| Citation: | DUAN Yuefeng, ZHANG Xu, ZHENG Yan, ZHU Guangli, CAO Yijun. Effects and Mechanism of Four Low Molecular Organic Regulators on Dispersion Behavior of Fine Lepidolite Particles[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(5): 11-18. doi: 10.12476/kczhly.202311080585 |
The effects and mechanism of four organic low molecular regulators tannic acid, oxalic acid, tartaric acid and citric acid on dispersion behavior of fine lepidolite were studied. Turbidity and apparent particle size test results showed that the four regulators were all beneficial to the enhanced dispersion of micro-grained lepidolite particles, and the dispersion ability of citric acid and tannic acid on lepidolite was stronger than oxalic acid and tartaric acid. The Zeta potential test showed that at the action of the regulator, the surface electronegativity of lepidolite was stronger, which increased the electrostatic repulsion force between the particles of lepidolite, and was beneficial to the dispersion of mineral particles. The EDLVO theoretical calculation showed that the total interaction energy between lepidolite particles was positive, and the interparticle force was repulsive, which was consistent with the turbidity and apparent particle size test results.
| [1] | 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1): 1-9.WU X S, WANG D H, HUANG W B, et al. Global technical development trends of lithium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 1-9. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of lithium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 1-9. |
| [2] | 吴西顺, 孙艳, 王登红, 等. 国际锂矿开发技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120.WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019 WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019 |
| [3] | 李少平, 张俊敏, 迪里努尔·阿不都卡得, 等. 锂云母浮选捕收剂研究现状及展望[J]. 矿产保护与利用, 2020, 40(6):77-82.LI S P, ZHANG J M, DILINUER A, et al. Research status and prospect of lepidolite flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6):77-82. LI S P, ZHANG J M, DILINUER A, et al. Research status and prospect of lepidolite flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6):77-82. |
| [4] | HANNA V, SIMON D, MIKAEL H. Lithium availability and future production outlook[J]. Applied Energy, 2013, 110(110):252-266. |
| [5] | 孔会磊, 李文渊, 任广利, 等. 伟晶岩型锂矿床研究现状及其在中国西部的找矿前景[J]. 西北地质, 2023, 56(1):11-30.KONG H L, LI W Y, REN G L, et al. Research status of pegmatite-hosted Li deposits and their exploration prospect in West China[J]. Northwestern Geology, 2023, 56(1):11-30. KONG H L, LI W Y, REN G L, et al. Research status of pegmatite-hosted Li deposits and their exploration prospect in West China[J]. Northwestern Geology, 2023, 56(1):11-30. |
| [6] | 杨志兆, 杨思琦, 谢帆欣, 等. 江西宜丰低品位锂云母矿中锂云母和长石的综合回收研究[J]. 矿产保护与利用, 2022, 42(3):24-29+5.YANG Z Z, YANG S Q, XIE F X, et al. Study on comprehensive recovery of lithium mica and feldspar from low grade lepidolite ore in Yifeng of Jiangxi[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3):24-29+5. YANG Z Z, YANG S Q, XIE F X, et al. Study on comprehensive recovery of lithium mica and feldspar from low grade lepidolite ore in Yifeng of Jiangxi[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3):24-29+5. |
| [7] | 李成秀, 程仁举, 刘星. 我国锂辉石矿选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8.LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001 LI C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001 |
| [8] | 吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8.WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001 WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001 |
| [9] | 何飞, 高利坤, 饶兵, 等. 从锂云母中提锂及综合利用的研究进展[J]. 矿产综合利用, 2022(5):82-89.HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022(5):82-89. HE F, GAO L K, RAO B, et al. Research progress on lithium extraction and comprehensive utilization from lepidolite[J]. Multipurpose Utilization of Mineral Resources, 2022(5):82-89. |
| [10] | 李晓波, 许浩, 王航, 等. 江西某钽铌尾矿中锂云母的浮选实验研究[J]. 矿产综合利用, 2023, 44(5):36-40.LI X B, XU H, WANG H, et al. Flotation research on recovery of lithium from Ta-Nb tailing in Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5):36-40. doi: 10.3969/j.issn.1000-6532.2023.05.007 LI X B, XU H, WANG H, et al. Flotation research on recovery of lithium from Ta-Nb tailing in Jiangxi[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5):36-40. doi: 10.3969/j.issn.1000-6532.2023.05.007 |
| [11] | 徐璐, 杨耀辉, 颜世强, 等. 我国黏土型锂矿提锂研究现状及前景展望[J]. 矿产综合利用, 2023(4):12-18.XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002 XU L, YANG Y H, YAN S Q, et al. Lithium extraction from clay-type ore in China: status and prospects[J]. Multipurpose Utilization of Mineral Resources, 2023(4):12-18. doi: 10.3969/j.issn.1000-6532.2023.04.002 |
| [12] | 刘星, 李成秀, 程仁举, 等. 国外某锂多金属矿选矿实验研究[J]. 矿产综合利用, 2019(2):65-69.LIU X, LI X C, CHENG R J, et al. Test of the beneficiation of one lithium polymetallic ore overseas[J]. Multipurpose Utilization of Mineral Resources, 2019(2):65-69. doi: 10.3969/j.issn.1000-6532.2019.02.013 LIU X, LI X C, CHENG R J, et al. Test of the beneficiation of one lithium polymetallic ore overseas[J]. Multipurpose Utilization of Mineral Resources, 2019(2):65-69. doi: 10.3969/j.issn.1000-6532.2019.02.013 |
| [13] | 钱玉鹏, 朱兴月, 贺壹城, 等. 微细粒石英对萤石浮选特性的影响研究[J]. 金属矿山, 2017(1):104-107.QIAN Y P, ZHU X Y, HE Y C, et al. Influence of fine quartz on the flotation behavior of fluorite[J]. Metal Mine, 2017(1):104-107. doi: 10.3969/j.issn.1001-1250.2017.01.023 QIAN Y P, ZHU X Y, HE Y C, et al. Influence of fine quartz on the flotation behavior of fluorite[J]. Metal Mine, 2017(1):104-107. doi: 10.3969/j.issn.1001-1250.2017.01.023 |
| [14] | 时景阳, 罗娜, 汤家焰. 分散剂对微细粒白云石分散行为的影响及作用机理[J]. 矿产保护与利用, 2023, 43(1): 92-97.SHI J Y, LUO N, TANG J Y. Three dispersants enhance dispersion behavior and mechanism of fine dolomite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 9297. SHI J Y, LUO N, TANG J Y. Three dispersants enhance dispersion behavior and mechanism of fine dolomite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 9297. |
| [15] | 王飞, 张芹, 邓冰, 等. 3种调整剂对微细粒胶磷矿分散行为的影响[J]. 金属矿山, 2011(2):57-59.WANG F, ZHANG Q, DENG B, et al. Effectors of sodium hydroxide, sodium carbonate and sodium silicate on the dispersion behavior of ultrafine collophanite[J]. Metal Mine, 2011(2):57-59. WANG F, ZHANG Q, DENG B, et al. Effectors of sodium hydroxide, sodium carbonate and sodium silicate on the dispersion behavior of ultrafine collophanite[J]. Metal Mine, 2011(2):57-59. |
| [16] | 汤家焰, 张少杰, 张静茹,等. 碳酸钠对细粒萤石和石英的分散作用机理[J]. 非金属矿, 2020, 43(6):17-20+24.TANG J Y, ZHANG S J, ZHANG J R, et al. Dispersion mechanism of sodium carbonate on fine fluorite and quart[J]. Non-Metallic Mines, 2020, 43(6):17-20+24. doi: 10.3969/j.issn.1000-8098.2020.06.005 TANG J Y, ZHANG S J, ZHANG J R, et al. Dispersion mechanism of sodium carbonate on fine fluorite and quart[J]. Non-Metallic Mines, 2020, 43(6):17-20+24. doi: 10.3969/j.issn.1000-8098.2020.06.005 |
| [17] | 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3):48-55.CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008 CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008 |
| [18] | LU S, ERIC R J P. Interfacial separation of particles[M]. Elsevier, 2005: 694 |
| [19] | 李治杭, 韩跃新, 李艳军, 等. 蛇纹石及硼镁石浮选过程中团聚与分散机理[J]. 中国有色金属学报, 2017, 27(3):613-620.LI Z H, HAN Y X, LI Y J, et al. Mechanism of agglomeration and dispersion during flotation process of serpentine and ascharite[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(3):613-620. LI Z H, HAN Y X, LI Y J, et al. Mechanism of agglomeration and dispersion during flotation process of serpentine and ascharite[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(3):613-620. |
| [20] | ASTON D E, BERG J C. Long-range attraction between silanated silica materials studied by an electrolyte titration with atomic force microscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163(2-3):247-263. |
| [21] | YE J, WANG X, LI X, et al. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions[J]. Journal of Dispersion Science and Technology, 2018, 39(11):1655-1633. doi: 10.1080/01932691.2018.1461639 |
| [22] | 黄晨, 卢冀伟, 袁致涛, 等. 钠长石在蛇纹石与镍黄铁矿浮选分离中的作用[J]. 东北大学学报(自然科学版), 2023, 44(2):272-278.HUANG C, LU J W, YUAN Z T, et al. Effect of albite in the flotation separation of serpentine and pentlandite[J]. Journal of Northeastern University(Natural Science), 2023, 44(2):272-278. doi: 10.12068/j.issn.1005-3026.2023.02.016 HUANG C, LU J W, YUAN Z T, et al. Effect of albite in the flotation separation of serpentine and pentlandite[J]. Journal of Northeastern University(Natural Science), 2023, 44(2):272-278. doi: 10.12068/j.issn.1005-3026.2023.02.016 |
| [23] | 舒有顺, 曾海鹏, 黄红军. 六偏磷酸钠对钾长石和赤铁矿的分散作用机理[J]. 矿冶工程, 2023, 43(2):61-65.SHU Y S, ZENG H P, HUANG H J. Dispersion mechanism of sodium hexametaphosphate on potassium feldspar and hematite[J]. Mining and Metallurgical Engineering, 2023, 43(2):61-65. doi: 10.3969/j.issn.0253-6099.2023.02.014 SHU Y S, ZENG H P, HUANG H J. Dispersion mechanism of sodium hexametaphosphate on potassium feldspar and hematite[J]. Mining and Metallurgical Engineering, 2023, 43(2):61-65. doi: 10.3969/j.issn.0253-6099.2023.02.014 |
Particle size distribution of lithium mica single mineral samples
XRD of lithium mica single mineral samples
Effect of the dosage of four organic small molecule adjusters on the real-time online turbidity of microfine-grained lithium mica ores
Effects of four organic small molecule adjusters on real-time on-line turbidity of microfine-grained lithium mica ores at different pH values
Effect of the dosage of four organic small molecule adjusters on the apparent particle size of microfine-grained lithium mica ores
Effects of four organic small molecule conditioners on the apparent particle size of microfine-grained lithium mica ore at different pH values
Effect of organic small molecule adjusters on contact angle of microfine-grained lithium mica at pH=11
Effect of four organic small molecule adjusters on zeta potential of microfine-grained lithium mica
Trend of interaction energy of four adjusters with particle spacing at pH=11