2021 Vol. 30, No. 3
Article Contents

LI Ang, ZHANG Li-yan, YANG Jian-guo, HUANG Yi-ming. SEISMIC METHOD FOR SHALE OIL SWEET SPOT PREDICTION IN QINGSHANKOU FORMATION OF SANZHAO SAG, SONGLIAO BASIN[J]. Geology and Resources, 2021, 30(3): 366-376, 305. doi: 10.13686/j.cnki.dzyzy.2021.03.019
Citation: LI Ang, ZHANG Li-yan, YANG Jian-guo, HUANG Yi-ming. SEISMIC METHOD FOR SHALE OIL SWEET SPOT PREDICTION IN QINGSHANKOU FORMATION OF SANZHAO SAG, SONGLIAO BASIN[J]. Geology and Resources, 2021, 30(3): 366-376, 305. doi: 10.13686/j.cnki.dzyzy.2021.03.019

SEISMIC METHOD FOR SHALE OIL SWEET SPOT PREDICTION IN QINGSHANKOU FORMATION OF SANZHAO SAG, SONGLIAO BASIN

  • The oil and gas resources are abundant in the shale of the first member of Qingshankou Formation in Sanzhao Sag, Songliao Basin. To identify the distribution of shale oil sweet spots in the area and guide the deployment of parameter well, the paper studies the sweet spot prediction method based on the logging evaluation of key parameters of single well sweet spot, 3D seismic data and well-seismic combination. First, the cross plot analysis of logging data and core experimental analysis data is used to establish logging evaluation model of lithology, physical properties (porosity and permeability), oil-bearing property(saturation), organic geochemical parameters(TOC and S1), formation pore pressure and compressibility; Then the broadband constrained inversion technology is applied to predict lithology, the prestack elastic parameter inversion to predict physical properties, oil-bearing property and compressibility, and combination of constrained Dix formula inversion and model constrained wave impedance inversion technology to predict formation pressure; Finally, a set of seismic sweet spot identification technology process suitable for the shale oil of Qingshankou Formation in Songliao Basin is established to realize the double sweet spots prediction of geological and engineering sweet spots. The practice shows that the 3D seismic data can effectively predict shale sweet spots, and the actual drilling results are basically consistent with pre-drilling prediction, which proves the effectiveness of technical process.

  • 加载中
  • [1] 杜金虎, 胡素云, 庞正炼, 等.中国陆相页岩油类型、潜力及前景[J].中国石油勘探, 2019, 24(5):560-568. doi: 10.3969/j.issn.1672-7703.2019.05.003

    CrossRef Google Scholar

    Du J H, Hu S Y, Pang Z L, et al.The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5):560-568. doi: 10.3969/j.issn.1672-7703.2019.05.003

    CrossRef Google Scholar

    [2] 张抗.从页岩气革命看中国资源勘探的战略方向[J].地质与资源, 2013, 22(4):259-263. doi: 10.3969/j.issn.1671-1947.2013.04.001

    CrossRef Google Scholar

    Zhang K. Shale gas revolution:Impact to China's resources exploration strategy[J]. Geology and Resources, 2013, 22(4):259-263. doi: 10.3969/j.issn.1671-1947.2013.04.001

    CrossRef Google Scholar

    [3] 张欣, 刘吉余, 侯鹏飞.中国页岩油的形成和分布理论综述[J].地质与资源, 2019, 28(2):165-170. doi: 10.3969/j.issn.1671-1947.2019.02.008

    CrossRef Google Scholar

    Zhang X, Liu J Y, Hou P F. A review on the formation and distribution theories of the shale oil in China[J].Geology and Resources, 2019, 28(2):165-170. doi: 10.3969/j.issn.1671-1947.2019.02.008

    CrossRef Google Scholar

    [4] 张林晔, 李钜源, 李政, 等.北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J].地球科学进展, 2014, 29(6):700-711.

    Google Scholar

    Zhang L Y, Li J Y, Li Z, et al. Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6):700-711.

    Google Scholar

    [5] 吴河勇, 林铁锋, 白云风, 等.松辽盆地北部泥(页)岩油勘探潜力分析[J].大庆石油地质与开发, 2019, 38(5):78-86.

    Google Scholar

    Wu H Y, Lin T F, Bai Y F, et al. Analyses of the mudstone (shale) oil exploration potential in North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5):78-86.

    Google Scholar

    [6] 王玉华, 梁江平, 张金友, 等.松辽盆地古龙页岩油资源潜力及勘探方向[J].大庆石油地质与开发, 2020, 39(3):20-34.

    Google Scholar

    Wang Y H, Liang J P, Zhang J Y, et al. Resource potential and exploration direction of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3):20-34.

    Google Scholar

    [7] 柳波, 石佳欣, 付晓飞, 等.陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J].石油勘探与开发, 2018, 45(5):828-838.

    Google Scholar

    Liu B, Shi J X, Fu X F, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system:A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5):828-838.

    Google Scholar

    [8] 贾曙光, 王军, 王玲玲, 等.吉木萨尔凹陷芦草沟组页岩油甜点地震预测方法[J].新疆石油地质, 2020, 41(5):535-541.

    Google Scholar

    Jia S G, Wang J, Wang L L, et al. Seismic prediction methods of shale oil sweet spots in Lucaogou Formation of Jimsar sag[J]. Xinjiang Petroleum Geology, 2020, 41(5):535-541.

    Google Scholar

    [9] Sena A, Castillo G, Chesser K, et al. Seismic reservoir characterization in resource shale plays:Stress analysis and sweet spot discrimination[J]. The Leading Edge, 2011, 30(7):758-764. doi: 10.1190/1.3609090

    CrossRef Google Scholar

    [10] Davie M, Zhu Y P, Rehkopf O, et al. Characterization of shale gas reservoirs using seismic and well data at Horn River, Canada[C]//Proceedings of the 82nd Annual International Meeting. Las Vegas, Nevada: SEG, 2012.

    Google Scholar

    [11] Tavella J, Moirano J, Zambrano J C, et al. Integrated characterization of unconventional upper Jurassic reservoir in northern Mexico[C]. Proceedings of the 75th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2013. London, UK, 2013.

    Google Scholar

    [12] 刘伟, 梁兴, 姚秋昌, 等.四川盆地昭通区块龙马溪组页岩气"甜点"预测方法及应用[J].石油地球物理勘探, 2018, 53(S2):211-217, 223, 15.

    Google Scholar

    Liu W, Liang X, Yao Q C, et al. Shale-gas sweet spot identification in Longmaxi, Sichuan Basin[J]. Oil Geophysical Prospecting, 2018, 53(S2):211-217, 223, 15.

    Google Scholar

    [13] 陈树民, 韩德华, 赵海波, 等.松辽盆地古龙页岩油地震岩石物理特征及甜点预测技术[J].大庆石油地质与开发, 2020, 39(3):107-116.

    Google Scholar

    Chen S M, Han D H, Zhao H B, etal. Seismic petrophysical characteristics and predicting technique of the sweet spots in Gulong shale oil reservoirs of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3):107-116.

    Google Scholar

    [14] 周东红, 熊晓军.一种高精度地层压力预测方法[J].石油地球物理勘探, 2014, 49(2):344-348.

    Google Scholar

    Zhou D H, Xiong X J. A method for high-precision prediction of formation pressure[J]. Oil Geophysical Prospecting, 2014, 49(2):344-348.

    Google Scholar

    [15] 韩向义, 阎建国, 朱斗星, 等.叠前弹性参数反演在龙马溪组页岩脆性预测中的应用[J].物探化探计算技术, 2018, 40(3):337-344. doi: 10.3969/j.issn.1001-1749.2018.03.09

    CrossRef Google Scholar

    Han X Y, Yan J G, Zhu D X, et al. Application of pre-stack elastic parameter inversion in the prediction of Longmaxi formation shale's brittleness[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(3):337-344. doi: 10.3969/j.issn.1001-1749.2018.03.09

    CrossRef Google Scholar

    [16] 孙雨, 于利民, 闫百泉, 等.松辽盆地三肇凹陷向斜区白垩系姚家组葡萄花油层油水分布特征及其主控因素[J].石油与天然气地质, 2018, 39(6):1120-1131.

    Google Scholar

    Sun Y, Yu L M, Yan B Q, etal. Oil-water distribution and its major controlling factors of Putaohua reservoir of the Cretaceous Yaojia Formation in syncline area of Sanzhao Sag, Songliao Basin[J]. Oil & Gas Geology, 2018, 39(6):1120-1131.

    Google Scholar

    [17] 杨建国, 李士超, 姚玉来, 等.松辽盆地北部陆相页岩油调查取得重大突破[J].地质与资源, 2020, 29(3):300. doi: 10.3969/j.issn.1671-1947.2020.03.015

    CrossRef Google Scholar

    Yang J G, Li S C, Yao Y L, et al. Significant breakthrough in the continental shale oil survey in northern Songliao Basin[J]. Geology and Resources, 2020, 29(3):300. doi: 10.3969/j.issn.1671-1947.2020.03.015

    CrossRef Google Scholar

    [18] Schmoker J W. Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs[J]. AAPG Bulletin, 1981, 65(7):1285-1298.

    Google Scholar

    [19] Passey Q R, Creaney S, Kulla J B, et al. 1990 A practical model for organic richness from porosity and resistivity logs[J]. AAPG Bulletin, 1990, 74(12):1777-1794.

    Google Scholar

    [20] Khoshnoodkia M, Mohseni H, Rahmani O, et al. TOC determination of Gadvan Formation in South Pars gas field, using artificial intelligent systems and geochemical data[J]. Journal of Petroleum Science and Engineering, 2011, 78(1):119-130.

    Google Scholar

    [21] 董宁, 许杰, 孙赞东, 等.泥页岩脆性地球物理预测技术[J].石油地球物理勘探, 2013, 48(S1):69-74.

    Google Scholar

    Dong N, Xu J, Sun Z D, et al. Shale brittleness prediction by geophysical methods[J]. Oil Geophysical Prospecting, 2013, 48(S1):69-74.

    Google Scholar

    [22] Fillippone W R. Estimation of formation parameters and the prediction of overpressures from seismic data[R]. SEG 0502, Dallas, Texas: SEG, 1982.

    Google Scholar

    [23] 马海. Fillippone地层压力预测方法的改进及应用[J].石油钻探技术, 2012, 40(6):56-61.

    Google Scholar

    Ma H. Pore pressure prediction with seismic interval velocity by the modified Fillippone method[J]. Petroleum Drilling Techniques, 2012, 40(6):56-61.

    Google Scholar

    [24] 张磊夫, 董大忠, 孙莎莎, 等.三维地质建模在页岩气甜点定量表征中的应用——以扬子地区昭通页岩气示范区为例[J].天然气地球科学, 2019, 30(9):1332-1340.

    Google Scholar

    Zhang L F, Dong D ZH, Sun S S, et al. Application of 3D geological modeling in quantitative characterization of shale gas sweet spots:Case study of Zhaotong national demonstration area of Yangtze region[J]. Natural Gas Geoscience, 2019, 30(9):1332-1340.

    Google Scholar

    [25] 胡华锋, 胡起, 林正良.页岩气储层地层压力预测方法及其在四川盆地的应用[J].石油物探, 2018, 57(3):362-368.

    Google Scholar

    Hu H F, Hu Q, Lin Z L. Pore pressure prediction for shale gas reservoirs and its application in the Sichuan Basin, China[J]. Geophysical Prospecting For Petroleum, 2018, 57(3):362-368.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(2382) PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint