2020 Vol. 29, No. 6
Article Contents

DAI Hui-min, LIU Kai, SONG Yun-hong, LIANG Shuai, ZHANG Yi-he, LIU Guo-dong, YANG Ze. BLACK SOIL DEGRADATION AND INTENSITY IN NORTHEAST CHINA: Geochemical Indication[J]. Geology and Resources, 2020, 29(6): 510-517. doi: 10.13686/j.cnki.dzyzy.2020.06.002
Citation: DAI Hui-min, LIU Kai, SONG Yun-hong, LIANG Shuai, ZHANG Yi-he, LIU Guo-dong, YANG Ze. BLACK SOIL DEGRADATION AND INTENSITY IN NORTHEAST CHINA: Geochemical Indication[J]. Geology and Resources, 2020, 29(6): 510-517. doi: 10.13686/j.cnki.dzyzy.2020.06.002

BLACK SOIL DEGRADATION AND INTENSITY IN NORTHEAST CHINA: Geochemical Indication

  • Based on the data of land quality geochemical survey in Northeast China, the paper analyzes the geochemical index variation in terms of degradation type of black soil, and also the decreased area of black soil nutrients and degradation intensity compared with that in the 1980s. The results indicate that the decrease of organic matter and salinization contribute to most of black soil degradation. The soil C/N values are less than 10.0 in both organic matter-deficient area and alkaline soil area. Besides, the indexes of total nitrogen(TN), total phosphorus (TP), total sulfur (TS) and soil organic carbon (SOC) show weak correlation; while the aluminum and iron oxides or indexes representing clay content and trace elements, which are easily adsorbed by these substances above, still keep the characteristics of "living community". By comparing the trace element contents in Hailun and Gongzhuling areas in different periods, the results show the contents of trace elements such as soil zinc and molybdenum have decreased significantly over the past 10 years, indicating that the TN, TP, TS and soil nutrients of manganese and zinc are lost to a certain extent during the process of organic matter loss and soil salinization. Since the 1980s, the reduction area of SOC in Songliao Plain has reached 54.45%, reduced by 131 Mt, among which 26.2 Mt is released into the atmosphere. In Heilongjiang Province where the reclamation is relatively late, the SOC decreases the most, while the SOC decreases relatively less with the reclamation degree increasing from north to south, reflecting the SOC tends to be stable constantly with the increase of reclamation degree. Through statistics and comparative study, it is concluded that the study of black soil degradation and development/protection should pay attention to not only the loss of soil nutrients caused by human activities, but also the trend of black soil becoming strongly acidic or strongly alkaline.

  • 加载中
  • [1] 崔明, 张旭东, 蔡强国, 等.东北典型黑土区气候、地貌演化与黑土发育关系[J].地理研究, 2008, 27(3):527-535. doi: 10.3321/j.issn:1000-0585.2008.03.006

    CrossRef Google Scholar

    [2] 张凤荣.土壤地理学[M].北京:中国农业出版社, 2002:142-147.

    Google Scholar

    [3] 商翎, 提福魁, 王淑华, 等.元素生态地球化学及其应用[M].沈阳:辽宁大学出版社, 1997:15-21.

    Google Scholar

    [4] 汪景宽, 张旭东, 王铁宇, 等.黑土土壤质量演变初探Ⅲ——不同地区黑土主要微量元素状况及其评价[J].沈阳农业大学学报, 2002, 33(6):420-424. doi: 10.3969/j.issn.1000-1700.2002.06.006

    CrossRef Google Scholar

    [5] 于君宝, 刘景双, 王金达, 等.不同开垦年限黑土有机碳变化规律[J].水土保持学报, 2004, 18(1):27-30. doi: 10.3321/j.issn:1009-2242.2004.01.007

    CrossRef Google Scholar

    [6] 李海波, 韩晓增, 王风, 等.不同土地利用下黑土密度分组中碳、氮的分配变化[J].土壤学报, 2008, 45(1):112-119. doi: 10.3321/j.issn:0564-3929.2008.01.015

    CrossRef Google Scholar

    [7] 于洋, 刘吉平, 徐艳艳.东北典型黑土区土壤养分空间分异影响因素分析[J].水土保持研究, 2009, 16(5):66-69.

    Google Scholar

    [8] 解宏图, 李维福, 郑立臣.东北黑土活性有机碳、氮分布研究[J].土壤通报, 2008, 39(2):249-253. doi: 10.3321/j.issn:0564-3945.2008.02.009

    CrossRef Google Scholar

    [9] 汪景宽, 李双异, 张旭东, 等. 20年来东北典型黑土地区土壤肥力质量变化[J].中国生态农业学报, 2007, 15(1):19-24.

    Google Scholar

    [10] 汪景宽, 王铁宇, 张旭东, 等.黑土土壤质量演变初探Ⅰ-不同开垦年限黑土主要质量指标演变规律[J].沈阳农业大学学报, 2002, 33(1):43-47. doi: 10.3969/j.issn.1000-1700.2002.01.012

    CrossRef Google Scholar

    [11] 汪景宽, 张旭东, 王铁宇, 等.黑土土壤质量演变初探Ⅱ——不同地区黑土中有机质、氮、硫和磷现状及变化规律[J].沈阳农业大学学报, 2002, 33(4):270-273.

    Google Scholar

    [12] Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000[J]. Tellus B:Chemical and Physical Meteorology, 2003, 55(2):378-390.

    Google Scholar

    [13] Ruddiman W F. The anthropogenic greenhouse era began thousands of years ago[J]. Climatic Change, 2003, 61(3):261-293. doi: 10.1023/B:CLIM.0000004577.17928.fa

    CrossRef Google Scholar

    [14] Ellis E C, Goldewijk K K, Siebert S, et al. Anthropogenic transformation of the biomes, 1700 to 2000[J]. Global Ecology and Biogeography, 2010, 19(5):589-606.

    Google Scholar

    [15] 周涛, 史培军.土地利用变化对中国土壤碳储量变化的间接影响[J].地球科学进展, 2006, 21(2):138-143. doi: 10.3321/j.issn:1001-8166.2006.02.004

    CrossRef Google Scholar

    [16] 周莉, 李保国, 周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展, 2005, 20(1):99-105. doi: 10.3321/j.issn:1001-8166.2005.01.016

    CrossRef Google Scholar

    [17] Esser G. Modelling global terrestrial sources and sinks of CO2 with special reference to soil organic matter[M]//Bouwman A F. Soils and the Greenhouse Effect. New York: John Wiley & Sons, 1990: 247-262.

    Google Scholar

    [18] 李克让, 王绍强, 曹明奎.中国植被和土壤碳贮量[J].中国科学(D辑), 2003, 33(1):72-80.

    Google Scholar

    [19] 方华军, 杨学明, 张晓平.农田土壤有机碳动态研究进展[J].土壤通报, 2003, 34(6):562-568. doi: 10.3321/j.issn:0564-3945.2003.06.018

    CrossRef Google Scholar

    [20] Ayanaba A, Jenkinson D S. Decomposition of carbon-14 labeled ryegrass and maize under tropical conditions[J]. Soil Science Society of America Journal, 1990, 54(1):112-115. doi: 10.2136/sssaj1990.03615995005400010017x

    CrossRef Google Scholar

    [21] 廖利平, 高洪, 于小军, 等.人工混交林中杉木、桤木和刺楸细根养分迁移的初步研究[J].应用生态学报, 2000, 11(2):161-164. doi: 10.3321/j.issn:1001-9332.2000.02.001

    CrossRef Google Scholar

    [22] 衣保中.近代以来东北平原黑土开发的生态环境代价[J].吉林大学社会科学学报, 2003(5):62-68.

    Google Scholar

    [23] 尹云锋, 蔡祖聪, 钦绳武.长期施肥条件下潮土不同组分有机质的动态研究[J].应用生态学报, 2005, 16(5):875-878. doi: 10.3321/j.issn:1001-9332.2005.05.019

    CrossRef Google Scholar

    [24] 马红亮, 朱建国, 谢祖彬, 等.不同氮水平下CO2浓度升高对小麦土壤可溶性C、N和P的影响[J].土壤, 2005, 37(3):284-289. doi: 10.3321/j.issn:0253-9829.2005.03.010

    CrossRef Google Scholar

    [25] 方华军, 杨学明, 张晓平.东北黑土有机碳储量及其对大气CO2的贡献[J].水土保持学报, 2003, 17(3):9-12, 20. doi: 10.3321/j.issn:1009-2242.2003.03.003

    CrossRef Google Scholar

    [26] Lal R. World cropland soils as a source or sink for atmospheric carbon[J]. Advances in Agronomy, 2001, 71:145-191. doi: 10.1016/S0065-2113(01)71014-0

    CrossRef Google Scholar

    [27] Lal R, Follett R F, Kimble J M. Achieving soil carbon sequestration in the United States:A challenge to the policy makers[J]. Soil Science, 2003, 168(12):827-845. doi: 10.1097/01.ss.0000106407.84926.6b

    CrossRef Google Scholar

    [28] 何凡能, 李美娇, 肖冉.中美过去300年土地利用变化比较[J].地理学报, 2015, 70(2):297-307.

    Google Scholar

    [29] 张丽娟, 姜蓝齐, 张学珍, 等. 19世纪末黑龙江省的耕地覆盖重建[J].地理学报, 2014, 69(4):448-458.

    Google Scholar

    [30] 王学志, 张正祥, 盛连喜, 等.基于地貌特征的东北土地利用格局[J].生态学杂志, 2010, 29(12):2444-2451.

    Google Scholar

    [31] 李蓓蓓, 方修琦, 叶瑜, 等.中国东北地区过去300年耕地开垦导致的碳收支[J].中国科学:地球科学, 2014, 44(9):1987-1996.

    Google Scholar

    [32] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21010-2017土地利用现状分类[S].北京: 中国标准出版社, 2017: 1-10.

    Google Scholar

    [33] 于东升, 史学正, 孙维侠, 等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报, 2005, 16(12):2279-2283. doi: 10.3321/j.issn:1001-9332.2005.12.011

    CrossRef Google Scholar

    [34] 史学正, 于东升, 高鹏, 等.中国土壤信息系统(SISChina)及其应用基础研究[J].土壤, 2007, 39(3):329-333. doi: 10.3321/j.issn:0253-9829.2007.03.001

    CrossRef Google Scholar

    [35] Shi X Z, Yu D S, Xu S X, et al. Cross-reference for relating genetic soil classification of China with WRB at different scales[J]. Geoderma, 2010, 155(3/4):344-350.

    Google Scholar

    [36] Shi X Z, Yu D S, Warner E D, et al. Cross-reference system for translating between genetic soil classification of China and soil taxonomy[J]. Soil Science Society of America Journal, 2006, 70(1):78-83. doi: 10.2136/sssaj2004.0318

    CrossRef Google Scholar

    [37] 于君宝, 刘景双, 王金达, 等.典型黑土pH值变化对营养元素有效态含量的影响研究[J].土壤通报, 2003, 34(5):404-408. doi: 10.3321/j.issn:0564-3945.2003.05.006

    CrossRef Google Scholar

    [38] Lal R. Soil carbon dynamics in cropland and rangeland[J]. Environmental Pollution, 2002, 116(3):353-362. doi: 10.1016/S0269-7491(01)00211-1

    CrossRef Google Scholar

    [39] Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. The Botanical Review, 1977, 43(4):449-528. doi: 10.1007/BF02860844

    CrossRef Google Scholar

    [40] Kucera C L, Kirkham D R. Soil respiration studies in tallgrass prairie in Missouri[J]. Ecology, 1971, 52(5):912-915. doi: 10.2307/1936043

    CrossRef Google Scholar

    [41] Medina E, Zelwer M. Soil respiration in tropical plant communities[C]//Golley P M, Golley F B. Proceedings of the Second International Symposium of Tropical Ecology. Athens: University of Georgia Press, 1972: 245-269.

    Google Scholar

    [42] 陈全胜, 李凌浩, 韩兴国, 等.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J].植物生态学报, 2003, 27(2):202-209. doi: 10.3321/j.issn:1005-264X.2003.02.009

    CrossRef Google Scholar

    [43] 任军, 郭金瑞, 边秀芝, 等.土壤有机碳研究进展[J].中国土壤与肥料, 2009(6):1-7, 27. doi: 10.3969/j.issn.1673-6257.2009.06.001

    CrossRef Google Scholar

    [44] Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404(6780):858-861. doi: 10.1038/35009076

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(1854) PDF downloads(192) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint