2022 Vol. 31, No. 5
Article Contents

GUO Chang-lai, CUI Jian, SUN Xiu-bo, MA Yu-xiang, AI Cong-fang. NUMERICAL SIMULATION ANALYSIS OF HYDRODYNAMIC FORCE IN DALINGHE RIVER ESTUARY[J]. Geology and Resources, 2022, 31(5): 667-674. doi: 10.13686/j.cnki.dzyzy.2022.05.011
Citation: GUO Chang-lai, CUI Jian, SUN Xiu-bo, MA Yu-xiang, AI Cong-fang. NUMERICAL SIMULATION ANALYSIS OF HYDRODYNAMIC FORCE IN DALINGHE RIVER ESTUARY[J]. Geology and Resources, 2022, 31(5): 667-674. doi: 10.13686/j.cnki.dzyzy.2022.05.011

NUMERICAL SIMULATION ANALYSIS OF HYDRODYNAMIC FORCE IN DALINGHE RIVER ESTUARY

More Information
  • Based on the long series of measured data about Dalinghe River runoff and underwater terrain, the hydrodynamic numerical model is established to simulate the tidal current of Dalinghe River estuary and the main characteristics of hydrodynamic process in the estuary and northern sea area of Liaodong Bay are discussed considering the influence of tidal current and river runoff. The results show that the ocean current in waters around the estuary is mainly tidal current with obvious reciprocating nature. The general movement trend of tidal current is northeastward at high tide and southwestward at low tide. The speed of spring tide is larger than that of neap tide and the duration of flood current is almost equal to that of ebb current, with the maximum flood speed of 0.52 m/s and maximum ebb speed of 0.4 m/s. The distribution of average tidal current intensity during flood and ebb is roughly consistent with the sea depth contour.

  • 加载中
  • [1] 王佳琦, 贾燕锋. 近60年大凌河中上游水沙变化特征[J]. 水土保持研究, 2018, 25(3): 35-40.

    Google Scholar

    Wang J Q, Jia Y F. Variation of runoff and sediment in the middle and upper reaches of Daling River during the past 60 years[J]. Research of Soil and Water Conservation, 2018, 25(3): 35-40.

    Google Scholar

    [2] 成遣, 周林飞, 谭艳芳. 辽宁省凌河口湿地生态服务效应货币价值评估[J]. 人民黄河, 2012, 34(7): 64-67.

    Google Scholar

    Cheng Q, Zhou L F, Tan Y F. Evaluation of monetary value for ecosystem service function of Linghe River estuarine wetland[J]. Yellow River, 2012, 34(7): 64-67.

    Google Scholar

    [3] 张娜. 基于SWAT模型的大凌河流域径流演变规律分析[J]. 黑龙江水利科技, 2020, 48(1): 7-10.

    Google Scholar

    Zhang N. Analysis of runoff evolution law in Daling River Basin based on SWAT model[J]. Heilongjiang Science and Technology of Water Conservancy, 2020, 48(1): 7-10.

    Google Scholar

    [4] 赵垠. 大凌河湿地生态环境现状及保护对策[J]. 黑龙江水利科技, 2017, 45(3): 183-185.

    Google Scholar

    Zhao Y. Ecological environment and protection strategy of Daling River wetland[J]. Heilongjiang Science and Technology of Water Conservancy, 2017, 45(3): 183-185. (in Chinese)

    Google Scholar

    [5] Belde J, Reuning L, Back S. Bottom currents and sediment waves on a shallow carbonate shelf, Northern Carnarvon Basin, Australia[J]. Continental Shelf Research, 2017, 138: 142-153. doi: 10.1016/j.csr.2017.03.007

    CrossRef Google Scholar

    [6] 周跃华, 岳志春, 潘汀超, 等. 基于GIS与水动力模型的陶乐防洪保护区漫溢洪水风险分析[J]. 水力发电, 2020, 46(10): 22-27. doi: 10.3969/j.issn.0559-9342.2020.10.006

    CrossRef Google Scholar

    Zhou Y H, Yue Z C, Pan T C, et al. Risk analysis of overflow flood in Taole flood protection area based on GIS and hydrodynamic model [J]. Water Power, 2020, 46(10): 22-27. doi: 10.3969/j.issn.0559-9342.2020.10.006

    CrossRef Google Scholar

    [7] 孙玲玲. 基于MIKE21的水库洪水期洪水演进数值模拟[J]. 工程技术研究, 2020, 5(11): 246-248.

    Google Scholar

    Sun L L. Numerical simulation of flood evolution in reservoir flood period based on MIKE 21[J]. Engineering and Technological Research, 2020, 5(11): 246-248.

    Google Scholar

    [8] 锁晓南, 李春光, 尚彦祥, 等. 基于MIKE21模型的黄河四排口河段洪水演进数值模拟[J]. 科技视界, 2021(4): 104-107.

    Google Scholar

    Suo X N, Li C G, Shang Y X, et al. Numerical simulation of flood evolution in the Fourth Outlet reach of the Yellow River based on MIKE 21 model[J]. Science & Technology Vision, 2021(4): 104- 107. (in Chinese)

    Google Scholar

    [9] Ferziger J H, Peric M. Computational methods for fluid dynamics [M]. 2nd ed. Berlin: Springer, 1999.

    Google Scholar

    [10] DHI Water & Environment. MIKE 21 & MIKE 3 flow model FM hydrodynamic and transport module scientific documentation[M]. Hrsholm, Denmark: DHI Water & Environment, 2017.

    Google Scholar

    [11] Lin G F, Lai J S, Guo W D. Finite-volume component-wise TVD schemes for 2D shallow water equations[J]. Advances in Water Resources, 2003, 26(8): 861-873.

    Google Scholar

    [12] Abbott M B, Ionescu F. On the numerical computation of nearly horizontal flows[J]. Journal of Hydraulic Research, 1967, 5(2): 97- 117.

    Google Scholar

    [13] 周哲睿, 刘姣, 吴浩力, 等. 基于MIKE21模型的水交换数值模拟研究[J]. 陕西水利, 2021, 17(4): 17-20.

    Google Scholar

    Zhou Z R, Liu J, Wu H L, et al. Numerical simulation of water exchange based on MIKE 21 model[J]. Shaanxi Water Resources, 2021, 17(4): 17-20. (in Chinese)

    Google Scholar

    [14] 秦成栋, 钱鞠, 李明都, 等. 基于MIKE21模型的宋家湾水库水环境影响数值模拟[J]. 甘肃水利水电技术, 2021, 57(2): 1-10, 19.

    Google Scholar

    Qin C D, Qian J, Li M D, et al. Numerical simulation of water environmental impact of Songjiawan Reservoir based on MIKE 21 model[J]. Gansu Water Resources and Hydropower Technology, 2021, 57(2): 1-10, 19. (in Chinese)

    Google Scholar

    [15] Wang Q, Guo X Y, Takeoka H. Seasonal variations of the Yellow River plume in the Bohai Sea: A model study[J]. Journal of Geophysical Research, 2008, 113(C8): C08046.

    Google Scholar

    [16] 袁本坤, 黄蕊, 商杰, 等. 基于岸基观测数据的渤海沿岸海域表层温盐特征分析[J]. 海洋开发与管理, 2015, 32(12): 31-34.

    Google Scholar

    Yuan B K, Huang R, Shang J, et al. Analysis of surface thermohaline characteristics in Bohai Sea based on shore-based observation data[J]. Ocean Development and Management, 2015, 32(12): 31-34. (in Chinese)

    Google Scholar

    [17] 朱亮, 刘景涛, 杨明楠, 等. 1998年以来兰州市地下水环境变化及驱动因素[J]. 中国地质, 2020, 47(6): 1677-1687.

    Google Scholar

    Zhu L, Liu J T, Yang M N, et al. Changes and driving factors of groundwater environment in Lanzhou since 1998[J]. Geology in China, 2020, 47(6): 1677-1687.

    Google Scholar

    [18] 宫兴梅. 辽宁省铁甲水库入库口水动力场特征数值模拟研究[J]. 中国水能及电气化, 2020(12): 18-20, 17.

    Google Scholar

    Gong X M. Numerical simulation study of inlet hydrodynamic field characteristics of Tiejia Reservoir in Liaoning Province[J]. China Water Power & Electrification, 2020(12): 18-20, 17.

    Google Scholar

    [19] 王俊珲, 侯精明, 王峰, 等. 洪涝过程模拟及三维实景展示方法研究[J]. 自然灾害学报, 2020, 29(4): 149-160.

    Google Scholar

    Wang J H, Hou J M, Wang F, et al. Study on flood process simulation and 3D scene display method[J]. Journal of Natural Disasters, 2020, 29(4): 149-160.

    Google Scholar

    [20] 王晓文. 水质数值模型在浑河流域水量水质模拟中的应用[J]. 地下水, 2021, 43(1): 69-72.

    Google Scholar

    Wang X W. Application of water quality numerical model in simulation of water quantity and quality in Hunhe River Basin[J]. Ground Water, 2021, 43(1): 69-72. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(587) PDF downloads(115) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint