2021 Vol. 30, No. 6
Article Contents

AN Shuai, CHEN Jian-hui, ZHAO Ren-yuan, SONG Li-hua. ANALYSIS ON CARBON OCCURRENCE FORMS IN BLACK SOIL OF NORTHEAST CHINA[J]. Geology and Resources, 2021, 30(6): 716-721, 709. doi: 10.13686/j.cnki.dzyzy.2021.06.011
Citation: AN Shuai, CHEN Jian-hui, ZHAO Ren-yuan, SONG Li-hua. ANALYSIS ON CARBON OCCURRENCE FORMS IN BLACK SOIL OF NORTHEAST CHINA[J]. Geology and Resources, 2021, 30(6): 716-721, 709. doi: 10.13686/j.cnki.dzyzy.2021.06.011

ANALYSIS ON CARBON OCCURRENCE FORMS IN BLACK SOIL OF NORTHEAST CHINA

More Information
  • The occurrence forms of carbon (TC and Corg) in black soil of Northeast China are studied by using high frequency infrared carbon-sulfur analyzer, with the optimization of test conditions such as sample weight and addition amount of pure iron and tungsten fluxes. It is concluded that the test result of carbon occurrence form in black soil is the best with 0.05 g of sample weight, 0.5 g of pure iron flux amount of and 1.0 g of pure tungsten flux amount. The certified soil standard substances are analyzed by the above method, and the results are all within the range of uncertainty, with the relative error between measured value and standard value of -5.00% to +2.69% and relative standard deviation (RSD) less than 6.29%. The test results of actual black soil samples by the above method are basically consistent with those by the method of Geology and Mineral Industry Standard (DZ/T0279.27-2016), which is suitable for the analysis of carbon occurrence forms in black soil of Northeast China.

  • 加载中
  • [1] 戴慧敏, 赵君, 刘国栋, 等. 东北黑土地质量调查成果[J]. 地质与资源, 2020, 29(3): 299. doi: 10.3969/j.issn.1671-1947.2020.03.014

    CrossRef Google Scholar

    Dai H M, Zhao J, Liu G D, et al. Progress in the quality survey of black soil in Northeast China[J]. Geology and Resources, 2020, 29(3): 299. doi: 10.3969/j.issn.1671-1947.2020.03.014

    CrossRef Google Scholar

    [2] 窦森. 土壤有机质[M]. 北京: 科学出版社, 2010: 1-3.

    Google Scholar

    Dou S. The organic matter of soil[M]. Beijing: Science Press, 2010: 1-3. (in Chinese)

    Google Scholar

    [3] 杨佳佳, 林楠, 于秀秀, 等. 东北典型黑土区有机碳遥感定量反演研究[J]. 地质与资源, 2020, 29(4): 357-362.

    Google Scholar

    Yang J J, Lin N, Yu X X, et al. Study on quantitative inversion of remote sensing for organic carbon in the typical black soil areas of Northeast China[J]. Geology and Resources, 2020, 29(4): 357-362.

    Google Scholar

    [4] 陈卫平, 谢天, 李笑诺, 等. 中国土壤污染防治技术体系建设思考[J]. 土壤学报, 2018, 55(3): 557-568.

    Google Scholar

    Chen W P, Xie T, Li X N, et al. Thinking of construction of soil pollution prevention and control technology system in China[J]. Acta Pedologica Sinica, 2018, 55(3): 557-568.

    Google Scholar

    [5] 陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2): 233-244.

    Google Scholar

    Chen Z D, Xu C X, An Z Y, et al. Research progress on fraction and analysis methods of soil carbon[J]. Rock and Mineral Analysis, 2019, 38(2): 233-244.

    Google Scholar

    [6] Adenuga O S, Ajiboye G A, Shade J. Soil carbon[M]. Switzerland: Springer International Publishing, 2014: 27-28.

    Google Scholar

    [7] Wang X J, Xu M G, Wang J P, et al. Fertilization enhancing carbon sequestration as carbonate in arid cropland: Assessments of long-term experiments in northern China[J]. Plant and Soil, 2014, 380(1/2): 89-100.

    Google Scholar

    [8] 王莲莲, 杨学云, 杨文静. 土壤碳酸盐几种测定方法的比较[J]. 西北农业学报, 2013, 22(5): 144-150.

    Google Scholar

    Wang L L, Yang X Y, Yang W J. Comparison of three methods for determination of soil carbonate[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(5): 144-150.

    Google Scholar

    [9] Sherrod L A, Dunn G, Peterson G A, et al. Inorganic carbon analysis by modified pressure-calcimeter method[J]. Soil Science Society of America Journal, 2002, 66(1): 299-305. doi: 10.2136/sssaj2002.2990

    CrossRef Google Scholar

    [10] Zougagh M, Ríos A, Valcárcel M. Direct determination of total carbonate salts in soil samples by continuous-flow piezoelectric detection[J]. Talanta, 2005, 65(1): 29-35.

    Google Scholar

    [11] 邱灵佳, 黄国林, 帅琴, 等. 灼烧法中有机质与总有机碳换算关系的重建及其在页岩分析中的应用[J]. 岩矿测试, 2015, 34(2): 218-223.

    Google Scholar

    Qiu L J, Huang G L, Shuai Q, et al. Reconstruction of the conversion relationship between organic matter and total organic carbon in calcination method and its application in shale analysis[J]. Rock and Mineral Analysis, 2015, 34(2): 218-223.

    Google Scholar

    [12] 吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3): 453-460.

    Google Scholar

    Wu C W, Xia J X, Duan Z R. Review on detection methods of soil organic matter (SOM)[J]. Soils, 2015, 47(3): 453-460.

    Google Scholar

    [13] 陶培峰, 王建华, 李志忠, 等. 基于高光谱的土壤养分含量反演模型研究[J]. 地质与资源, 2020, 29(1): 68-75, 84. doi: 10.3969/j.issn.1671-1947.2020.01.009

    CrossRef Google Scholar

    Tao P F, Wang J H, Li Z Z, et al. Research of soil nutrient content inversion model based on hyperspectral data[J]. Geology and Resources, 2020, 29(1): 68-75, 84. doi: 10.3969/j.issn.1671-1947.2020.01.009

    CrossRef Google Scholar

    [14] 张东辉, 赵英俊, 秦凯, 等. 光谱变换方法对黑土养分含量高光谱遥感反演精度的影响[J]. 农业工程学报, 2018, 34(20): 141-147. doi: 10.11975/j.issn.1002-6819.2018.20.018

    CrossRef Google Scholar

    Zhang D H, Zhao Y J, Qin K, et al. Influence of spectral transformation methods on nutrient content inversion accuracy by hyperspectral remote sensing in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 141-147. doi: 10.11975/j.issn.1002-6819.2018.20.018

    CrossRef Google Scholar

    [15] 唐伟祥, 孟凡乔, 张煜, 等. 不同土壤有机碳测定方法的比较[J]. 土壤, 2018, 50(3): 552-557.

    Google Scholar

    Tang W X, Meng F Q, Zhang Y, et al. Method comparison for determining soil organic carbon[J]. Soils, 2018, 50(3): 552-557.

    Google Scholar

    [16] 殷陶刚, 窦向丽, 张旺强, 等. 应用高频红外碳硫仪测定农用地土壤样品中有机质含量[J]. 岩矿测试, 2020, 39(4): 631-638.

    Google Scholar

    Yin T G, Dou X L, Zhang W Q, et al. Determination of organic matter content in farm land soil by high frequency infrared carbon-sulfur analyzer[J]. Rock and Mineral Analysis, 2020, 39(4): 631-638.

    Google Scholar

    [17] 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008: 30-31.

    Google Scholar

    Yang J H, Wang C L, Dai H L. The agrochemical analysis of soil and environmental monitoring[M]. Beijing: China Land Press, 2008: 30-31. (in Chinese)

    Google Scholar

    [18] 张明杰, 戴雪峰, 陆丁荣, 等. 高频燃烧-红外碳硫仪用于农用地土壤质量调查样品中碳硫的快速测定[J]. 岩矿测试, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011

    CrossRef Google Scholar

    Zhang M J, Dai X F, Lu D R, et al. Rapid determination of carbon and sulfur in farmland soil samples by high frequency-infrared carbon-sulfur analyzer[J]. Rock and Mineral Analysis, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011

    CrossRef Google Scholar

    [19] 钱宝, 刘凌, 肖潇. 土壤有机质测定方法对比分析[J]. 河海大学学报(自然科学版), 2011, 39(1): 34-38. doi: 10.3876/j.issn.1000-1980.2011.01.008

    CrossRef Google Scholar

    Qian B, Liu L, Xiao X. Comparative tests on different methods for content of soil organic matter[J]. Journal of Hohai University (Natural Sciences), 2011, 39(1): 34-38. doi: 10.3876/j.issn.1000-1980.2011.01.008

    CrossRef Google Scholar

    [20] 廖漓文, 董震堃. 红外碳硫仪测定土壤中碳含量的探讨[J]. 价值工程, 2015, 34(11): 181-182.

    Google Scholar

    Liao L W, Dong Z K. New application of high frequency infrared ray carbon sulphur analyser[J]. Value Engineering, 2015, 34(11): 181-182.

    Google Scholar

    [21] 李建红, 李熹. 高频燃烧红外吸收法测定页岩中有机碳[J]. 煤炭与化工, 2015, 38(5): 137-138, 141.

    Google Scholar

    Li J H, Li X. The application of high frequency combustion infrared absorption method in measuring organic carbon in shale[J]. Coal and Chemical Industry, 2015, 38(5): 137-138, 141.

    Google Scholar

    [22] 钟其云, 王启芳. 碳硫分析专用复合催化剂的研制[J]. 分析试验室, 1997, 16(1): 79-82.

    Google Scholar

    Zhong Q Y, Wang Q F. Development of special complex catalyst for analysis of carbon and sulfur[J]. Chinese Journal of Analysis Laboratory, 1997, 16(1): 79-82.

    Google Scholar

    [23] Bielański A, Haber J. Oxygen in catalysis on transition metal oxides[J]. Catalysis Reviews, 1979, 19(1): 1-41. doi: 10.1080/03602457908065099

    CrossRef Google Scholar

    [24] 叶青, 李冬辉, 程水源, 等. 铝柱撑蒙脱石负载Au和Pt催化剂的结构特点及其催化氧化CO性质[J]. 北京工业大学学报, 2012, 38(8): 1269-1275.

    Google Scholar

    Ye Q, Li D H, Cheng S Y, et al. Au or Pt supported on AI pillared montmorillonite: Characterization and catalytic activity for CO oxidation[J]. Journal of Beijing Polytechnic University, 2012, 38(8): 1269-1275.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(1417) PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint