2022 Vol. 31, No. 3
Article Contents

HU Jian-min, YAN Ji-yuan, CHENG Yu, LIU Xiao-bo. GEOLOGICAL RECORDS OF LATE CENOZOIC TECTONO-SEDIMENTARY-PALEOCLIMATIC EVENTS IN CHINA[J]. Geology and Resources, 2022, 31(3): 303-330. doi: 10.13686/j.cnki.dzyzy.2022.03.007
Citation: HU Jian-min, YAN Ji-yuan, CHENG Yu, LIU Xiao-bo. GEOLOGICAL RECORDS OF LATE CENOZOIC TECTONO-SEDIMENTARY-PALEOCLIMATIC EVENTS IN CHINA[J]. Geology and Resources, 2022, 31(3): 303-330. doi: 10.13686/j.cnki.dzyzy.2022.03.007

GEOLOGICAL RECORDS OF LATE CENOZOIC TECTONO-SEDIMENTARY-PALEOCLIMATIC EVENTS IN CHINA

  • The focus of China's regional geological survey is being shifted to the largely overburden areas such as plains, basins, grasslands and deserts, and to the deep three-dimensional survey as well. The regional geological survey in Quaternary loose sediment covered area aims to reveal the surface process and the relationship between different spheres in late Cenozoic, and to explore the relationship between man and nature. However, a great difficulty in geological mapping in the covered area is that the lateral extension of Quaternary loose sediments is commonly unstable. Special attention should be paid to significant tectonic, sedimentary, paleoclimatic and paleoenvironmental events, such as unconformities, erosion surfaces, volcanic rocks, lacustrine deposits, transgressive layers, paleoclimatic deposits(loess, laterite, black soil, etc.) and paleocultural layers. They are often isochronous and can serve as important signs of lateral correlation of Quaternary loose sediments. The tectono-geomorphic evolution of East Asian continent are mainly controlled by two geodynamic systems: the Indian-Eurasian plate collision in the west, making rapid uplift and northeastward extension of the plateau, and the subduction of the eastern Pacific plate towards the Eurasian continent, forming a complex trench-arc-basin system on the eastern edge of the East Asian continent. The two tectonic systems have established the geological background of China since late Cenozoic, resulting in significant changes in the earth's deep process and surface environment. The overall performance is the uplift of the Qinghai-Tibet Plateau and the extension and thinning of eastern lithosphere, which finally shaped the current landform and water system pattern. According to these characteristics of Quaternary loose sediment cover, this paper analyzes the important tectono-sedimentary-paleoclimatic events since late Cenozoic in China, and summarizes the geological records of these events, especially the important sedimentary layer, erosion surface, unconformities, transgressive layers, etc., so as to make a regional comparison of Quaternary loose sediment in the regional geological survey of the covered area.

  • 加载中
  • [1] 姜作勤. 国内外区域地质调查全过程信息化的现状与特点[J]. 地质通报, 2008, 27(7): 956-964. doi: 10.3969/j.issn.1671-2552.2008.07.004

    CrossRef Google Scholar

    Jiang Z Q. Present status and features of informationization of the full process of regional geological survey at home and abroad[J]. Geological Bulletin of China, 2008, 27(7): 956-964. doi: 10.3969/j.issn.1671-2552.2008.07.004

    CrossRef Google Scholar

    [2] 陈克强. 面向21世纪的中国区域地质调查工作[J]. 中国区域地质, 1995(1): 1-5.

    Google Scholar

    Chen K Q. China's regional geological survey work facing the 21st century[J]. Regional Geology of China, 1995(1): 1-5. (in Chinese)

    Google Scholar

    [3] 胡道功, 刘凤山, 吴珍汉, 等. 欧美地质填图方法: 经验、试点与建议——以东昆仑造山带地质填图试验为例[M]. 北京: 地质出版社, 2013.

    Google Scholar

    Hu D G, Liu F S, Wu Z H, et al. Geological mapping techniques in Europe and America: Experience, experiments and suggestions, taking the geological mapping test in the east Kunlun orogenic belts as an example[M]. Beijing: Geology Press, 2013. (in Chinese)

    Google Scholar

    [4] 胡健民, 陈虹, 梁霞, 等. 特殊地区地质填图技术方法及应用成果[J]. 地质力学学报, 2017, 23(2): 181.

    Google Scholar

    Hu J M, Chen H, Liang X, et al. Geological mapping techniques in special areas and their achievements[J]. Journal of Geomechanics, 2017, 23(2): 181. (in Chinese)

    Google Scholar

    [5] 胡健民, 陈虹. 覆盖区区域地质填图指导思想与方法体系的创新与探索——特殊地质地貌区填图试点项目成果概述[J]. 地质力学学报, 2019, 25(5): 1001-1002.

    Google Scholar

    Hu J M, Chen H. Innovation and exploration of guidance thought and method systems of regional geological mapping in covered areas[J]. Journal of Geomechanics, 2019, 25(5): 1001-1002. (in Chinese)

    Google Scholar

    [6] 胡健民, 陈虹, 邱士东, 等. 覆盖区区域地质调查(1: 50000)思路、原则与方法[J]. 地球科学, 2020, 45(12): 4291-4312.

    Google Scholar

    Hu J M, Chen H, Qiu S D, et al. Thoughts, principles and methods of regional geological survey in covered area (1: 50000)[J]. Earth Science, 2020, 45(12): 4291-4312.

    Google Scholar

    [7] 辜平阳, 陈锐明, 胡健民, 等. 高山峡谷区1: 50000填图方法指南[M]. 北京: 科学出版社, 2018.

    Google Scholar

    Gu P Y, Chen R M, Hu J M, et al. Guide book of 1: 50000 geological mapping methods in alpine-gorge area[M]. Beijing: Science Press, 2018. (in Chinese)

    Google Scholar

    [8] 吕勇, 潘明, 山克强, 等. 岩溶区1: 50000填图方法指南[M]. 北京: 科学出版社.

    Google Scholar

    Lü Y, Pan M, Shan K Q, et al. Guide book of 1: 50000 geological mapping methods in karst area[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [9] Dong S W, Li T D, Gao R, et al. Progress of SinoProbe: Deep exploration in China 2008-2012[J]. Acta Geologica Sinica, 2013, 87(S1): 122.

    Google Scholar

    [10] 董树文, 李廷栋, 陈宣华, 等. 深部探测揭示中国地壳结构、深部过程与成矿作用背景[J]. 地学前缘, 2014, 21(3): 201-225.

    Google Scholar

    Dong S W, Li T D, Chen X H, et al. SinoProbe revealed crustal structures, deep processes, and metallogenic background within China continent[J]. Earth Science Frontiers, 2014, 21(3): 201-225.

    Google Scholar

    [11] 胡健民. 特殊地区地质填图工程概况[J]. 地质力学学报, 2016, 22(4): 803-808. doi: 10.3969/j.issn.1006-6616.2016.04.001

    CrossRef Google Scholar

    Hu J M. Introduction of geological mapping engineering in special area[J]. Journal of Geomechanics, 2016, 22(4): 803-808. (in Chinese) doi: 10.3969/j.issn.1006-6616.2016.04.001

    CrossRef Google Scholar

    [12] 王国灿, 陈超, 胡健民, 等. 戈壁荒漠覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2018.

    Google Scholar

    Wang G C, Chen C, Hu J M, et al. Guide book of 1: 50000 geological mapping methods in gobi desert covered area[M]. Beijing: Science Press, 2018. (in Chinese)

    Google Scholar

    [13] 李向前, 赵增玉, 邱士东, 等. 长三角平原区1: 50000填图方法指南[M]. 北京: 科学出版社, 2018.

    Google Scholar

    Li X Q, Zhao Z Y, Qiu S D, et al. Guide book of 1: 50000 geological mapping methods in Yangtze River delta plane area[M]. Beijing: Science Press, 2018. (in Chinese)

    Google Scholar

    [14] 田世攀, 王东明, 苏艳民. 森林沼泽浅覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2021.

    Google Scholar

    Tian S P, Wang D M, Su Y M. Guide book of 1: 50000 geological mapping methods in forest and swamp shallow coverd area[M]. Beijing: Science Press, 2021. (in Chinese)

    Google Scholar

    [15] 张云强, 专少鹏, 魏文通, 等. 京津冀山前冲洪积平原区1: 50000填图方法指南[M]. 北京: 科学出版社, 2020.

    Google Scholar

    Zhang Y Q, Zhuan S P, Wei W T, et al. Guide book of 1: 50000 geological mapping methods in Beijing-Tianjin-Hebei Piedmont alluvial plain[M]. Beijing: Science Press, 2020. (in Chinese)

    Google Scholar

    [16] 李振宏, 陈虹, 施炜, 等. 活动构造发育区1: 50000填图方法指南[M]. 北京: 科学出版社, 2020.

    Google Scholar

    Li Z H, Chen H, Shi W, et al. Guide book of 1: 50000 geological mapping methods in active tectonics region[M]. Beijing: Science Press, 2020. (in Chinese)

    Google Scholar

    [17] 李朝柱, 傅建利, 王书兵, 等. 黄土覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2020.

    Google Scholar

    Li C Z, Fu J L, Wang S B, et al. Guide book of 1: 50000 geological mapping methods in loess covered area[M]. Beijing: Science Press, 2020. (in Chinese)

    Google Scholar

    [18] 卜建军, 吴俊, 邓飞, 等. 中国南方强风化层覆盖区1: 50000填图方法指南[M]. 北京: 科学出版社, 2021.

    Google Scholar

    Bu J J, Wu J, Deng F, et al. Guide book of 1: 50000 geological mapping methods in trongly weathered area in southern China[M]. Beijing: Science Press, 2021. (in Chinese)

    Google Scholar

    [19] 刘士毅. 物探技术的第三根支柱[M]. 北京: 地质出版社, 2016.

    Google Scholar

    Liu S Y. The third pillar of geophysical technology[M]. Beijing: Geology Press, 2016. (in Chinese)

    Google Scholar

    [20] 吴俊, 卜建军, 谢国刚, 等. 区域化探数据在华南强烈风化区地质填图中的应用[J]. 地质力学学报, 2016, 22(4): 955-966. doi: 10.3969/j.issn.1006-6616.2016.04.013

    CrossRef Google Scholar

    Wu J, Bu J J, Xie G G, et al. Application of regional geochemical data in geological mapping in strongly weathered area in southern China[J]. Journal of Geomechanics, 2016, 22(4): 955-966. doi: 10.3969/j.issn.1006-6616.2016.04.013

    CrossRef Google Scholar

    [21] 喻劲松, 荆磊, 王乔林, 等. 特殊地质地貌区填图物化探技术应用[J]. 地质力学学报, 2016, 22(4): 893-906. doi: 10.3969/j.issn.1006-6616.2016.04.008

    CrossRef Google Scholar

    YuJ S, Jing L, Wang Q L, et al. Application of geophysical and geochemical prospecting techniques in special geological and geomorphic areas[J]. Journal of Geomechanics, 2016, 22(4): 893-906. doi: 10.3969/j.issn.1006-6616.2016.04.008

    CrossRef Google Scholar

    [22] 于长春, 孙杰, 张迪硕, 等. 基于多源遥感与航空物探数据的岩性分类方法[J]. 地质通报, 2022, 41(2/3): 210-217.

    Google Scholar

    Yu C C, Sun J, Zhang D S, et al. Lithologic classification method based on multi-source remote sensing and aerogeophysical data[J]. Geological Bulletin of China, 2022, 41(2/3): 210-217.

    Google Scholar

    [23] 徐强. 我国区域地质调查数字采集系统研究取得重大进展[J]. 地质论评, 2002, 48(2): 167, 146.

    Google Scholar

    Xu Q. Marjor progress in the digital acquisition system of regional geological investigation of China[J]. Geological Review, 2002, 48(2): 167, 146.

    Google Scholar

    [24] 张克信, 王国灿, 陈奋宁, 等. 青藏高原古近纪-新近纪隆升与沉积盆地分布耦合[J]. 地球科学——中国地质大学学报, 2007, 32(5): 583-597.

    Google Scholar

    Zhang K X, Wang G C, Chen F N, et al. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(5): 583-597.

    Google Scholar

    [25] Jones S. Introducing sedimentology[M]. Edinburgh: Dunedin Academic Press, 2015.

    Google Scholar

    [26] 张培震, 张会平, 郑文俊, 等. 东亚大陆新生代构造演化[J]. 地震地质, 2014, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    CrossRef Google Scholar

    Zhang P Z, Zhang H P, Zheng W J, et al. Cenozoic tectonic evolution of continental eastern Asia[J]. Seismology and Geology, 2014, 36(3): 574-585. doi: 10.3969/j.issn.0253-4967.2014.03.003

    CrossRef Google Scholar

    [27] 任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 1999, 6(3): 85-93. doi: 10.3321/j.issn:1005-2321.1999.03.008

    CrossRef Google Scholar

    Ren J S, Niu B G, Liu Z G. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, 1999, 6(3): 85-93. doi: 10.3321/j.issn:1005-2321.1999.03.008

    CrossRef Google Scholar

    [28] 葛肖虹, 任收麦, 马立祥, 等. 青藏高原多期次隆升的环境效应[J]. 地学前缘, 2006, 13(6): 118-130. doi: 10.3321/j.issn:1005-2321.2006.06.015

    CrossRef Google Scholar

    Ge X H, Ren S M, Ma L X, et al. Multi-stage uplifts of the Qinghai-Tibet Plateau and their environmental effects[J]. Earth Science Frontiers, 2006, 13(6): 118-130. doi: 10.3321/j.issn:1005-2321.2006.06.015

    CrossRef Google Scholar

    [29] 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001

    CrossRef Google Scholar

    Li J J, Fang X M, Pan B T, et al. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001

    CrossRef Google Scholar

    [30] Li J J, Fang X M, Van der Voo R, et al. Magnetostratigraphic dating of river terraces: Rapid and intermittent incision by the Yellow River of the northeastern margin of the Tibetan Plateau during the Quaternary[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10121-10132. doi: 10.1029/97JB00275

    CrossRef Google Scholar

    [31] 程绍平, 邓起东, 闵伟, 等. 黄河晋陕峡谷河流阶地和鄂尔多斯高原第四纪构造运动[J]. 第四纪研究, 1998(3): 238-248. doi: 10.3321/j.issn:1001-7410.1998.03.007

    CrossRef Google Scholar

    Cheng S P, Deng Q D, Min W, et al. Yellow River and Quaternary tectonic movements of the Ordos Plateau[J]. Quaternary Sciences, 1998(3): 238-248. doi: 10.3321/j.issn:1001-7410.1998.03.007

    CrossRef Google Scholar

    [32] 陈发虎, 范育新, Madsen D B, 等. 河套地区新生代湖泊演化与"吉兰泰-河套"古大湖形成机制的初步研究[J]. 第四纪研究, 2008, 28(5): 866-873. doi: 10.3321/j.issn:1001-7410.2008.05.009

    CrossRef Google Scholar

    Chen F H, Fan Y X, Madsen D B, et al. Preliminary study on the formation mechanism of the"Jilantai-Hetao"megalake and the lake evolutionary history in Hetao region[J]. Quaternary Sciences, 2008, 28(5): 866-873. doi: 10.3321/j.issn:1001-7410.2008.05.009

    CrossRef Google Scholar

    [33] 王苏民, 吴锡浩, 张振克, 等. 三门古湖沉积记录的环境变迁与黄河贯通东流研究[J]. 中国科学: D辑, 2001, 31(9): 760-768. doi: 10.3969/j.issn.1674-7313.2002.07.002

    CrossRef Google Scholar

    Wang S M, Wu X H, Zhang Z K, et al. Sedimentary records of environmental evolution in the Sanmen Lake Basin and the Yellow River running through the Sanmenxia Gorge eastward into the sea[J]. Science in China Series D: Earth Sciences, 2002, 45(7): 595-608. doi: 10.3969/j.issn.1674-7313.2002.07.002

    CrossRef Google Scholar

    [34] 张家声, 徐杰, 万景林, 等. 太行山山前中-新生代伸展拆离构造和年代学[J]. 地质通报, 2002, 21(4/5): 207-210.

    Google Scholar

    Zhang J S, Xu J, Wan J L, et al. Meso-Cenozoic detachment zones in the front of the Taihang Mountains and their fission-track ages[J]. Geological Bulletin of China, 2002, 21(4/5): 207-210.

    Google Scholar

    [35] 吴忱, 张秀清, 马永红. 太行山、燕山主要隆起于第四纪[J]. 华北地震科学, 1999, 17(3): 1-7.

    Google Scholar

    Wu C, Zhang X Q, Ma Y H. The Taihang and Yan mountains rose mainly in Quarteranary[J]. North China Earthguake Sciences, 1999, 17(3): 1-7.

    Google Scholar

    [36] 徐杰, 高战武, 孙建宝, 等. 区域伸展体制下盆-山构造耦合关系的探讨——以渤海湾盆地和太行山为例[J]. 地质学报, 2001, 75(2): 165-174. doi: 10.3321/j.issn:0001-5717.2001.02.004

    CrossRef Google Scholar

    Xu J, Gao Z W, Sun J B, et al. A preliminary study of the coupling relationship between basin and mountain in extensional environments: A case study of the Bohai Bay Basin and Taihang Mountain[J]. Acta Geologica Sinica, 2001, 75(2): 165-174. doi: 10.3321/j.issn:0001-5717.2001.02.004

    CrossRef Google Scholar

    [37] 马寅生, 赵逊, 赵希涛, 等. 太行山南缘新生代的隆升与断陷过程[J]. 地球学报, 2007, 28(3): 219-233. doi: 10.3321/j.issn:1006-3021.2007.03.001

    CrossRef Google Scholar

    Ma Y S, Zhao X, Zhao X T, et al. The Cenozoic rifting and uplifting process on the southern margin of Taihangshan uplift[J]. Acta Geoscientica Sinica, 2007, 28(3): 219-233. doi: 10.3321/j.issn:1006-3021.2007.03.001

    CrossRef Google Scholar

    [38] 龚明权. 新生代太行山南段隆升过程研究[D]. 北京: 中国地质科学院, 2010.

    Google Scholar

    Gong M Q. Uplifting process of southern Taihang Mountain in Cenozoic[D]. Beijing: Chinese Academy of Geological Sciences, 2010.

    Google Scholar

    [39] 张蒙, 李鹏霄. 太行山南段主要隆升时期探讨[J]. 国土与自然资源研究, 2014(4): 55-57.

    Google Scholar

    Zhang M, Li P X. Discussion on the main uplift period of the southern segment of Taihang Mountains[J]. Territory&Natural Resources Study, 2014(4): 55-57.

    Google Scholar

    [40] 张蕾, 张绪教, 武法东, 等. 太行山南缘晚更新世以来河流阶地的发育及其新构造运动意义[J]. 现代地质, 2013, 27(4): 791-798. doi: 10.3969/j.issn.1000-8527.2013.04.005

    CrossRef Google Scholar

    Zhang L, Zhang X J, Wu F D, et al. River terraces'development and significance of neotectonic movement on the southern margin of Taihang Mountains since Late Pleistocene[J]. Geoscience, 2013, 27(4): 791-798. doi: 10.3969/j.issn.1000-8527.2013.04.005

    CrossRef Google Scholar

    [41] 张哲, 张军龙. 第四纪太行山南段隆升问题的探讨[J]. 干旱区资源与环境, 2020, 34(10): 87-92.

    Google Scholar

    Zhang Z, Zhang J L. Discussion on the uplift of the south section of Taihang Mountain in Quaternary period[J]. Journal of Arid Land Resources and Environment, 2020, 34(10): 87-92.

    Google Scholar

    [42] 马寅生, 崔盛芹, 吴淦国, 等. 辽西医巫闾山的隆升历史[J]. 地球学报, 2000, 21(3): 245-253. doi: 10.3321/j.issn:1006-3021.2000.03.003

    CrossRef Google Scholar

    Ma Y S, Cui S Q, Wu G G, et al. Uplift history of the Yiwulushan Mountains in west Liaoning[J]. Acta Geoscientia Sinica, 2000, 21(3): 245-253. doi: 10.3321/j.issn:1006-3021.2000.03.003

    CrossRef Google Scholar

    [43] 吴中海, 吴珍汉. 燕山及邻区晚白垩世以来山脉隆升历史的低温热年代学证据[J]. 地质学报, 2003, 77(3): 399-406. doi: 10.3321/j.issn:0001-5717.2003.03.011

    CrossRef Google Scholar

    Wu Z H, Wu Z H. Low-temperature thermochronological analysis of the uplift history of the Yanshan Mountain and its neighboring area[J]. Acta Geologica Sinica, 2003, 77(3): 399-406. doi: 10.3321/j.issn:0001-5717.2003.03.011

    CrossRef Google Scholar

    [44] 李越, 季建清, 涂继耀, 等. 燕山东部柳江地区构造属性新解与郯庐断裂系活动[J]. 岩石学报, 2009, 25(3): 675-681.

    Google Scholar

    Li Y, Ji J Q, Tu J Y, et al. Structure of Liujiang terrain and implications for displacement of Tanlu fault system[J]. Acta Petrologica Sinica, 2009, 25(3): 675-681.

    Google Scholar

    [45] 陈详高, 张忠奎, 臧文秀. 北京房山花岗闪长岩中锆石的裂变径迹年龄测定和热历史研究[J]. 岩石学报, 1986, 2(1): 40-44. doi: 10.3321/j.issn:1000-0569.1986.01.005

    CrossRef Google Scholar

    Chen X G, Zhang Z K, Zang W X. Study on fission track dating of zircon and thermal history of the Fangshan granodiorite in Beijing[J]. Acta Petrologica Sinica, 1986, 2(1): 40-44. doi: 10.3321/j.issn:1000-0569.1986.01.005

    CrossRef Google Scholar

    [46] 翟鹏济, 张峰, 赵云龙. 从裂变径迹分析探讨房山岩体地质热历史[J]. 地球化学, 2003, 32(2): 188-192.

    Google Scholar

    Zhai P J, Zhang F, Zhao Y L. Thermal history of the Fangshan granodiorite intrusion, Beijing: Evidence from fission tracks of apatites and sphenes[J]. Geochimica, 2003, 32(2): 188-192.

    Google Scholar

    [47] 冯乾乾, 邱楠生, 常健, 等. 房山岩体构造-热演化: 来自(U-Th)/He年龄的约束[J]. 地球科学, 2018, 43(6): 1972-1982.

    Google Scholar

    Feng Q Q, Qiu N S, Chang J, et al. Tectonothermal evolution of Fangshan pluton: Constraints from (U-Th)/He Ages[J]. Earth Science, 2018, 43(6): 1972-1982.

    Google Scholar

    [48] 陈子健. 燕山西段延庆-丰宁地区白垩纪岩体剥露过程的低温热年代学研究[D]. 北京: 中国地质大学(北京), 2019.

    Google Scholar

    Chen Z J. Low-temperature thermochronological study on the exhumation process of Cretaceous plutons in Yanqing-Fengning area of the western Yanshan belt[D]. Beijing: China University of Geosciences (Beijing), 2019.

    Google Scholar

    [49] 李理, 钟大赉. 泰山新生代抬升的裂变径迹证据[J]. 岩石学报, 2006, 22(2): 457-464.

    Google Scholar

    Li L, Zhong D L. Fission track evidence of Cenozoic uplifting events of the Taishan Mountain, China[J]. Acta Petrologica Sinica, 2006, 22(2): 457-464.

    Google Scholar

    [50] 王振兰, 王金铎, 季建清, 等. 鲁西隆起与济阳坳陷箕状断陷形成时代研究[J]. 石油学报, 2008, 29(2): 206-212. doi: 10.3321/j.issn:0253-2697.2008.02.009

    CrossRef Google Scholar

    Wang Z L, Wang J D, Ji J Q, et al. Research on formation age of dust pan fault depression in Luxi uplift and Jiyang depression[J]. Acta Petrolei Sinica, 2008, 29(2): 206-212. doi: 10.3321/j.issn:0253-2697.2008.02.009

    CrossRef Google Scholar

    [51] 唐智博, 李理, 时秀朋, 等. 鲁西隆起蒙山晚白垩世-新生代抬升的裂变径迹证据[J]. 中山大学学报(自然科学版), 2011, 50(2): 127-133.

    Google Scholar

    Tang Z B, Li L, Shi X P, et al. Fission track thermochronology of late Cretaceous-Cenozoic uplifting events of the Mengshan Mountain in the western Shandong rise, China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(2): 127-133.

    Google Scholar

    [52] Grimmer J C, Jonckheere R, Enkelmann E, et al. Cretaceous-Cenozoic history of the southern Tan-Lu fault zone: Apatite fission-track and structural constraints from the Dabie Shan (eastern China)[J]. Tectonophysics, 2002, 359(3/4): 225-253.

    Google Scholar

    [53] 周祖翼, 许长海, Reiners P W, 等. 大别山天堂寨地区晚白垩世以来剥露历史的(U-Th)/He和裂变径迹分析证据[J]. 科学通报, 2003, 48(6): 598-602.

    Google Scholar

    Zhou Z Y, Xu C H, Reiners P W, et al. Late Cretaceous-Cenozoic exhumation history of Tiantangzhai region of Dabieshan orogen: Constraints from (U-Th)/He and fission track analysis[J]. Chinese Science Bulletin, 2003, 48(11): 1151-1156.

    Google Scholar

    [54] Hu S B, Raza A, Min K, et al. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the North China craton through the Qinling orogen into the Yangtze craton, central China[J]. Tectonics, 2006, 25(6): TC6009.

    Google Scholar

    [55] Ge X, Shen C B, Yang Z, et al. Low-temperature thermochronology constraints on the Mesozoic-Cenozoic exhumation of the Huangling massif in the Middle Yangtze Block, Central China[J]. Journal of Earth Science, 2013, 24(4): 541-552. doi: 10.1007/s12583-013-0348-8

    CrossRef Google Scholar

    [56] 李庶波, 王岳军, 张玉芝, 等. 南太行山中新生代隆升过程: 磷灰石裂变径迹证据[J]. 大地构造与成矿学, 2015, 39(3): 460-469.

    Google Scholar

    Li S B, Wang Y J, Zhang Y Z, et al. Meso-Cenozoic uplifting of south Taihang Mountains: Constraints from apatite fission track data[J]. Geotectonica et Metallogenia, 2015, 39(3): 460-469.

    Google Scholar

    [57] Wu L, Wang F, Yang J H, et al. Meso-Cenozoic uplift of the Taihang Mountains, North China: Evidence from zircon and apatite thermochronology[J]. Geological Magazine, 2020, 157(7): 1097-1111. doi: 10.1017/S0016756819001377

    CrossRef Google Scholar

    [58] Cao X Z, Li S Z, Xu L Q, et al. Mesozoic-Cenozoic evolution and mechanism of tectonic geomorphology in the central North China Block: Constraint from apatite fission track thermochronology[J]. Journal of Asian Earth Sciences, 2015, 114: 41-53. doi: 10.1016/j.jseaes.2015.03.041

    CrossRef Google Scholar

    [59] 侯贵廷, 钱祥麟, 蔡东升. 渤海湾盆地中、新生代构造演化研究[J]. 北京大学学报(自然科学版), 2001, 37(6): 845-851. doi: 10.3321/j.issn:0479-8023.2001.06.016

    CrossRef Google Scholar

    Hou G T, Qian X L, Cai D S. The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(6): 845-851. doi: 10.3321/j.issn:0479-8023.2001.06.016

    CrossRef Google Scholar

    [60] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989.

    Google Scholar

    Qin Y S, Zhao Y Y, Chen L R, et al. Geology of Yellow Sea[M]. Beijing: China Ocean Press, 1989. (in Chinese)

    Google Scholar

    [61] 刘国纬. 黄河下游治理的地学基础[J]. 中国科学(地球科学), 2011, 41(10): 1511-1523.

    Google Scholar

    Liu G W. On the geo-basis of river regulation in the lower reaches of the Yellow River[J]. Science China Earth Sciences, 2012, 55(4): 530-544.

    Google Scholar

    [62] Yi L, Ye X Y, Chen J B, et al. Magnetostratigraphy and luminescence dating on a sedimentary sequence from northern East China Sea: Constraints on evolutionary history of eastern marginal seas of China since the Early Pleistocene[J]. Quaternary International, 2014, 349: 316-326. doi: 10.1016/j.quaint.2014.07.038

    CrossRef Google Scholar

    [63] Zhao D B, Wan S M, Jiang S J, et al. Quaternary sedimentary record in the northern Okinawa Trough indicates the tectonic control on depositional environment change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 126-138. doi: 10.1016/j.palaeo.2018.12.001

    CrossRef Google Scholar

    [64] Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last~3.50 Myr in the western South Yellow Sea: Paleoenvironmental and tectonic implications[J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005

    CrossRef Google Scholar

    [65] Zhao Y, Cao W H, Hu C H, et al. Analysis of changes in characteristics of flood and sediment yield in typical basins of the Yellow River under extreme rainfall events[J]. CATENA, 2019, 177: 31-40. doi: 10.1016/j.catena.2019.02.001

    CrossRef Google Scholar

    [66] Chen J, Wang Z H, Wei T Y, et al. Clay minerals in the Pliocene-Quaternary sediments of the southern Yangtze coast, China: Sediment sources and palaeoclimate implications[J]. Journal of Palaeogeography, 2014, 3(3): 297-308.

    Google Scholar

    [67] Yue W, Jin B F, Zhao B C. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta[J]. Sedimentary Geology, 2018, 364: 42-52. doi: 10.1016/j.sedgeo.2017.12.006

    CrossRef Google Scholar

    [68] 闫纪元, 胡健民, 王东明, 等. 黄淮海平原晚新生代重大地质事件[J]. 地质通报, 2021, 40(5): 623-648.

    Google Scholar

    Yan J Y, Hu J M, Wang D M, et al. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic[J]. Geological Bulletin of China, 2021, 40(5): 623-648.

    Google Scholar

    [69] Yi L, Deng C L, Xu X Y, et al. Paleo-megalake termination in the Quaternary: Paleomagnetic and water-level evidence from south Bohai Sea, China[J]. Sedimentary Geology, 2015, 319: 1-12. doi: 10.1016/j.sedgeo.2015.01.005

    CrossRef Google Scholar

    [70] 中国科学院海洋研究所海洋地质研究室. 渤海地质[M]. 北京: 科学出版社, 1985.

    Google Scholar

    Department of Marine Geology, Institute of Oceanography, Chinese Academy of Sciences. Geology of Bohai[M]. Beijing: Science Press, 1986. (in Chinese)

    Google Scholar

    [71] 张克信, 王国灿, 季军良, 等. 青藏高原古近纪-新近纪地层分区与序列及其对隆升的响应[J]. 中国科学: 地球科学, 2010, 40(12): 1632-1654.

    Google Scholar

    Zhang K X, Wang G C, Ji J L, et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science China Earth Science, 2010, 53(9): 1271-1294.

    Google Scholar

    [72] 张克信, 王国灿, 洪汉烈, 等. 青藏高原新生代隆升研究现状[J]. 地质通报, 2013, 32(1): 1-18. doi: 10.3969/j.issn.1671-2552.2013.01.001

    CrossRef Google Scholar

    Zhang K X, Wang G C, Hong H L, et al. The study of the Cenozoic uplift in the Tibetan Plateau: A review[J]. Geological Bulletin of China, 2013, 32(1): 1-18. doi: 10.3969/j.issn.1671-2552.2013.01.001

    CrossRef Google Scholar

    [73] 郑家坚, 徐钦琦, 金昌柱. 中国北方晚更新世哺乳类动物群的划分及其地理分布[J]. 地层学杂志, 1992, 16(3): 171-181, 190.

    Google Scholar

    Zheng J J, Xu X Q, Jin C Z. Division of the late pleistocene mammalian fauna in North China and its geographic distribution[J]. Journal of Stratigraphy, 1992, 16(3): 171-181, 190.

    Google Scholar

    [74] 安芷生, 刘晓东. 东亚季风气候的历史与变率[J]. 科学通报, 2000, 45(3): 238-249. doi: 10.3321/j.issn:0023-074X.2000.03.002

    CrossRef Google Scholar

    An Z S, Liu X D. History and variability of monsoon climate in East Asia[J]. Chinese Science Bulletin, 2000, 45(3): 238-249. (in Chinese) doi: 10.3321/j.issn:0023-074X.2000.03.002

    CrossRef Google Scholar

    [75] 蒋复初, 吴锡浩, 肖华国, 等. 中原邙山黄土及构造与气候耦合作用[J]. 海洋地质与第四纪地质, 1999, 19(1): 45-51.

    Google Scholar

    Jiang F C, Wu X H, Xiao H G, et al. Mangshan loess in China central plains and the coupling effect between tectonics and climate[J]. Marine Geology&Quaternary Geology, 1999, 19(1): 45-51.

    Google Scholar

    [76] 潘保田, 王均平, 高红山, 等. 河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示[J]. 科学通报, 2005, 50(3): 255-261.

    Google Scholar

    Pan B T, Wang J P, Gao H S, et al. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River's running through Sanmen Gorges[J]. Chinese Science Bulletin, 2005, 50(7): 657-664.

    Google Scholar

    [77] Hu Z B, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment[J]. Quaternary Science Reviews, 2017, 166: 324-338. doi: 10.1016/j.quascirev.2017.02.026

    CrossRef Google Scholar

    [78] Kong P, Jia J, Zheng Y. Time constraints for the Yellow River traversing the Sanmen Gorge[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(2): 395-407. doi: 10.1002/2013GC004912

    CrossRef Google Scholar

    [79] 吴锡浩, 蒋复初, 王苏民, 等. 关于黄河贯通三门峡东流入海问题[J]. 第四纪研究, 1998, 18(2): 188. doi: 10.3321/j.issn:1001-7410.1998.02.016

    CrossRef Google Scholar

    Wu X H, Jiang F C, Wang S M, et al. On problem of the Yellow River passing through the Sanmen Gorge and flowing east into sea[J]. Quaternary Sciences, 1998, 18(2): 188. doi: 10.3321/j.issn:1001-7410.1998.02.016

    CrossRef Google Scholar

    [80] Jiang F C, Fu J L, Wang S B, et al. Formation of the Yellow River, inferred from loess-palaeosoil sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 2007, 175(1): 62-70. doi: 10.1016/j.quaint.2007.03.022

    CrossRef Google Scholar

    [81] Zheng H B, Huang X T, Ji J L, et al. Ultra-high rates of loess sedimentation at Zhengzhou since Stage 7: Implication for the Yellow River erosion of the Sanmen Gorge[J]. Geomorphology, 2007, 85(3/4): 131-142.

    Google Scholar

    [82] Shang Y, Prins M A, Beets C J, et al. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra[J]. Quaternary Science Reviews, 2018, 182: 131-143. doi: 10.1016/j.quascirev.2018.01.001

    CrossRef Google Scholar

    [83] 刘书丹, 李广坤, 李玉信, 等. 从河南东部平原第四纪沉积物特征探讨黄河的形成与演变[J]. 河南地质, 1988, 6(2): 20-24.

    Google Scholar

    Liu S D, Li G K, Li Y X, et al. Discussion on the formation and evolution of the Yellow River from the characteristics of Quaternary sediments in the eastern plain of Henan Province[J]. Henan Geology, 1988, 6(2): 20-24. (in Chinese)

    Google Scholar

    [84] 薛铎. 黄河东段形成时代管见[J]. 河南地质, 1996, 14(2): 110-112.

    Google Scholar

    Xue D. A humble opinion of the formed age for the eastern section of the Yellow River[J]. Henan Geology, 1996, 14(2): 110-112.

    Google Scholar

    [85] 杨守业, 蔡进功, 李从先, 等. 黄河贯通时间的新探索[J]. 海洋地质与第四纪地质, 2001, 21(2): 15-20.

    Google Scholar

    Yang S Y, Cai J G, Li C X, et al. New discussion about the run-through time of the Yellow River[J]. Marine Geology&Quaternary Geology, 2001, 21(2): 15-20.

    Google Scholar

    [86] 杨吉龙, 胥勤勉, 胡云壮, 等. 渤海湾西岸钻孔记录的沉积演化过程和沉积物风化强度、物源重建[J]. 地球科学, 2018, 43(S1): 287-300.

    Google Scholar

    Yang J L, Xu Q M, Hu Y Z, et al. The sedimentary evolution process, weathering intensity and provenance reconstruction insight from borehole records of Bohai Bay[J]. Earth Science, 2018, 43(S1): 287-300.

    Google Scholar

    [87] Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least~880 ka ago[J]. Scientific Reports, 2017, 7(1): 2827. doi: 10.1038/s41598-017-03140-x

    CrossRef Google Scholar

    [88] Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing?[J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002

    CrossRef Google Scholar

    [89] Xiao G Q, Sun Y Q, Yang J L, et al. Early Pleistocene integration of the Yellow River Ⅰ: Detrital-zircon evidence from the North China Plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109691. doi: 10.1016/j.palaeo.2020.109691

    CrossRef Google Scholar

    [90] 张磊, 刘嘉麒, 秦小光. 第四纪黄河入淮成因机制与环境效应的研究现状及存在问题[J]. 第四纪研究, 2018, 38(2): 441-453.

    Google Scholar

    Zhang L, Liu J Q, Qin X G. The environmental effects and mechanism of the Yellow River flooding into the Huaibei Plain during Quaternary: A brief review[J]. Quaternary Sciences, 2018, 38(2): 441-453.

    Google Scholar

    [91] 徐近之. 淮北平原与淮河中游的地文[J]. 地理学报, 1953, 19(2): 203-233.

    Google Scholar

    Xu J Z. The geography of the Huaibei Plain and the middle reaches of the Huaihe River[J]. Acta Geographica Sinica, 1953, 19(2): 203-233. (in Chinese)

    Google Scholar

    [92] 冯大奎, 张光业. 全新世黄河下游平原地貌和自然环境的演变[J]. 河南大学学报(自然科学版), 1988(1): 27-33.

    Google Scholar

    Feng D K, Zhang G S. Holocene evolution of geomorphology and natural environment in the plain of the lower reaches of the Yellow River[J]. Journal of Henan University (Natural Science), 1988(1): 27-33.

    Google Scholar

    [93] 王强, 田国强. 中国东部晚第四纪海侵的新构造背景[J]. 地质力学学报, 1999, 5(4): 41-48. doi: 10.3969/j.issn.1006-6616.1999.04.005

    CrossRef Google Scholar

    Wang Q, Tian G Q. The Neotectonic setting of late Quaternary transgressions on the eastern coastal plain of China[J]. Journal of Geomechanics, 1999, 5(4): 41-48. doi: 10.3969/j.issn.1006-6616.1999.04.005

    CrossRef Google Scholar

    [94] 张晋. 3.5 Ma以来南黄海西部沉积演化史及其环境响应[D]. 青岛: 中国科学院大学, 2019.

    Google Scholar

    Zhang J. Sedimentary evolution in the western South Yellow Sea and its environmental response since 3.5 Ma[D]. Qingdao: University of Chinese Academy of Sciences, 2019.

    Google Scholar

    [95] 王强, 刘立军, 王卫东, 等. 环渤海地区及华北平原第四纪古环境变迁机制[J]. 地质调查与研究, 2004, 27(3): 129-138. doi: 10.3969/j.issn.1672-4135.2004.03.001

    CrossRef Google Scholar

    Wang Q, Liu L J, Wang W D, et al. The mechanism of quaternary palaeoenvironmental change in Circum-Bohai-Sea region and North China Plain[J]. Geological Survey and Research, 2004, 27(3): 129-138. doi: 10.3969/j.issn.1672-4135.2004.03.001

    CrossRef Google Scholar

    [96] 叶青超. 华北平原地貌体系与环境演化趋势[J]. 地理研究, 1989, 8(3): 10-20.

    Google Scholar

    Ye Q C. Landform system of the great plain of north China and its tendency of environmental evolution[J]. Geographical Research, 1989, 8(3): 10-20.

    Google Scholar

    [97] Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561. doi: 10.1073/pnas.1216241110

    CrossRef Google Scholar

    [98] 贾军涛, 郑洪波, 黄湘通, 等. 长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示[J]. 科学通报, 2010, 55(4/5): 350-358.

    Google Scholar

    Jia J T, Zheng H B, Huang X T, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of theYangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528.

    Google Scholar

    [99] 范代读, 李从先, Yokoyama K, 等. 长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究[J]. 中国科学(D辑: 地球科学), 2004, 34(11): 1015-1022.

    Google Scholar

    Fan D D, Li C X, Yokoyama K, et al. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science in China Series D: Earth Sciences, 2005, 48(10): 1718-1727.

    Google Scholar

    [100] 舒强, 张茂恒, 赵志军, 等. 苏北盆地XH-1钻孔晚新生代沉积记录特征及其与长江贯通时间的关联[J]. 地层学杂志, 2008, 32(3): 308-314. doi: 10.3969/j.issn.0253-4959.2008.03.013

    CrossRef Google Scholar

    Shu Q, Zhang M H, Zhao Z J, et al. Sedimentary record from the XH-1 core in north Jiangsu Basin and its implication on the Yangtze River run-through time[J]. Journal of Stratigraphy, 2008, 32(3): 308-314. doi: 10.3969/j.issn.0253-4959.2008.03.013

    CrossRef Google Scholar

    [101] 向芳, 杨栋, 田馨, 等. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石, 2011, 31(2): 106-114. doi: 10.3969/j.issn.1001-6872.2011.02.015

    CrossRef Google Scholar

    Xiang F, Yang D, Tian X, et al. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance[J]. Journal of Mineralogy and Petrology, 2011, 31(2): 106-114. doi: 10.3969/j.issn.1001-6872.2011.02.015

    CrossRef Google Scholar

    [102] Shao L, Li C A, Yuan S Y, et al. Neodymium isotopic variations of the Late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 2012, 45: 57-64. doi: 10.1016/j.jseaes.2011.09.018

    CrossRef Google Scholar

    [103] 范代读, 李从先. 长江贯通时限研究进展[J]. 海洋地质与第四纪地质, 2007, 27(2): 121-131.

    Google Scholar

    Fan D D, Li C X. Reviews on researches of timing of the Yangtze draining the Tibetan Plateau to the East China Sea[J]. Marine Geology&Quaternary Geology, 2007, 27(2): 121-131.

    Google Scholar

    [104] 黄湘通, 郑洪波, 杨守业, 等. 长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义[J]. 第四纪研究, 2009, 29(2): 299-307.

    Google Scholar

    Huang T X, Zheng H B, Yang S Y, et al. Investigation of sedimentary geochemistry of core DY03 in the Yangtze Delta: Implications to tracing provenance[J]. Quaternary Sciences, 2009, 29(2): 299-307.

    Google Scholar

    [105] Fu X W, Zhu W L, Geng J H, et al. The present-day Yangtze River was established in the Late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 2021, 205: 104600. doi: 10.1016/j.jseaes.2020.104600

    CrossRef Google Scholar

    [106] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [107] 郭正堂. 黄土高原见证季风和荒漠的由来[J]. 中国科学: 地球科学, 2017, 47(4): 421-437.

    Google Scholar

    Guo Z T. Loess Plateau attests to the onsets of monsoon and deserts[J]. Scientia Sinica (Terrae), 2017, 47(4): 421-437.

    Google Scholar

    [108] 程峰. 中国南方更新世红土沉积物的特征及其物源研究[D]. 武汉: 中国地质大学, 2018.

    Google Scholar

    Cheng F. Study on characteristics and source provenance of the Pleistocene red earth sediments in southern China[D]. Wuhan: China University of Geosciences, 2018.

    Google Scholar

    [109] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. doi: 10.1038/35075035

    CrossRef Google Scholar

    [110] Zhao L L, Hong H L, Fang Q, et al. Monsoonal climate evolution in southern China since 1.2 Ma: New constraints from Fe-oxide records in red earth sediments from the Shengli section, Chengdu Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 473: 1-15. doi: 10.1016/j.palaeo.2017.02.027

    CrossRef Google Scholar

    [111] Hong H L, Gu Y S, Li R B, et al. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China[J]. Journal of Quaternary Science, 2010, 25(5): 662-674. doi: 10.1002/jqs.1340

    CrossRef Google Scholar

    [112] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21. doi: 10.1086/628741

    CrossRef Google Scholar

    [113] Ren M E. Sediment discharge of the Yellow River, China: Past, present and future-A synthesis[J]. Acta Oceanologica Sinica, 2015, 34(2): 1-8. doi: 10.1007/s13131-015-0619-6

    CrossRef Google Scholar

    [114] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    [115] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 225(5052): 1663-1670.

    Google Scholar

    [116] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [117] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    [118] Royden L H, Burchfiel B C, Van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5892): 1054-1058. doi: 10.1126/science.1155371

    CrossRef Google Scholar

    [119] Zhu R X, Zhang H F, Zhu G, et al. Craton destruction and related resources[J]. International Journal of Earth Sciences, 2017, 106(7): 2233-2257. doi: 10.1007/s00531-016-1441-x

    CrossRef Google Scholar

    [120] 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356.

    Google Scholar

    Zhu R X, Xu Y G. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62(9): 1340-1350.

    Google Scholar

    [121] 李容全. 黄河、永定河发育历史与流域新生代古湖演变间的相互关系[J]. 北京师范大学学报(自然科学版), 1988, 24(4): 84-93.

    Google Scholar

    Li R Q. The relationship between developments of the Yellow River and the Yongding River, and the evolution of fossil lake of drainage basin in the Cenozoic Era[J]. Journal of Beijing Normal University (Natural Science), 1988, 24(4): 84-93.

    Google Scholar

    [122] 李吉均, 方小敏, 马海洲, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑: 地球科学), 1996, 26(4): 316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005

    CrossRef Google Scholar

    Li J J, Fang X M, Ma H Z, et al. Geomorphological evolution of the upper reaches of the Yellow River and the uplift of the Tibetan Plateau in the Late Cenozoic[J]. Scientia Sinica (Terrae), 1996, 26(4): 316-322. (in Chinese) doi: 10.3321/j.issn:1006-9267.1996.04.005

    CrossRef Google Scholar

    [123] Lin A M, Yang Z Y, Sun Z M, et al. How and when did the Yellow River develop its square bend?[J]. Geology, 2001, 29(10): 951-954. doi: 10.1130/0091-7613(2001)029<0951:HAWDTY>2.0.CO;2

    CrossRef Google Scholar

    [124] 张珂, 蔡剑波. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动[J]. 第四纪研究, 2006, 26(1): 85-91. doi: 10.3321/j.issn:1001-7410.2006.01.011

    CrossRef Google Scholar

    Zhang K, Cai J B. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia Gorge Mouth, northeast margin of Tibetan Plateau and its expression of neotectonic movement in that area[J]. Quaternary Sciences, 2006, 26(1): 85-91. doi: 10.3321/j.issn:1001-7410.2006.01.011

    CrossRef Google Scholar

    [125] 潘保田, 苏怀, 刘小丰, 等. 兰州东盆地最近1.2 Ma的黄河阶地序列与形成原因[J]. 第四纪研究, 2007, 27(2): 172-180. doi: 10.3321/j.issn:1001-7410.2007.02.002

    CrossRef Google Scholar

    Pan B T, Su H, Liu X F, et al. Iver terraces of the Yellow River and their genesis in eastern Lanzhou Basin during last 1.2 Ma[J]. Quaternary Sciences, 2007, 27(2): 172-180. doi: 10.3321/j.issn:1001-7410.2007.02.002

    CrossRef Google Scholar

    [126] 刘运明, 李有利. 山西保德黄河最高阶地形成的时代[J]. 地理与地理信息科学, 2007, 23(1): 101-103, 108. doi: 10.3969/j.issn.1672-0504.2007.01.024

    CrossRef Google Scholar

    Liu Y M, Li Y L. Formation age of the highest terrace of the Yellow River in Baode area[J]. Geography and Geo-information Science, 2007, 23(1): 101-103, 108. doi: 10.3969/j.issn.1672-0504.2007.01.024

    CrossRef Google Scholar

    [127] Pan B T, Hu Z B, Wang J P, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River[J]. Geomorphology, 2011, 125(1): 225-238. doi: 10.1016/j.geomorph.2010.09.019

    CrossRef Google Scholar

    [128] Pan B T, Hu Z B, Wang J P, et al. The approximate age of the planation surface and the incision of the Yellow River[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 356/357: 54-61. doi: 10.1016/j.palaeo.2010.04.011

    CrossRef Google Scholar

    [129] Hu X F, Kirby E, Pan B T, et al. Cosmogenic burial ages reveal sediment reservoir dynamics along the Yellow River, China[J]. Geology, 2011, 39(9): 839-842. doi: 10.1130/G32030.1

    CrossRef Google Scholar

    [130] Nie J S, Stevens T, Rittner M, et al. Loess plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2006, 6: 8511.

    Google Scholar

    [131] Liu Y M. Neogene fluvial sediments in the northern Jinshaan Gorge, China: Implications for early development of the Yellow River since 8 Ma and its response to rapid subsidence of the Weihe-Shanxi graben[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109675. doi: 10.1016/j.palaeo.2020.109675

    CrossRef Google Scholar

    [132] Wang Z, Nie J S, Wang J P, et al. Testing contrasting models of the formation of the upper Yellow River using heavy-mineral data from the Yinchuan Basin drill cores[J]. Geophysical Research Letters, 2019, 46: 10338-10345. doi: 10.1029/2019GL084179

    CrossRef Google Scholar

    [133] Jia L Y, Zhang X J, Ye P S, et al. Development of the alluvial and lacustrine terraces on the northern margin of the Hetao Basin, Inner Mongolia, China: Implications for the evolution of the Yellow River in the Hetao area since the Late Pleistocene[J]. Geomorphology, 2016, 263: 87-98. doi: 10.1016/j.geomorph.2016.03.034

    CrossRef Google Scholar

    [134] Wu X, Wang H J, Bi N S, et al. Evolution of a tide-dominated abandoned channel: A case of the abandoned Qingshuigou course, Yellow River[J]. Marine Geology, 2020, 422: 106116. doi: 10.1016/j.margeo.2020.106116

    CrossRef Google Scholar

    [135] Li J, Xia J Q, Ji Q F. Rapid and long-distance channel incision in the Lower Yellow River owing to upstream damming[J]. CATENA, 2021, 196: 104943. doi: 10.1016/j.catena.2020.104943

    CrossRef Google Scholar

    [136] Hassan M A, Church M, Xu J X, et al. Spatial and temporal variation of sediment yield in the landscape: Example of Huanghe (Yellow River)[J]. Geophysical Research Letters, 2008, 35(6): L06401.

    Google Scholar

    [137] Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78: 355-368. doi: 10.1016/j.quascirev.2012.11.032

    CrossRef Google Scholar

    [138] 赵希涛, 贾丽云, 胡道功. 内蒙河套地区黄河阶地与新近纪砾石层的发现及其对黄河发育、中国河流古老性与河湖共存论的意义[J]. 地质学报, 2018, 92(4): 845-886. doi: 10.3969/j.issn.0001-5717.2018.04.013

    CrossRef Google Scholar

    Zhao X T, Jia L Y, Hu D G. Discoveries of fluvial terraces and Neogene gravels in the Hetao area, Inner Mongolia: Implications for the development of the Yellow River, antiquity of Chinese rivers, and coexistence theory of rivers and lakes[J]. Acta Geologica Sinica, 2018, 92(4): 845-886. doi: 10.3969/j.issn.0001-5717.2018.04.013

    CrossRef Google Scholar

    [139] 朱照宇. 黄河中游河流阶地的形成与水系演化[J]. 地理学报, 1989, 44(4): 429-440. doi: 10.3321/j.issn:0375-5444.1989.04.007

    CrossRef Google Scholar

    Zhu Z Y. The formation of river terraces and evolution of drainage system in the middle Yellow River[J]. Acta Geographica Sinica, 1989, 44(4): 429-440. doi: 10.3321/j.issn:0375-5444.1989.04.007

    CrossRef Google Scholar

    [140] 岳乐平, 雷祥义, 屈红军. 黄河中游水系的阶地发育时代[J]. 地质论评, 1997, 43(2): 186-192. doi: 10.3321/j.issn:0371-5736.1997.02.011

    CrossRef Google Scholar

    Yue L P, Lei X Y, Qu H J. The age of terrace development in the middle reaches of the Yellow River[J]. Geological Review, 1997, 43(2): 186-192. doi: 10.3321/j.issn:0371-5736.1997.02.011

    CrossRef Google Scholar

    [141] Sun J M. Long-term fluvial archives in the Fen Wei Graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(10/11): 1279-1286.

    Google Scholar

    [142] Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423. doi: 10.1016/j.yqres.2014.01.002

    CrossRef Google Scholar

    [143] Hu Z B, Pan B T, Guo L Y, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension[J]. Quaternary Science Reviews, 2016, 133: 1-14. doi: 10.1016/j.quascirev.2015.12.003

    CrossRef Google Scholar

    [144] 王青. 试论史前黄河下游的改道与古文化的发展[J]. 中原文物, 1993(4): 65-74.

    Google Scholar

    Wang Q. On the diversion of the prehistoric lower reaches of the Yellow River and the development of the ancient culture[J]. Cultural Relics of Central China, 1993(4): 65-74. (in Chinese)

    Google Scholar

    [145] 岑仲勉. 黄河变迁史[M]. 北京: 人民出版社, 1957.

    Google Scholar

    Cen Z M. History of the change of the Yellow River[M]. Beijing: People's Publishing House, 1957. (in Chinese)

    Google Scholar

    [146] 江苏省地质矿产局. 江苏省及上海市区域地质志[M]. 北京: 地质出版社, 1984: 346-370.

    Google Scholar

    Jiangsu Bureau of Geology and Mineral Resources. Regional geology of Jiangsu Province and Shanghai City[M]. Beijing: Geological Publishing House, 1984: 346-370. (in Chinese)

    Google Scholar

    [147] 程瑜, 李向前, 赵增玉, 等. 长江三角洲地区TZK3孔碎屑锆石U-Pb年龄及其物源意义[J]. 地质力学学报, 2018, 24(5): 635-644.

    Google Scholar

    Cheng Y, Li X Q, Zhao Z Y, et al. Detrital zircon U-Pb ages and its provenance significance in the TZK3 core from the Yangtze River Delta[J]. Journal of Geomechanics, 2018, 24(5): 635-644.

    Google Scholar

    [148] Zhang L, Qin X G, Liu J Q, et al. Geochemistry of sediments from the Huaibei Plain (East China): Implications for provenance, weathering, and invasion of the Yellow River into the Huaihe River[J]. Journal of Asian Earth Sciences, 2016, 121: 72-83. doi: 10.1016/j.jseaes.2016.02.008

    CrossRef Google Scholar

    [149] 程瑜, 李向前, 赵增玉, 等. 苏北盆地TZK9孔磁性地层及重矿物组合特征研究[J]. 地质力学学报, 2016, 22(4): 994-1003. doi: 10.3969/j.issn.1006-6616.2016.04.017

    CrossRef Google Scholar

    Cheng Y, Li X Q, Zhao Z Y, et al. Magnetostratigraphy and heavy minerals records of TZK9 core in Subei Basin[J]. Journal of Geomechanics, 2016, 22(4): 994-1003. doi: 10.3969/j.issn.1006-6616.2016.04.017

    CrossRef Google Scholar

    [150] 王强, 张玉发, 袁桂邦, 等. MIS3阶段以来河北黄骅北部地区海侵与气候期对比[J]. 第四纪研究, 2008, 28(1): 79-95. doi: 10.3321/j.issn:1001-7410.2008.01.009

    CrossRef Google Scholar

    Wang Q, Zhang Y F, Yuan G B, et al. Since MIS3 stage the correlation between transgression and climatic changes in the north Huanghua area, Hebei[J]. Quaternary Sciences, 2008, 28(1): 79-95. doi: 10.3321/j.issn:1001-7410.2008.01.009

    CrossRef Google Scholar

    [151] 陈宇坤, 李振海, 邵永新, 等. 天津地区第四纪年代地层剖面研究[J]. 地震地质, 2008, 30(2): 383-399. doi: 10.3969/j.issn.0253-4967.2008.02.005

    CrossRef Google Scholar

    Chen Y K, Li Z H, Shao Y X, et al. Study on the Quaternary chronostratigraphic section in Tianjin area[J]. Seismology and Geology, 2008, 30(2): 383-399. doi: 10.3969/j.issn.0253-4967.2008.02.005

    CrossRef Google Scholar

    [152] Cheng Y, Li X Q, Shu J W, et al. Sedimentary evolution and transgressions of the western Subei basin in eastern China since the Late Pliocene[J]. Acta Geologica Sinica, 2019, 93(1): 155-166. doi: 10.1111/1755-6724.13774

    CrossRef Google Scholar

    [153] 林景星. 华北平原第四纪海进海退现象的初步认识[J]. 地质学报, 1977, 51(2): 109-116.

    Google Scholar

    Lin C H. Preliminary notes on Quaternary transgressions and regressions in N. China Plain[J]. Acta Geologica Sinica, 1977, 51(2): 109-116.

    Google Scholar

    [154] 赵松龄, 杨光复, 苍树溪, 等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼, 1978, 9(1): 15-25.

    Google Scholar

    Zhao S L, Yang G F, Cang S X, et al. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai[J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 15-25.

    Google Scholar

    [155] 杨子赓, 李幼军, 丁秋玲, 等. 试论河北平原东部第四纪地质几个基本问题[J]. 地质学报, 1979, 53(4): 264-279, 363-364.

    Google Scholar

    Yang Z G, Li Y J, Ding Q L, et al. Some fundamental problesms of Quaternary geology of Eastern Hebei Plain[J]. Acta Geologica Sinica, 1979, 53(4): 264-279, 363-364.

    Google Scholar

    [156] 王靖泰, 汪品先. 中国东部晚更新世以来海面升降与气候变化的关系[J]. 地理学报, 1980, 35(4): 299-312. doi: 10.3321/j.issn:0375-5444.1980.04.003

    CrossRef Google Scholar

    Wang J T, Wang P X. Relationship between sea-level changes and climatic fluctuations in East China since Late Pleistocene[J]. Acta Geographica Sinica, 1980, 35(4): 299-312. doi: 10.3321/j.issn:0375-5444.1980.04.003

    CrossRef Google Scholar

    [157] 汪品先, 闵秋宝, 卞云华, 等. 我国东部第四纪海侵地层的初步研究[J]. 地质学报, 1981, 55(1): 1-13.

    Google Scholar

    Wang P X, Min Q B, Bian Y H, et al. Strata of Quaternary transgressions in East China: A preliminary study[J]. Acta Geologica Sinica, 1981, 55(1): 1-13.

    Google Scholar

    [158] 王强. 渤海湾西岸第四纪海相及海陆过渡相介形虫化石群及古地理[J]. 海洋地质研究, 1982, 2(3): 36-46, 86.

    Google Scholar

    Wang Q. The ostracod fauna of marine and marineterrestrial transitional facies in western coast of the Bohai Gulf (North China) and paleogeography during Quaternary[J]. Marine Geological Research, 1982, 2(3): 36-46, 86.

    Google Scholar

    [159] 王强, 李凤林, 李玉德, 等. 十五万年来渤海西、南岸平原海岸线变迁[C]//赵松龄, 苍树溪. 中国海平面变化(IGCP200项中国工作组). 北京: 海洋出版社, 1986: 43-52.

    Google Scholar

    Wang Q, Li F L, Li Y D, et al. The change of shore line in west-southern plain of the Bohai Sea since 150 ka[C]//Zhao S L, Cang S X. Sea-level change in China (IGCP200 Project China National Working Group). Beijing: China Ocean Press, 1986: 43-52.

    Google Scholar

    [160] 王强, 李凤林. 渤海湾西岸第四纪海陆变迁[J]. 海洋地质与第四纪地质, 1983, 3(4): 83-89.

    Google Scholar

    Wang Q, Li F L. The changes of marine-continental conditions in the west coast of the bohai gulf during quaternary[J]. Marine Geology&Quaternary Geology, 1983, 3(4): 83-89.

    Google Scholar

    [161] 吴标云, 李从先. 长江三角洲第四纪地质[M]. 北京: 海洋出版杜, 1987.

    Google Scholar

    Wu B Y, Li C X. Quaternary geology of the Yangtze River Delta[M]. Beijing: China Ocean Press, 1987. (in Chinese)

    Google Scholar

    [162] Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423(6942): 853-858. doi: 10.1038/nature01690

    CrossRef Google Scholar

    [163] 杨子赓. 从北海第四纪地层、沉积研究中所得到的启示[J]. 海洋地质动态, 1987(12): 3-6.

    Google Scholar

    Yang Z G. Enlightenment from the study of Quaternary stratigraphy and sedimentation in the North Sea[J]. Marine Geology Frontiers, 1987(12): 3-6. (in Chinese)

    Google Scholar

    [164] 汪品先, 闵秋宝, 卞云华, 等. 关于东海残留沉积物的微体化石特征[J]. 海洋学报, 1980, 2(1): 67-78.

    Google Scholar

    Wang P X, Min Q B, Bian Y H, et al. Micropaleontologic characteristics of relict sediments of the East China Sea[J]. Acta Oceanologica Sinica, 1980, 2(1): 67-78.

    Google Scholar

    [165] 易亮, 姜兴钰, 田立柱, 等. 渤海盆地演化的年代学研究[J]. 第四纪研究, 2016, 36(5): 1075-1087.

    Google Scholar

    Yi L, Jiang X Y, Tian L Z, et al. Geochronological study on Plio-Pleistocene evolution of Bohai Basin[J]. Quaternary Sciences, 2016, 36(5): 1075-1087.

    Google Scholar

    [166] 汪品先, 成鑫荣. 东海底质中钙质超微化石的分布[J]. 海洋学报, 1988, 10(1): 76-85.

    Google Scholar

    Wang P X, Cheng X R. Distribution of calcareous nannoplankton in bottom sediments of the East China Sea[J]. Acta Oceanologica Sinica, 1988, 10(1): 76-85. (in Chinese)

    Google Scholar

    [167] Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the South Yellow Sea[J]. Quaternary Science Reviews, 2016, 144: 1-15. doi: 10.1016/j.quascirev.2016.05.025

    CrossRef Google Scholar

    [168] 杨达源, 陈可锋, 舒肖明. 深海氧同位素第3阶段晚期长江三角洲古环境初步研究[J]. 第四纪研究, 2004, 24(5): 525-530. doi: 10.3321/j.issn:1001-7410.2004.05.008

    CrossRef Google Scholar

    Yang D Y, Chen K F, Shu X M. A preliminary study on the paleoenvironment during MIS 3 in the Changjiang Delta region[J]. Quaternary Sciences, 2004, 24(5): 525-530. doi: 10.3321/j.issn:1001-7410.2004.05.008

    CrossRef Google Scholar

    [169] 张振克, 谢丽, 张云峰, 等. 苏北平原MIS 3阶段海侵事件的沉积记录[J]. 第四纪研究, 2010, 30(5): 883-891. doi: 10.3969/j.issn.1001-7410.2010.05.05

    CrossRef Google Scholar

    Zhang Z K, Xie L, Zhang Y F, et al. Sedimentary records of the MIS 3 transgression event in the North Jiangsu Plain, China[J]. Quaternary Sciences, 2010, 30(5): 883-891. doi: 10.3969/j.issn.1001-7410.2010.05.05

    CrossRef Google Scholar

    [170] Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marined δ18O record[C]//Berger A. Milankovitch and Climate, Part 1. New York: Reidel Publishing Company, 1984: 269-305.

    Google Scholar

    [171] Shackleton N J. Oxygen isotopes, ice volume and sea level[J]. Quaternary Science Reviews, 1987, 6(3/4): 183-190.

    Google Scholar

    [172] Chappell J, Omura A, Esat T, et al. Reconciliaion of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records[J]. Earth and Planetary Science Letters, 1996, 141(1/4): 227-236.

    Google Scholar

    [173] Yim W W S, Ivanovich M, Yu K F. Young age bias of radiocarbon dates in pre-Holocene marine deposits of Hong Kong and implications for Pleistocene stratigraphy[J]. Geo-Marine Letters, 1990, 10(3): 165-172. doi: 10.1007/BF02085932

    CrossRef Google Scholar

    [174] Li Y, Tsukamoto S, Shang Z W, et al. Constraining the transgression history in the Bohai Coast China since the Middle Pleistocene by luminescence dating[J]. Marine Geology, 2019, 416: 105980. doi: 10.1016/j.margeo.2019.105980

    CrossRef Google Scholar

    [175] 夏非, 殷勇, 王强, 等. MIS3晚期以来江苏中部海岸的层序地层[J]. 地质学报, 2012, 86(10): 1696-1712. doi: 10.3969/j.issn.0001-5717.2012.10.009

    CrossRef Google Scholar

    Xia F, Yin Y, Wang Q, et al. Sequence stratigraphy of the central part of north Jiangsu coasts since Late MIS3, eastern China[J]. Acta Geologica Sinica, 2012, 86(10): 1696-1712. doi: 10.3969/j.issn.0001-5717.2012.10.009

    CrossRef Google Scholar

    [176] 尚帅, 范代读, 王强, 等. MIS 3以来浙江温瑞平原YQ0902孔古环境与古气候变化记录[J]. 古地理学报, 2013, 15(4): 551-564.

    Google Scholar

    Shang S, Fan D D, Wang Q, et al. Records of palaeoenvironment and palaeoclimate changes since the MIS 3 in Borehole YQ0902 at Wenrui Plain, Zhejiang Province[J]. Journal of Palaeogeography, 2013, 15(4): 551-564.

    Google Scholar

    [177] 同济大学海洋地质系三角洲科研组. 全新世长江三角洲的形成和发育[J]. 科学通报, 1978, 23(5): 310-313.

    Google Scholar

    Delta Research Group, Department of Marine Geology, Tongji University. Formation and evolution of the Yangtze River Delta[J]. Chinese Science Bulletin, 1978, 23(5): 310-314. (in Chinese)

    Google Scholar

    [178] 肖国桥, 郭正堂, 陈宇坤, 等. 渤海湾西岸BZ1钻孔的磁性地层学研究[J]. 第四纪研究, 2008, 28(5): 909-916. doi: 10.3321/j.issn:1001-7410.2008.05.014

    CrossRef Google Scholar

    Xiao G Q, Guo Z T, Chen Y K, et al. Magnetostratigraphy of BZ1 borehole in west coast of Bohai Bay, northern China[J]. Quaternary Sciences, 2008, 28(5): 909-916. doi: 10.3321/j.issn:1001-7410.2008.05.014

    CrossRef Google Scholar

    [179] 邓万明. 中国西部新生代火山活动及其大地构造背景——青藏及邻区火山岩的形成机制[J]. 地学前缘, 2003, 10(2): 471-478. doi: 10.3321/j.issn:1005-2321.2003.02.027

    CrossRef Google Scholar

    Deng W M. Cenozoic volcanic activity and its geotectonic background in West China: Formative excitation mechanism of volcanic rocks in Qinghai-Xizang and adjacent districts[J]. Earth Science Frontiers, 2003, 10(2): 471-478. doi: 10.3321/j.issn:1005-2321.2003.02.027

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(4)

Article Metrics

Article views(3776) PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint