10.1190/1.3353729

    CrossRef Google Scholar

    [49] Yu X, Rutledge J, Leaney S, et al. Discrete fracture network generation from microseismic data using Moment-Tensor constrained Hough transforms[C]//SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA: SPE, 2014.

    Google Scholar

    [50] Zhang H L, Eaton D W. A regularized approach for estimation of a composite focal mechanism from a set of microearthquakes[J]. Geophysics, 2018, 83(5): KS65-KS75. doi: 10.1190/geo2017-0273.1

    CrossRef Google Scholar

    [51] Foulger G R, Wilson M P, Gluyas J G, et al. Global review of human-induced earthquakes[J]. Earth-Science Reviews, 2018, 178: 438-514. doi: 10.1016/j.earscirev.2017.07.008

    CrossRef Google Scholar

    [52] Baisch S, Weidler R, Vörös R, et al. A conceptual model for post-injection seismicity at Soultz-sous-Forêts[J]. Transactions-Geothermal Resources Council, 2006, 30: 601-605.

    Google Scholar

    [53] Cuenot N, Charléty J, Dorbath L, et al. Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France [J]. Geothermics, 2006, 35(5/6): 561-575.

    Google Scholar

    [54] Templeton D C, Wang J B, Goebel M K, et al. Induced seismicity during the 2012 Newberry EGS stimulation: Assessment of two advanced earthquake detection techniques at an EGS site[J]. Geothermics, 2020, 83: 101720. doi: 10.1016/j.geothermics.2019.101720

    CrossRef Google Scholar

    [55] Majer E L, Baria R, Stark M, et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36(3): 185-222. doi: 10.1016/j.geothermics.2007.03.003

    CrossRef Google Scholar

    [56] Kwiatek G, Saarno T, Ader T, et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland[J]. Science Advances, 2019, 5(5): eaav7224. doi: 10.1126/sciadv.aav7224

    CrossRef Google Scholar

    [57] Bentz S, Kwiatek G, Martínez-Garzón P, et al. Seismic moment evolution during hydraulic stimulations[J]. Geophysical Research Letters, 2020, 47(5): e2019GL086185.

    Google Scholar

    [58] Galis M, Ampuero J P, Mai P M, et al. Induced seismicity provides insight into why earthquake ruptures stop[J]. Science Advances, 2017, 3(12): eaap7528. doi: 10.1126/sciadv.aap7528

    CrossRef Google Scholar

    [59] McGarr A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1008-1019. doi: 10.1002/2013JB010597

    CrossRef Google Scholar

    [60] van der Elst N J, Page M T, Weiser D A, et al. Induced earthquake magnitudes are as large as (statistically) expected[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4575-4590. doi: 10.1002/2016JB012818

    CrossRef Google Scholar

    [61] Blöcher G, Cacace M, Jacquey A B, et al. Evaluating micro-seismic events triggered by reservoir operations at the geothermal site of GroβSchönebeck (Germany)[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3265-3279. doi: 10.1007/s00603-018-1521-2

    CrossRef Google Scholar

    [62] 岳高凡, 王贵玲, 马峰, 等. 地热规模化开发断层滑动概率评估——以雄安新区深部岩溶热储为例[J]. 中国地质, 2021, 48(5): 1382-1391.

    Google Scholar

    Yue G F, Wang G L, Ma F, et al. Evaluation of fault slip probability of geothermal large-scale development: A case study of deep karst geothermal reservoir in Xiong'an New Area[J]. Geology in China, 2021, 48(5): 1382-1391.

    Google Scholar

    [63] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. doi: 10.3981/j.issn.1000-7857.2012.32.004

    CrossRef Google Scholar

    Xu T F, Zhang Y J, Zeng Z F, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32): 42-45. doi: 10.3981/j.issn.1000-7857.2012.32.004

    CrossRef Google Scholar

    [64] Rose P E, Capuno V, Peh A, et al. The use of naphthalene sulfonates as tracers in high temperature geothermal systems[C]//Proceedings of the 23rd Annual PNOC-EDC Geothermal Conference. 2002: 53-58.

    Google Scholar

    [65] Rose P E, Johnson S D, Kilbourn P, et al. Tracer testing at Dixie Valley, Nevada using 1-naphthalene sulfonate and 2, 6-naphthalene disulfonate[C]//Proceedings of theTwenty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, CA, 2002.

    Google Scholar

    [66] Rose P E, Johnson S D, Kilbourn P. Tracer testing at Dixie Valley, Nevada, using 2-naphthalene sulfonate and 2, 7-naphthalene disulfonate[C]//Proceedings of theTwenty-Sixth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, CA, 2001.

    Google Scholar

    [67] Pope E C, Bird D K, Arnórsson S. Stable isotopes of hydrothermal minerals as tracers for geothermal fluids in Iceland[J]. Geothermics, 2014, 49: 99-110. doi: 10.1016/j.geothermics.2013.05.005

    CrossRef Google Scholar

    [68] Dean C, Reimus P, Oates J, et al. Laboratory experiments to characterize cation-exchanging tracer behavior for fracture surface area estimation at Newberry Crater, OR[J]. Geothermics, 2015, 53: 213-224. doi: 10.1016/j.geothermics.2014.05.011

    CrossRef Google Scholar

    [69] Hawkins A J, Becker M W, Tester J W. Inert and adsorptive tracer tests for field measurement of flow-wetted surface area[J]. Water Resources Research, 2018, 54(8): 5341-5358. doi: 10.1029/2017WR021910

    CrossRef Google Scholar

    [70] Hawkins A J, Fox D B, Becker M W, et al. Measurement and simulation of heat exchange in fractured bedrock using inert and thermally degrading tracers[J]. Water Resources Research, 2017, 53(2): 1210-1230. doi: 10.1002/2016WR019617

    CrossRef Google Scholar

    [71] Peacock J R, Thiel S, Reid P, et al. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system[J]. Geophysical Research Letters, 2012, 39(18): L18403.

    Google Scholar

    [72] Peacock J R, Thiel S, Heinson G S, et al. Time-lapse magnetotelluric monitoring of an enhanced geothermal system[J]. Geophysics, 2013, 78(3): B121-B130. doi: 10.1190/geo2012-0275.1

    CrossRef Google Scholar

    [73] Didana Y L, Thiel S, Heinson G, et al. Magnetotelluric monitoring of hydraulic fracture stimulation at the Habanero enhanced geothermal system, Cooper Basin, South Australia[J]. ASEG Extended Abstracts, 2016, 2016(1): 1-9.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(2660) PDF downloads(484) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint