Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 46, No. 5
Article Contents

CHEN Zhongfa, SONG Xinjun, ZHANG Yuyue, LU Ya. Comparison of the Characteristics of Domestic Lithium Ores and Lithium Slag and its Application for Building Materialsization: A Review[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(5): 31-40. doi: 10.12476/kczhly.202402200068
Citation: CHEN Zhongfa, SONG Xinjun, ZHANG Yuyue, LU Ya. Comparison of the Characteristics of Domestic Lithium Ores and Lithium Slag and its Application for Building Materialsization: A Review[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(5): 31-40. doi: 10.12476/kczhly.202402200068

Comparison of the Characteristics of Domestic Lithium Ores and Lithium Slag and its Application for Building Materialsization: A Review

More Information
  • Lithium slag is a new type of large and difficult to treat solid waste that has emerged with the booming development of the lithium battery industry. Due to its complex composition, there are differences in the characteristics of different lithium slag. The article tested lithium pyroxene and lithium mica slag by characterization means such as XRF, XRD, physical property test, SEM test, and pore structure test, and studied the physical and chemical properties of lithium pyroxene and lithium mica slag. Based on experimental research and conclusions from previous studies, this article provides a comprehensive analysis of lithium ore characteristics, lithium extraction processes, lithium slag properties, and lithium slag storage conditions. After treatment, lithium slag exhibits pozzolanic activity and can be utilized as a building material in applications such as concrete and cement products, cement, wall materials, and sintered materials. The article elucidates the similarities and differences between lithium spodumene and lithium mica slag in their building material applications. It also proposes reasonable suggestions for future lithium slag resource reuse pathways based on the distinct characteristics of different slags, providing reference for the sustainable development of the lithium battery industry.

  • 加载中
  • [1] 徐璐,杨耀辉,颜世强,等. 我国黏土型锂矿提锂研究现状及前景展望[J]. 矿产综合利用, 2023(4):12-18.XU L,YANG Y H,YAN S Q,et al. Lithium extraction from clay-type ore in China: Status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002

    CrossRef Google Scholar

    XU L,YANG Y H,YAN S Q,et al. Lithium extraction from clay-type ore in China: Status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002

    CrossRef Google Scholar

    [2] 吴西顺, 王登红, 成艾颖, 等. 全球锂铍铌钽矿产资源勘探开发新进展[J]. 矿产综合利用, 2024, 45(4):1-10+20.WU X S, WANG D H, CHENG A Y, et al. New progress in exploration and development of global Li-Be-Nb-Ta resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4):1-10+20. doi: 10.3969/j.issn.1000-6532.2024.04.001

    CrossRef Google Scholar

    WU X S, WANG D H, CHENG A Y, et al. New progress in exploration and development of global Li-Be-Nb-Ta resources[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(4):1-10+20. doi: 10.3969/j.issn.1000-6532.2024.04.001

    CrossRef Google Scholar

    [3] 徐正震,梁精龙,李慧,等. 废旧锂电池正极材料中有价金属的回收工艺研究进展[J]. 矿产综合利用, 2022(4):119-122.XU Z Z,LIANG J L,LI H,et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4):119-122. doi: 10.3969/j.issn.1000-6532.2022.04.021

    CrossRef Google Scholar

    XU Z Z,LIANG J L,LI H,et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4):119-122. doi: 10.3969/j.issn.1000-6532.2022.04.021

    CrossRef Google Scholar

    [4] 李波,张莉莉,洪秋阳,等. 废弃锂电池电极材料中有价金属的赋存状态[J]. 矿产综合利用, 2022(1):200-204.LI B,ZHANG L L,HONG Q Y,et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022(1):200-204. doi: 10.3969/j.issn.1000-6532.2022.01.029

    CrossRef Google Scholar

    LI B,ZHANG L L,HONG Q Y,et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022(1):200-204. doi: 10.3969/j.issn.1000-6532.2022.01.029

    CrossRef Google Scholar

    [5] 张笑天,徐璐,黄斌,等. 废旧磷酸铁锂电池回收利用研究与产业化现状[J]. 矿产综合利用, 2023(4):95-102.ZHANG X T,XU L,HUANG B,et al. Research and industrialization status of recycling of waste lithium iron phosphate batteries[J]. Multipurpose Utilization of Mineral Resources, 2023(4):95-102. doi: 10.3969/j.issn.1000-6532.2023.04.015

    CrossRef Google Scholar

    ZHANG X T,XU L,HUANG B,et al. Research and industrialization status of recycling of waste lithium iron phosphate batteries[J]. Multipurpose Utilization of Mineral Resources, 2023(4):95-102. doi: 10.3969/j.issn.1000-6532.2023.04.015

    CrossRef Google Scholar

    [6] 蒋炜,刘铁成,李伟,等. 中国新能源汽车市场的高速增长对锂资源的需求与挑战[J]. 矿产勘查, 2023, 14(10):1814-1824.JIANG W, LIU T C, LI W, et al. The rapid growth of China's new energy vehicle market demands and challenges lithium resources[J]. Mineral Exploration, 2023, 14(10):1814-1824.

    Google Scholar

    JIANG W, LIU T C, LI W, et al. The rapid growth of China's new energy vehicle market demands and challenges lithium resources[J]. Mineral Exploration, 2023, 14(10):1814-1824.

    Google Scholar

    [7] 陈诗媛. 锂资源战略地位与经济价值分析[J]. 中国有色金属, 2023(19):48-49.CHEN S Y. Analysis of the strategic position and economic value of lithium resources[J]. China Nonferrous Metals, 2023(19):48-49. doi: 10.3969/j.issn.1673-3894.2023.19.024

    CrossRef Google Scholar

    CHEN S Y. Analysis of the strategic position and economic value of lithium resources[J]. China Nonferrous Metals, 2023(19):48-49. doi: 10.3969/j.issn.1673-3894.2023.19.024

    CrossRef Google Scholar

    [8] 郑明贵,刘丽珍,于明等. 中国锂资源安全评估与预警 [J]. 地质通报, 2023, 1-11.ZHENG M G, LIU L Z, YU M, et al. China's lithium resource security assessment and early warning [J]. Geological Bulletin, 2023, 1-11.

    Google Scholar

    ZHENG M G, LIU L Z, YU M, et al. China's lithium resource security assessment and early warning [J]. Geological Bulletin, 2023, 1-11.

    Google Scholar

    [9] 梅亚军,李潇雨,李成秀,等. 四川可尔因选锂尾矿锂辉石再选实验研究[J]. 矿产综合利用, 2023(4):83-87.MEI Y J, LI X Y, LI C X, et al. Re-election of spodumene from lithium processing tailings in Keeryin, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023(4):83-87. doi: 10.3969/j.issn.1000-6532.2023.04.013

    CrossRef Google Scholar

    MEI Y J, LI X Y, LI C X, et al. Re-election of spodumene from lithium processing tailings in Keeryin, Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2023(4):83-87. doi: 10.3969/j.issn.1000-6532.2023.04.013

    CrossRef Google Scholar

    [10] 马艳红,孙志健,万丽,等. 常见外界离子影响锂辉石捕收剂性能的研究进展[J]. 矿产综合利用, 2023(5):1-6.MA Y H,SUN Z J,WAN L,et al. Review on the influence of common external ions on the properties of spodumene collectors[J]. Multipurpose Utilization of Mineral Resources, 2023(5):1-6. doi: 10.3969/j.issn.1000-6532.2023.05.001

    CrossRef Google Scholar

    MA Y H,SUN Z J,WAN L,et al. Review on the influence of common external ions on the properties of spodumene collectors[J]. Multipurpose Utilization of Mineral Resources, 2023(5):1-6. doi: 10.3969/j.issn.1000-6532.2023.05.001

    CrossRef Google Scholar

    [11] 孔会磊, 任广利, 李文渊, 等. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J]. 西北地质, 2023, 56(2):61-79.KONG H L, REN G L, LI W Y, et al. Geochronology, geochemistry and their geological significances of spodumene pegmatite veins in the dahongliutandong deposit, western Kunlun, China[J]. Northwestern Geology, 2023, 56(2):61-79.

    Google Scholar

    KONG H L, REN G L, LI W Y, et al. Geochronology, geochemistry and their geological significances of spodumene pegmatite veins in the dahongliutandong deposit, western Kunlun, China[J]. Northwestern Geology, 2023, 56(2):61-79.

    Google Scholar

    [12] 何飞,高利坤,饶兵,等. 从锂云母中提锂及综合利用的研究进展[J]. 矿产综合利用, 2022(5):82-89.HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022(5):82-89.

    Google Scholar

    HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022(5):82-89.

    Google Scholar

    [13] 李晓波,许浩,王航,等. 江西某钽铌尾矿中锂云母的浮选实验研究[J]. 矿产综合利用, 2023(5):36-40.LI X B,XU H,WANG H,et al. Flotation research on recovery of lithionite from Ta-Nb tailing in Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2023(5):36-40. doi: 10.3969/j.issn.1000-6532.2023.05.007

    CrossRef Google Scholar

    LI X B,XU H,WANG H,et al. Flotation research on recovery of lithionite from Ta-Nb tailing in Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2023(5):36-40. doi: 10.3969/j.issn.1000-6532.2023.05.007

    CrossRef Google Scholar

    [14] 康敏,赵笑益,曹欢,等. 锂云母矿硫酸盐焙烧-水浸提锂工艺及机理[J]. 矿产综合利用, 2023(6):146-153.KANG M, ZHAO X Y, CAO H, et al. Process and mechanism of sulfate roasting-water extraction of lithium from lithium mica ore[J]. Multipurpose Utilization of Mineral Resources, 2023(6):146-153. doi: 10.3969/j.issn.1000-6532.2023.06.022

    CrossRef Google Scholar

    KANG M, ZHAO X Y, CAO H, et al. Process and mechanism of sulfate roasting-water extraction of lithium from lithium mica ore[J]. Multipurpose Utilization of Mineral Resources, 2023(6):146-153. doi: 10.3969/j.issn.1000-6532.2023.06.022

    CrossRef Google Scholar

    [15] 苏慧,朱兆武,王丽娜,等. 矿石资源中锂的提取与回收研究进展[J]. 化工学报, 2019, 70(1):10-23.SU H, ZHU Z W, WANG L N, et al. Research progress on the extraction and recovery of lithium from ore resources[J]. Journal of Chemical Engineering, 2019, 70(1):10-23. doi: 10.11949/j.issn.0438-1157.20180465

    CrossRef Google Scholar

    SU H, ZHU Z W, WANG L N, et al. Research progress on the extraction and recovery of lithium from ore resources[J]. Journal of Chemical Engineering, 2019, 70(1):10-23. doi: 10.11949/j.issn.0438-1157.20180465

    CrossRef Google Scholar

    [16] CHOUBEY P K. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources[J]. Minerals Engineering, 2016, 89:119-137. doi: 10.1016/j.mineng.2016.01.010

    CrossRef Google Scholar

    [17] 罗仙平,杨志兆,张永兵,等. 宜春锂云母矿矿物学特征与选矿原则工艺的确定[J]. 稀有金属, 2023, 47(10):1398-1411.LUO X P, YANG Z Z, ZHANG Y B, et al. Determination of mineralogical characteristics and mineral processing principles of Yichun lithium mica mine[J]. Rare Metals, 2023, 47(10):1398-1411.

    Google Scholar

    LUO X P, YANG Z Z, ZHANG Y B, et al. Determination of mineralogical characteristics and mineral processing principles of Yichun lithium mica mine[J]. Rare Metals, 2023, 47(10):1398-1411.

    Google Scholar

    [18] 秦传明,黄绍文,王志强,等. 锂云母精矿提锂及尾矿综合利用研究进展[J]. 世界有色金属, 2023(14):151-156.QIN C M, HUANG S W, WANG Z Q, et al. Research progress on lithium extraction from lithium mica concentrate and comprehensive utilization of tailings[J]. World Nonferrous Metals, 2023(14):151-156.

    Google Scholar

    QIN C M, HUANG S W, WANG Z Q, et al. Research progress on lithium extraction from lithium mica concentrate and comprehensive utilization of tailings[J]. World Nonferrous Metals, 2023(14):151-156.

    Google Scholar

    [19] 陈芳,陈志友,苏小琼,等. 典型锂渣性质及在建筑材料利用的研究现状[J]. 矿产综合利用, 2023(5):20-26.CHEN F, CHEN Z Y, SU X Q, et al. Research status of the properties and application in building materials of typical lithium slag[J]. Multipurpose Utilization of Mineral Resources, 2023(5):20-26. doi: 10.3969/j.issn.1000-6532.2023.05.004

    CrossRef Google Scholar

    CHEN F, CHEN Z Y, SU X Q, et al. Research status of the properties and application in building materials of typical lithium slag[J]. Multipurpose Utilization of Mineral Resources, 2023(5):20-26. doi: 10.3969/j.issn.1000-6532.2023.05.004

    CrossRef Google Scholar

    [20] 曾庆玲. 利用锂云母提锂渣制备白色复合硅酸盐水泥研究[J]. 江西建材, 2023(9):8-11.ZENG Q L. Research on the preparation of white composite silicate cement using lithium mica extracted lithium slag[J]. Jiangxi Building Materials, 2023(9):8-11. doi: 10.3969/j.issn.1006-2890.2023.09.005

    CrossRef Google Scholar

    ZENG Q L. Research on the preparation of white composite silicate cement using lithium mica extracted lithium slag[J]. Jiangxi Building Materials, 2023(9):8-11. doi: 10.3969/j.issn.1006-2890.2023.09.005

    CrossRef Google Scholar

    [21] 张兰芳,陈剑雄,岳瑜,等. 锂渣高强混凝土的试验研究[J]. 新型建筑材料, 2005(3):29-31.ZHANG L F, CHEN J X, YUE Y, et al. Experimental study on lithium slag high-strength concrete[J]. New Building Materials, 2005(3):29-31. doi: 10.3969/j.issn.1001-702X.2005.03.010

    CrossRef Google Scholar

    ZHANG L F, CHEN J X, YUE Y, et al. Experimental study on lithium slag high-strength concrete[J]. New Building Materials, 2005(3):29-31. doi: 10.3969/j.issn.1001-702X.2005.03.010

    CrossRef Google Scholar

    [22] 王雪,王恒,王强. 中国锂渣资源化利用研究进展[J]. 材料导报, 2022, 36(24):63-73.WANG X, WANG H, WANG Q. Research progress on the utilization of lithium slag resources in China[J]. Materials Review, 2022, 36(24):63-73.

    Google Scholar

    WANG X, WANG H, WANG Q. Research progress on the utilization of lithium slag resources in China[J]. Materials Review, 2022, 36(24):63-73.

    Google Scholar

    [23] 肖波,张荣华,胡卓强. 锂渣基辅助胶凝材料的制备及其对混凝土性能的影响[J]. 混凝土与水泥制品, 2023(10):82-86.XIAO B, ZHANG R H, HU Z Q. Preparation of lithium slag based auxiliary cementitious materials and their impact on concrete properties[J]. Concrete and Cement Products, 2023(10):82-86.

    Google Scholar

    XIAO B, ZHANG R H, HU Z Q. Preparation of lithium slag based auxiliary cementitious materials and their impact on concrete properties[J]. Concrete and Cement Products, 2023(10):82-86.

    Google Scholar

    [24] 胡明华,苏翠平,梁炯丰,等. 锂渣混凝土力学性能试验研究[J]. 混凝土, 2023(5):113-114.HU M H, SU C P, LIANG J F, et al. Experimental study on the mechanical properties of lithium slag concrete[J]. Concrete, 2023(5):113-114. doi: 10.3969/j.issn.1002-3550.2023.05.022

    CrossRef Google Scholar

    HU M H, SU C P, LIANG J F, et al. Experimental study on the mechanical properties of lithium slag concrete[J]. Concrete, 2023(5):113-114. doi: 10.3969/j.issn.1002-3550.2023.05.022

    CrossRef Google Scholar

    [25] 刘根生,计焕,曹文斌, 等. 锂渣掺合料制备C60混凝土灌浆料试验研究[J]. 江西建材, 2022(9):34-37.LIU G S, JI H, CAO W B, et al. Experimental study on the preparation of C60 concrete grouting material using lithium slag admixture[J]. Jiangxi Building Materials, 2022(9):34-37.

    Google Scholar

    LIU G S, JI H, CAO W B, et al. Experimental study on the preparation of C60 concrete grouting material using lithium slag admixture[J]. Jiangxi Building Materials, 2022(9):34-37.

    Google Scholar

    [26] 邓治平,苏翠平,梁炯丰. 锂渣掺量对混凝土力学性能的影响研究[J]. 混凝土, 2023(11):93-95.DENG Z P, SU C P, LIANG J F. Study on the influence of lithium slag content on the mechanical properties of concrete[J]. Concrete, 2023(11):93-95. doi: 10.3969/j.issn.1002-3550.2023.11.020

    CrossRef Google Scholar

    DENG Z P, SU C P, LIANG J F. Study on the influence of lithium slag content on the mechanical properties of concrete[J]. Concrete, 2023(11):93-95. doi: 10.3969/j.issn.1002-3550.2023.11.020

    CrossRef Google Scholar

    [27] 范信铭. 锂渣超高性能混凝土的流动性能、微观和宏观力学性能研究[J]. 山东化工, 2023, 52(21):74-78+81.FAN X M. Research on the flow performance, micro and macro mechanical properties of lithium slag ultra-high performance concrete[J]. Shandong Chemical, 2023, 52(21):74-78+81. doi: 10.3969/j.issn.1008-021X.2023.21.022

    CrossRef Google Scholar

    FAN X M. Research on the flow performance, micro and macro mechanical properties of lithium slag ultra-high performance concrete[J]. Shandong Chemical, 2023, 52(21):74-78+81. doi: 10.3969/j.issn.1008-021X.2023.21.022

    CrossRef Google Scholar

    [28] 崔连久. 锂渣再生混凝土力学与抗冻性能试验研究[J]. 水利科学与寒区工程, 2023, 6(10):59-61.CUI L J. Experimental study on the mechanical and frost resistance properties of lithium slag recycled concrete[J]. Water Conservancy Science and Cold Region Engineering, 2023, 6(10):59-61. doi: 10.3969/j.issn.2096-5419.2023.10.015

    CrossRef Google Scholar

    CUI L J. Experimental study on the mechanical and frost resistance properties of lithium slag recycled concrete[J]. Water Conservancy Science and Cold Region Engineering, 2023, 6(10):59-61. doi: 10.3969/j.issn.2096-5419.2023.10.015

    CrossRef Google Scholar

    [29] 孙惠惠. 不同锂渣对泡沫混凝土力学性能的影响研究[J]. 江西建材, 2023(9):27-29.SUN H H. Research on the influence of different lithium slags on the mechanical properties of foam concrete[J]. Jiangxi Building Materials, 2023(9):27-29. doi: 10.3969/j.issn.1006-2890.2023.09.012

    CrossRef Google Scholar

    SUN H H. Research on the influence of different lithium slags on the mechanical properties of foam concrete[J]. Jiangxi Building Materials, 2023(9):27-29. doi: 10.3969/j.issn.1006-2890.2023.09.012

    CrossRef Google Scholar

    [30] 李宇航,温勇,韩国旗,等. 荷载与锂渣掺量对混凝土氯离子扩散性与气体渗透性的影响[J]. 科学技术与工程, 2023, 23(13):5693-5699.LI Y H, WEN Y, HAN G Q, et al. The influence of load and lithium slag content on chloride ion diffusion and gas permeability of concrete[J]. Science, Technology and Engineering, 2023, 23(13):5693-5699.

    Google Scholar

    LI Y H, WEN Y, HAN G Q, et al. The influence of load and lithium slag content on chloride ion diffusion and gas permeability of concrete[J]. Science, Technology and Engineering, 2023, 23(13):5693-5699.

    Google Scholar

    [31] 陈磊伟. 碱激发锂渣复合胶凝材料性能及水化机理研究 [D]. 南昌:华东交通大学,2023.CHEN L W. Research on the properties and hydration mechanism of alkali activated lithium slag composite cementitious materials [D]. Nanchang:East China Jiaotong University, 2023.

    Google Scholar

    CHEN L W. Research on the properties and hydration mechanism of alkali activated lithium slag composite cementitious materials [D]. Nanchang:East China Jiaotong University, 2023.

    Google Scholar

    [32] 孙红艳. 大掺量锂渣对混凝土抗压强度和干燥收缩的影响[J]. 市政技术, 2023, 41(1):31-35.SUN H Y. The effect of high content lithium slag on the compressive strength and drying shrinkage of concrete[J]. Municipal Technology, 2023, 41(1):31-35.

    Google Scholar

    SUN H Y. The effect of high content lithium slag on the compressive strength and drying shrinkage of concrete[J]. Municipal Technology, 2023, 41(1):31-35.

    Google Scholar

    [33] 何燕,刘数华,宁炅,等. 热活化锂渣-水泥胶砂力学强度及水化性能研究[J]. 非金属矿, 2020, 43(5):99-102.HE Y, LIU S H, NING J, et al. Study on the mechanical strength and hydration performance of thermally activated lithium slag cement sand[J]. Non-metallic Mines, 2020, 43(5):99-102. doi: 10.3969/j.issn.1000-8098.2020.05.029

    CrossRef Google Scholar

    HE Y, LIU S H, NING J, et al. Study on the mechanical strength and hydration performance of thermally activated lithium slag cement sand[J]. Non-metallic Mines, 2020, 43(5):99-102. doi: 10.3969/j.issn.1000-8098.2020.05.029

    CrossRef Google Scholar

    [34] 博群. 模拟酸雨环境下掺锂渣混凝土构件受力性能的数值分析[D]. 南昌:华东交通大学, 2018.BO Q. Numerical analysis of the mechanical performance of lithium slag concrete components under simulated acid rain environment [D]. Nanchang:East China Jiaotong University, 2018.

    Google Scholar

    BO Q. Numerical analysis of the mechanical performance of lithium slag concrete components under simulated acid rain environment [D]. Nanchang:East China Jiaotong University, 2018.

    Google Scholar

    [35] 翌舒. 拟酸雨腐蚀后锂渣钢筋混凝土受压构件力学性能研究[D]. 南昌:华东交通大学, 2016.YI S. Research on the mechanical properties of lithium slag reinforced concrete compression members after simulated acid rain corrosion [D]. Nanchang:East China Jiaotong University, 2016.

    Google Scholar

    YI S. Research on the mechanical properties of lithium slag reinforced concrete compression members after simulated acid rain corrosion [D]. Nanchang:East China Jiaotong University, 2016.

    Google Scholar

    [36] 聂行. 模拟酸雨环境下掺锂渣钢筋混凝土梁纯弯性能研究[D]. 南昌:华东交通大学, 2016.NIE X. Research on the pure bending performance of reinforced concrete beams with lithium slag under simulated acid rain environment [D]. Nanchang:East China Jiaotong University, 2016.

    Google Scholar

    NIE X. Research on the pure bending performance of reinforced concrete beams with lithium slag under simulated acid rain environment [D]. Nanchang:East China Jiaotong University, 2016.

    Google Scholar

    [37] 费文斌. 利用锂渣代替粘土烧制水泥熟料的试验[J]. 水泥, 1999(1):5-7.FEI W B. Experiment on using lithium slag instead of clay to burn cement clinker[J]. Cement, 1999(1):5-7.

    Google Scholar

    FEI W B. Experiment on using lithium slag instead of clay to burn cement clinker[J]. Cement, 1999(1):5-7.

    Google Scholar

    [38] 李春红,费文斌. 锂渣在水泥工业中的应用研究[J]. 水泥技术, 2001(5):57-58.LI C H, FEI W B. Research on the application of lithium slag in the cement industry[J]. Cement Technology, 2001(5):57-58. doi: 10.3969/j.issn.1001-6171.2001.05.017

    CrossRef Google Scholar

    LI C H, FEI W B. Research on the application of lithium slag in the cement industry[J]. Cement Technology, 2001(5):57-58. doi: 10.3969/j.issn.1001-6171.2001.05.017

    CrossRef Google Scholar

    [39] MA X B. Exploring the influence of sodium nitrite on the early-age freeze resistance of low-carbon sulphoaluminate cement (SAC)[J]. Journal of Building Engineering, 2024, 84:108489 doi: 10.1016/j.jobe.2024.108489

    CrossRef Google Scholar

    [40] ZHANG H R, JI T, LIU H, et al. Improving the sulfate resistance of recycled aggregate concrete (RAC) by using surface-treated aggregate with sulfoaluminate cement (SAC)[J]. Construction and Building Materials, 2021, 297:123535. doi: 10.1016/j.conbuildmat.2021.123535

    CrossRef Google Scholar

    [41] 胡彪,曾亮,姜建松. 锂渣免烧砖研究[J]. 江西建材, 2021(6):16-18.HU B, ZENG L, JIANG J S. Research on lithium slag unburned bricks[J]. Jiangxi Building Materials, 2021(6):16-18. doi: 10.3969/j.issn.1006-2890.2021.06.008

    CrossRef Google Scholar

    HU B, ZENG L, JIANG J S. Research on lithium slag unburned bricks[J]. Jiangxi Building Materials, 2021(6):16-18. doi: 10.3969/j.issn.1006-2890.2021.06.008

    CrossRef Google Scholar

    [42] 黎奉武. 利用锂云母渣及低品位铝矾土制备硫铝酸盐水泥的研究[D]. 南昌:南昌大学, 2012.LI F W. A study on the preparation of sulfoaluminate cement using lithium mica slag and low-grade bauxite [D]. Nanchang:Nanchang University, 2012

    Google Scholar

    LI F W. A study on the preparation of sulfoaluminate cement using lithium mica slag and low-grade bauxite [D]. Nanchang:Nanchang University, 2012

    Google Scholar

    [43] 曾传林. 利用氯化法锂云母提锂渣烧制轻质陶粒的研究[D]. 南昌:南昌大学, 2012.ZENG C L. A study on the production of lightweight ceramic particles from lithium mica slag extracted by chloride method [D]. Nanchang: Nanchang University, 2012.

    Google Scholar

    ZENG C L. A study on the production of lightweight ceramic particles from lithium mica slag extracted by chloride method [D]. Nanchang: Nanchang University, 2012.

    Google Scholar

    [44] 黄智勇. 基于锂云母浸出渣的陶瓷材料的制备及其性能研究[D]. 南昌:南昌大学, 2022.HUANG Z Y. Preparation and performance study of ceramic materials based on lithium mica leaching residue [D]. Nanchang: Nanchang University, 2022.

    Google Scholar

    HUANG Z Y. Preparation and performance study of ceramic materials based on lithium mica leaching residue [D]. Nanchang: Nanchang University, 2022.

    Google Scholar

    [45] H. XIONG, J. SUN, C. LIU, et al. Study on sintering behavior and properties of lithium slag-based foamed ceramics [J]. Journal of Non-Crystalline Solids 617 (2023).

    Google Scholar

    [46] 常星岚,陈瑶姬,顾雅洁,等. 粉煤灰-锂渣基发泡陶瓷的制备及性能研究[J]. 耐火材料, 2024(1):1-9.CHANG X L, CHEN Y J, GU Y J, et al. Preparation and performance study of fly ash lithium slag based foam ceramics[J]. Refractory materials, 2024(1):1-9.

    Google Scholar

    CHANG X L, CHEN Y J, GU Y J, et al. Preparation and performance study of fly ash lithium slag based foam ceramics[J]. Refractory materials, 2024(1):1-9.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(119) PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint