2025 Vol. 58, No. 3
Article Contents

LIU Shuang, HU Xiangyun, ZHANG Baifan, ZHU Dan, LYU Mengzhi, SHU Yiming. 2025. Key Technologies and Research Advances in Gravity and Magnetic Exploration for Polymetallic Deposits. Northwestern Geology, 58(3): 1-21. doi: 10.12401/j.nwg.2025054
Citation: LIU Shuang, HU Xiangyun, ZHANG Baifan, ZHU Dan, LYU Mengzhi, SHU Yiming. 2025. Key Technologies and Research Advances in Gravity and Magnetic Exploration for Polymetallic Deposits. Northwestern Geology, 58(3): 1-21. doi: 10.12401/j.nwg.2025054

Key Technologies and Research Advances in Gravity and Magnetic Exploration for Polymetallic Deposits

  • The gravity and magnetic exploration play a significant role in polymetallic deposit exploration due to their high sensitivity responses to density and magnetic anomalies, along with advantages of low-cost and high-efficiency. This paper systematically reviews recent advancements and key technologies in gravity and magnetic exploration methods, focusing on trending research areas such as target information extraction, novel inversion methods, and artificial intelligence applications. By summarizing and analyzing typical domestic and international application cases, the study outlines the development trends and prospect future research directions of gravity and magnetic exploration methods. This study provides a technical reference for mineral exploration practices while offering technological support for deep exploration of strategic metal deposits and national resource security assurance.

  • 加载中
  • [1] 陈华根, 李嘉虓, 吴健生, 等. MT-重力模拟退火联合反演研究[J]. 地球物理学报, 2012, 552): 663670. doi: 10.6038/j.issn.0001-5733.2012.02.030

    CrossRef Google Scholar

    CHEN Huagen, LI Jiaxiao, WU Jiansheng, et al. Study on simulated-anncaling MT-gravity joint inversion[J]. Chinese Journal of Geophysics, 2012, 552): 663670. doi: 10.6038/j.issn.0001-5733.2012.02.030

    CrossRef Google Scholar

    [2] 程建华, 尹秉喜, 杨勇. 双石垒子航磁异常查证中的重磁电综合解释[J]. 西北地质, 2010, 432): 163168. doi: 10.3969/j.issn.1009-6248.2010.02.024

    CrossRef Google Scholar

    CHENG Jianhua, YIN Bingxi, YANG Yong. Comprehensive Interpretation of Gravity, Magnetism, and Electricity in Aeromagnetic Anomalies Confirmation at Shuangshileizi[J]. Northwestern Geology, 2010, 432): 163168. doi: 10.3969/j.issn.1009-6248.2010.02.024

    CrossRef Google Scholar

    [3] 冯杰, 刘天佑, 杨宇山, 等. 3D井地磁测联合反演技术及应用[J]. 地球物理学进展, 2010, 255): 16851691.

    Google Scholar

    FENG Jie, LIU Tianyou, YANG Yushan, et al. 3D Joint Inversion of Surface and Borehole Magnetic Data and its Application[J]. Progress in Geophys, 2010, 255): 16851691.

    Google Scholar

    [4] 高秀鹤, 于长春, 李行素, 等. 深源矿致异常提取方法对比及应用: 以山东齐河—禹城地区航磁数据为例[J]. 现代地质, 2024, 381): 2534.

    Google Scholar

    GAO Xiuhe, YU Changchun, LI Xingsu, et al. Comparison and Application of Extraction Methods for Aeromagnetic Anomaly Caused by Deep Magnetite: A Case Study of the Qihe-Yucheng Ore Area, Shandong[J]. Geoscience, 2024, 381): 2534.

    Google Scholar

    [5] 管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.

    Google Scholar

    [6] 纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 344): 14411452. doi: 10.6038/pg2019AA0098

    CrossRef Google Scholar

    JI Xiaolin, WANG Wanyin, QIU Zhiyun. Parameter choose experimental research to the minimum curvature technique potential field data separation method[J]. Progress in Geophysics, 2019, 344): 14411452. doi: 10.6038/pg2019AA0098

    CrossRef Google Scholar

    [7] 李昌隆. 基于深度学习的磁异常三维反演研究及应用[D]. 武汉: 中国地质大学, 2023.

    Google Scholar

    LI Changlong. Research and Application of 3D Inversion of Magnetic Anomalies Based on Deep Learning[D]. Wuhan: China University of Geosciences, 2023.

    Google Scholar

    [8] 刘乃征, 朱培民, 杜利明. 基于改进FCM聚类算法的三维重力反演[J]. 地质科技通报, 2023, 423): 338349.

    Google Scholar

    LIU Naizheng, ZHU Peimin, DU Liming. Three-dimensional gravity inversion based on improved FCM clustering algorithm[J]. Bulletin of Geological Science and Technology, 2023, 423): 338349.

    Google Scholar

    [9] 刘双, 张大莲, 刘天佑, 等. 井地磁测资料联合反演及应用[J]. 地质与勘探, 2008, 446): 6972.

    Google Scholar

    LIU Shuang, ZHANG Dalian, LIU Tianyou, et al. Cooperative Inversion and Application of Surface and Borehole Magnetic Data[J]. Geology and Prospecting, 2008, 446): 6972.

    Google Scholar

    [10] 刘双, 胡祥云, 郭宁, 等. 无人机航磁测量技术综述[J]. 武汉大学学报(信息科学版), 2023, 486): 823840.

    Google Scholar

    LIU Shuang, HU Xiangyun, GUO Ning, et al. Overview on UAV Aeromagnetic Survey Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 486): 823840.

    Google Scholar

    [11] 刘武. 三维重磁联合反演研究及应用——以山东济宁铁矿为例[D]. 武汉: 中国地质大学, 2024.

    Google Scholar

    LIU Wu. Research and Application of 3D Joint Gravity-Magnetic Inversion: A Case Study of the Jining Iron Deposit, Shandong[D]. Wuhan: China University of Geosciences, 2024.

    Google Scholar

    [12] 马国庆, 吴琪, 熊盛青, 等. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法[J]. 地球科学, 2021, 469): 33653375.

    Google Scholar

    MA Guoqing, WU Qi, XIONG Shengqing, et al. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning[J]. Earth Science, 2021, 469): 33653375.

    Google Scholar

    [13] 马国庆, 杜晓娟, 李丽丽. 改进的位场相关成像方法[J]. 地球科学(中国地质大学学报), 2013, 385): 11211127. doi: 10.3799/dqkx.2013.111

    CrossRef Google Scholar

    MA Guoqing, DU Xiaojuan, LI Lili. Improved Potential Field Correlation Imaging Method[J]. Earth Science–Journal of Chian University of Geoscience, 2013, 385): 11211127. doi: 10.3799/dqkx.2013.111

    CrossRef Google Scholar

    [14] 那旭. 基于Pearson相关性约束的航空电磁与航空磁法数据三维联合反演研究[D]. 长春: 吉林大学, 2022.

    Google Scholar

    NA Xu. 3D joint inversion of airborne electromagnetic and magnetic data based on Pearson correlation constraints[D]. Changchun: Jilin University, 2022.

    Google Scholar

    [15] 孙石达. 磁总场异常及其梯度联合反演方法研究[D]. 武汉: 中国地质大学, 2016.

    Google Scholar

    SUN Shida. Research on Joint Inversion Methods of Total Magnetic Anomaly and Its Gradient[D]. Wuhan: China University of Geosciences, 2016.

    Google Scholar

    [16] 王泰涵, 马国庆, 熊盛青, 等. 空-地-井重力异常正则化协同密度反演方法[J]. 地球物理学报, 2020, 637): 27372750. doi: 10.6038/cjg2020N0200

    CrossRef Google Scholar

    WANG Taihan, MA Guoqing, XIONG Shengqing, et al. Joint regularized density inversion method of airborne. surface and borehole gravity anomaly data[J]. Chinese Journal of Geophysics, 2020, 637): 27372750. doi: 10.6038/cjg2020N0200

    CrossRef Google Scholar

    [17] 王逸宸, 柳林涛, 许厚泽. 利用卷积自编码器重建含噪重力数据[J]. 武汉大学学报(信息科学版), 2022, 474): 543550.

    Google Scholar

    WANG Yichen, LIU Lintao, XU Houze. Noisy Gravity Data Reconstruction Using the Convolutional Autoencoder[J]. Geomatics and Information Science of Wuhan University, 2022, 474): 543550.

    Google Scholar

    [18] 魏泽坤, 冯旭亮, 马佳月, 等. 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义[J]. 西北地质, 2023, 565): 98110. doi: 10.12401/j.nwg.2023070

    CrossRef Google Scholar

    WEI Zekun, FENG Xuliang, MA Jiayue, et al. Characteristics of Gravity and Magnetic Field and their Significance of Helium Resources Exploration in the Southeastern Ordos Basin[J]. Northwestern Geology, 2023, 565): 98110. doi: 10.12401/j.nwg.2023070

    CrossRef Google Scholar

    [19] 文百红, 程方道. 用于划分磁异常的新方法—插值切割法[J]. 中南矿冶学院学报, 1990, 213): 229235.

    Google Scholar

    WEN Baihong, CHENG Fangdao. A New Interpolating Cut Method for Identifying Regional and Local Fields of Magnetic Anomaly[J]. Journal of Central South University(Science and Technology), 1990, 213): 229235.

    Google Scholar

    [20] 习宇飞, 刘天佑, 刘双. 井中磁测三分量联合反演[J]. 石油地球物理勘探, 2012, 472): 344352.

    Google Scholar

    XI Yufei, LIU Tianyou, LIU Shuang. A Joint Inversion Method for Borehole Magnetic Three-Component Data[J]. Oil Geophysical Prospecting, 2012, 472): 344352.

    Google Scholar

    [21] 相鹏, 谭绍泉, 陈学国, 等. 利用高斯径向基函数的拟神经网络重力反演方法[J]. 石油地球物理勘探, 2021, 566): 14091418.

    Google Scholar

    XIANG Peng, TANG Shaoquan, CHEN Xueguo, et al. Gravity inversion method based on quasi-neural network featuring Gaussian radial basis function[J]. Oil Geophysical Prospecting, 2021, 566): 14091418.

    Google Scholar

    [22] 熊盛青. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 2020, 265): 791818. doi: 10.12090/j.issn.1006-6616.2020.26.05.063

    CrossRef Google Scholar

    XIONG Shengqing. Innovation and application of airborne geophysical exploration technology[J]. Journal of Geomechanics, 2020, 265): 791818. doi: 10.12090/j.issn.1006-6616.2020.26.05.063

    CrossRef Google Scholar

    [23] 杨文采. 非线性地球物理反演方法: 回顾与展望[J]. 地球物理学进展, 2002, (2): 255261. doi: 10.3969/j.issn.1004-2903.2002.02.010

    CrossRef Google Scholar

    YANG Wencai. Non-linear Geophysical Inversion Methods: Review and Perspective[J]. Progress in Geophysics, 2002, (2): 255261. doi: 10.3969/j.issn.1004-2903.2002.02.010

    CrossRef Google Scholar

    [24] 殷长春, 孙思源, 高秀鹤, 等. 基于局部相关性约束的三维大地电磁数据和重力数据的联合反演[J]. 地球物理学报, 2018, 611): 358367. doi: 10.6038/cjg2018K0765

    CrossRef Google Scholar

    YIN Changchun, SUN Siyua, GAO Xiuhe, et al. 3D joint inversion of magnetotelluric and gravity data based on local correlation constraints[J]. Chinese Journal of Geophysics, 2018, 611): 358367. doi: 10.6038/cjg2018K0765

    CrossRef Google Scholar

    [25] 于鹏, 王家林, 吴健生, 等. 地球物理联合反演的研究现状和分析[J]. 勘探地球物理进展, 2006, (2): 8793.

    Google Scholar

    YU Peng, WANG Jialin, WU Jiansheng, et al. Review and Discussions on Geophysical Joint Inversion[J]. Progress in Exploration Geophysics, 2006, (2): 8793.

    Google Scholar

    [26] 于长春, 熊盛青, 郭志红, 等. 改进的非线性滤波方法在中高山地区的应用[J]. 物探与化探, 2003, 271): 3942.

    Google Scholar

    YU Changchun, XIONG Shengqing, GUO Zhihong, et al. The Improved Nonlinear Filtering Method and Its Application in Middle and High Mountain Areas[J]. Geophysical and Geochemical Exploration, 2003, 271): 3942.

    Google Scholar

    [27] 曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.

    Google Scholar

    ZENG Hualin. Gravity Field and Gravity Exploration[M]. Beijing: Geological Publishing House, 2005.

    Google Scholar

    [28] 张镕哲, 李桐林, 邓海, 等. 大地电磁、重力、磁法和地震初至波走时的交叉梯度二维联合反演研究[J]. 地球物理学报, 2019, 626): 21392149. doi: 10.6038/cjg2019L0713

    CrossRef Google Scholar

    ZHANG Rongzhe, LI Tonglin, DENG Hai, et al. 2D Joint Inversion Of MT, Gravity, Magnetic and Seismic First-Arrival Wave Traveltime with Cross-Gradient Constraints[J]. Chinese Journal of Geophysics, 2019, 626): 21392149. doi: 10.6038/cjg2019L0713

    CrossRef Google Scholar

    [29] 张志厚, 廖晓龙, 曹云勇, 等. 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 644): 14351452. doi: 10.6038/cjg2021O0151

    CrossRef Google Scholar

    ZHANG Zhihong, LIAO Xiaolong, CAO Yunyong, et al. Joint Gravity and Gravity Gradient Inversion Based on Deep Learning[J]. Chinese Journal of Geophysics, 2021, 644): 14351452. doi: 10.6038/cjg2021O0151

    CrossRef Google Scholar

    [30] 张紫薇, 李厚朴, 张恒磊, 等. 基于低秩稀疏分解的重磁异常分离方法及应用[J]. 物探与化探, 2025, 491): 118128.

    Google Scholar

    ZHANG Ziwei, LI Houpu, ZHANG Henglei, et al. A low-rank decomposition-based method for separating gravity and magnetic anomalies and its application[J]. Geophysical and Geochemical Exploration, 2025, 491): 118128.

    Google Scholar

    [31] Abbas M A, Fedi M, Florio G. Improving the local wavenumber method by automatic DEXP transformation[J]. Journal of Applied Geophysics, 2014b, 111: 250255. doi: 10.1016/j.jappgeo.2014.10.004

    CrossRef Google Scholar

    [32] Abbas M A, Fedi M. Automatic DEXP imaging of potential fields independent of the structural index[J]. Geophysical Journal International, 2014a, 1993): 16251632. doi: 10.1093/gji/ggu354

    CrossRef Google Scholar

    [33] Agocs W B. Least squares residual anomaly determination[J]. Geophysics, 1951, 164): 686696. doi: 10.1190/1.1437720

    CrossRef Google Scholar

    [34] Al-Garni M A. Inversion of residual gravity anomalies using neural network[J]. Arabian Journal of Geosciences, 2013, 65): 15091516. doi: 10.1007/s12517-011-0452-y

    CrossRef Google Scholar

    [35] Baniamerian J, Fedi M, Oskooi B. Research Note: Compact Depth from Extreme Points: a tool for fast potential field imaging[J]. Geophysical Prospecting, 2016, 645): 13861398. doi: 10.1111/1365-2478.12365

    CrossRef Google Scholar

    [36] Barbosa V C F, Silva J B C. Generalized compact gravity inversion[J]. Geophysics, 1994, 591): 5768. doi: 10.1190/1.1443534

    CrossRef Google Scholar

    [37] Bertete-Aguirre H, Cherkaev E, Oristaglio M. Non-smooth gravity problem with total variation penalization functional[J]. Geophysical Journal International, 2002, 1492): 499507. doi: 10.1046/j.1365-246X.2002.01664.x

    CrossRef Google Scholar

    [38] Bianco L, La Manna M, Russo V, et al. Magnetic and GPR data modelling via multiscale methods in San Pietro in Crapolla Abbey, Massa Lubrense (Naples)[J]. Archaeological Prospection, 2024, 312): 139147. doi: 10.1002/arp.1936

    CrossRef Google Scholar

    [39] Bosch M, Meza R, Jiménez R, et al. Joint gravity and magnetic inversion in 3D using Monte Carlo methods[J]. Geophysics, 2006, 714): G153G156. doi: 10.1190/1.2209952

    CrossRef Google Scholar

    [40] Bosch M. The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction[J]. Geophysics, 2004, 695): 12721282. doi: 10.1190/1.1801944

    CrossRef Google Scholar

    [41] Cai H, Kong R, He Z, et al. Joint inversion of potential field data with adaptive unstructured tetrahedral mesh[J]. Geophysics, 2024, 893): G45G63. doi: 10.1190/geo2023-0280.1

    CrossRef Google Scholar

    [42] Camacho A G, Montesinos F G, Vieira R. Gravity inversion by means of growing bodies[J]. Geophysics, 2000, 651): 95101. doi: 10.1190/1.1444729

    CrossRef Google Scholar

    [43] Candès E J, Li X, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM (JACM), 2011, 583): 137.

    Google Scholar

    [44] Cella F, Fedi M. High-resolution geophysical 3D imaging for archaeology by magnetic and EM data: The case of the iron age settlement of Torre Galli, Southern Italy[J]. Surveys in Geophysics, 2015, 366): 831850. doi: 10.1007/s10712-015-9341-3

    CrossRef Google Scholar

    [45] Cribb J. Application of the Generalized Linear Inverse to the Inversion of Static Potential Data[J]. Geophysics, 1976, 416): 13651369. doi: 10.1190/1.1440686

    CrossRef Google Scholar

    [46] Ehmann S, Virgil C, Hördt A, et al. Directional location of buried objects using three-component magnetic borehole data demonstrated for the case of a drill string[J]. Geophysical Journal International, 2016, 2053): 19161925. doi: 10.1093/gji/ggw139

    CrossRef Google Scholar

    [47] Farquharson C G, Ash M R, Miller H G. Geologically constrained gravity inversion for the Voisey's Bay ovoid deposit[J]. The Leading Edge, 2008, 271): 6469. doi: 10.1190/1.2831681

    CrossRef Google Scholar

    [48] Farquharson C G. Constructing piecewise-constant models in multidimensional minimum-structure inversions[J]. Geophysics, 2008a, 731): K1K9. doi: 10.1190/1.2816650

    CrossRef Google Scholar

    [49] Fedi M, Abbas M A. A fast interpretation of self-potential data using the depth from extreme points method[J]. Geophysics, 2013, 782): E107E116. doi: 10.1190/geo2012-0074.1

    CrossRef Google Scholar

    [50] Fedi M, Florio G, Rapolla A. A method to estimate the total magnetization direction from a distortion analysis of magnetic anomalies[J]. Geophysical Prospecting, 1994, 423): 261274. doi: 10.1111/j.1365-2478.1994.tb00209.x

    CrossRef Google Scholar

    [51] Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics, 2012, 771): G13G24. doi: 10.1190/geo2011-0078.1

    CrossRef Google Scholar

    [52] Fedi M, Primiceri R, Quarta T, et al. Joint application of continuous and discrete wavelet transform on gravity data to identify shallow and deep sources[J]. Geophysical Journal International, 2004, 1561): 721. doi: 10.1111/j.1365-246X.2004.02118.x

    CrossRef Google Scholar

    [53] Fedi M, Quarta T. Wavelet analysis for the regional-residual and local separation of potential field anomalies[J]. Geophysical Prospecting, 1998, 465): 507525. doi: 10.1046/j.1365-2478.1998.00105.x

    CrossRef Google Scholar

    [54] Fedi M. DEXP: A fast method to determine the depth and the structural index of potential fields sources[J]. Geophysics, 2007, 721): I1I11. doi: 10.1190/1.2399452

    CrossRef Google Scholar

    [55] Feng W, Zheng J. Triassic magmatism and tectonic setting of the eastern Tianshan, NW China: constraints from the Weiya intrusive complex[J]. Lithos, 2021, 394: 106171.

    Google Scholar

    [56] Gallardo L A, Meju M A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data[J]. Geophysical Research Letters, 2003, 30(13).

    Google Scholar

    [57] Gao B L, Tao D Y, Zhan Y L, et al. Application of aero-surface and borehole magnetic exploration to the prospecting of exhausted mines in the Daye iron mine[J]. Geology & Exploration, 2010, 463): 04830490.

    Google Scholar

    [58] Gao J, Sacchi M D, Chen X. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions[J]. Geophysics, 2013, 781): V21V30. doi: 10.1190/geo2012-0038.1

    CrossRef Google Scholar

    [59] Guillen A, Menichetti V. Gravity and magnetic inversion with minimization of a specific functional[J]. Geophysics, 1984, 498): 13541360. doi: 10.1190/1.1441761

    CrossRef Google Scholar

    [60] Guo L, Meng X, Chen Z, et al. Preferential filtering for gravity anomaly separation[J]. Computers & Geosciences, 2013, 51: 247254.

    Google Scholar

    [61] Guo W, Dentith M C, Bird R T, et al. Systematic error analysis of demagnetization and implications for magnetic interpretation[J]. Geophysics, 2001, 662): 562570. doi: 10.1190/1.1444947

    CrossRef Google Scholar

    [62] Han M, Wan L, Zhdanov M S. Joint iterative migration of surface and borehole gravity gradiometry data[C]. SEG International Exposition and Annual Meeting, SEG, 2018: SEG-2018-2996358.

    Google Scholar

    [63] Hornik K. Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 42): 251257.

    Google Scholar

    [64] Huang R, Liu S, Qi R, et al. Deep learning 3D sparse inversion of gravity data[J]. Journal of Geophysical Research: Solid Earth, 2021, 12611): 118.

    Google Scholar

    [65] Innocent Oboué Y A S, Chen W, Wang H, et al. Robust damped rank-reduction method for simultaneous denoising and reconstruction of 5D seismic data[J]. Geophysics, 2021, 861): V71V89. doi: 10.1190/geo2020-0032.1

    CrossRef Google Scholar

    [66] Iuliano T, Mauriello P, Patella D. Looking inside Mount Vesuvius by potential fields integrated probability tomographies[J]. Journal of Volcanology and Geothermal Research, 2002, 1133-4): 363378. doi: 10.1016/S0377-0273(01)00271-2

    CrossRef Google Scholar

    [67] Jordi C, Doetsch J, Günther T, et al. Structural joint inversion on irregular meshes[J]. Geophysical Journal International, 2020, 2203): 19952008. doi: 10.1093/gji/ggz550

    CrossRef Google Scholar

    [68] Krahenbuhl R A, Li Y. Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect[J]. Geophysics, 2017, 826): J83J97. doi: 10.1190/geo2016-0676.1

    CrossRef Google Scholar

    [69] Last B J, Kubik K. Compact gravity inversion[J]. Geophysics, 1983, 486): 713721. doi: 10.1190/1.1441501

    CrossRef Google Scholar

    [70] Lelièvre P G, Oldenburg D W. A 3D total magnetization inversion applicable when significant, complicated remanence is present[J]. Geophysics, 2009a, 743): L21L30. doi: 10.1190/1.3103249

    CrossRef Google Scholar

    [71] Lelièvre P G, Oldenburg D W. A comprehensive study of including structural orientation information in geophysical inversions[J]. Geophysical Journal International, 2009b, 1782): 623637. doi: 10.1111/j.1365-246X.2009.04188.x

    CrossRef Google Scholar

    [72] Lelièvre P G, Oldenburg D W. Magnetic forward modelling and inversion for high susceptibility[J]. Geophysical Journal International, 2006, 1661): 7690. doi: 10.1111/j.1365-246X.2006.02964.x

    CrossRef Google Scholar

    [73] Lelièvre P G, Farquharson C G, Hurich C A. Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration[J]. Geophysics, 2012, 771): K1K15.

    Google Scholar

    [74] Li G, Liu S, Shi K, et al. Transformations of borehole magnetic data in the frequency domain and estimation of the total magnetization direction: A case study from the Mengku iron-ore deposit, Northwest China[J]. Geophysics, 2023, 881): B1B19. doi: 10.1190/geo2022-0216.1

    CrossRef Google Scholar

    [75] Li W, Qian J, Li Y. Joint inversion of surface and borehole magnetic data: A level-set approach[J]. Geophysics, 2020, 851): J15J32. doi: 10.1190/geo2019-0139.1

    CrossRef Google Scholar

    [76] Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998, 631): 109119. doi: 10.1190/1.1444302

    CrossRef Google Scholar

    [77] Li Y, Oldenburg D W. 3-D inversion of magnetic data[J]. Geophysics, 1996, 612): 394408. doi: 10.1190/1.1443968

    CrossRef Google Scholar

    [78] Li Y, Oldenburg D W. Incorporating geological dip information into geophysical inversions[J]. Geophysics, 2000a, 651): 148157. doi: 10.1190/1.1444705

    CrossRef Google Scholar

    [79] Li Y, Oldenburg D W. Joint inversion of surface and three-component borehole magnetic data[J]. Geophysics, 2000b, 652): 540552. doi: 10.1190/1.1444749

    CrossRef Google Scholar

    [80] Li Y, Oldenburg D W. Separation of regional and residual magnetic field data[J]. Geophysics, 1998a, 632): 431439. doi: 10.1190/1.1444343

    CrossRef Google Scholar

    [81] Li Y, Shearer S E, Haney M M, et al. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization[J]. Geophysics, 2010, 751): L1L11. doi: 10.1190/1.3294766

    CrossRef Google Scholar

    [82] Li Y, Sun J, Li S L, et al. A paradigm shift in magnetic data interpretation: Increased value through magnetization inversions[J]. The Leading Edge, 2021, 402): 8998. doi: 10.1190/tle40020089.1

    CrossRef Google Scholar

    [83] Lin W, Zhdanov M S. Joint multinary inversion of gravity and magnetic data using Gramian constraints[J]. Geophysical Journal International, 2018, 2153): 15401557.

    Google Scholar

    [84] Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv preprint arXiv: 1009.5055, 2010.

    Google Scholar

    [85] Lin Z, Zhang H. Low-rank models in visual analysis: Theories, algorithms, and applications[M]. New York, NY, USA: Academic Press, 2017.

    Google Scholar

    [86] Liu S, Baniamerian J, Fedi M. Imaging Methods Versus Inverse Methods: An Option or An Alternative?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 585): 34843494. doi: 10.1109/TGRS.2019.2957412

    CrossRef Google Scholar

    [87] Liu S, Fedi M, Hu X, et al. Extracting induced and remanent magnetizations from magnetic data modeling[J]. Journal of Geophysical Research: Solid Earth, 2018a, 12311): 92909309. doi: 10.1029/2017JB015364

    CrossRef Google Scholar

    [88] Liu S, Fedi M, Hu X, et al. Three-dimensional inversion of magnetic data in the simultaneous presence of significant remanent magnetization and self-demagnetization: Example from Daye iron-ore deposit, Hubei province, China[J]. Geophysical Journal International, 2018b, 2151): 614634. doi: 10.1093/gji/ggy299

    CrossRef Google Scholar

    [89] Liu S, Hu X, Fedi M, et al. Petrophysical and geophysical constrained inversion of gravity data based on starting and referenced models[J]. Journal of Geophysics and Engineering, 2025, 221): 3647. doi: 10.1093/jge/gxae111

    CrossRef Google Scholar

    [90] Liu S, Hu X, Liu T, et al. Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints[J]. Journal of Applied Geophysics, 2015a, 112: 115128. doi: 10.1016/j.jappgeo.2014.11.010

    CrossRef Google Scholar

    [91] Liu S, Hu X, Liu T, et al. Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly[J]. Geophysics, 2013, 786): D429D444. doi: 10.1190/geo2012-0454.1

    CrossRef Google Scholar

    [92] Liu S, Hu X, Liu T. A stochastic inversion method for potential field data: ant colony optimization[J]. Pure and Applied Geophysics, 2014, 171: 15311555. doi: 10.1007/s00024-013-0712-8

    CrossRef Google Scholar

    [93] Liu S, Hu X, Xi Y, et al. 2D sequential inversion of total magnitude and total magnetic anomaly data affected by remanent magnetization[J]. Geophysics, 2015b, 803): K1K12. doi: 10.1190/geo2014-0019.1

    CrossRef Google Scholar

    [94] Liu S, Hu X, Zhu R. Joint inversion of surface and borehole magnetic data to prospect concealed orebodies: A case study from the Mengku iron deposit, northwestern China[J]. Journal of Applied Geophysics, 2018c, 154: 150158. doi: 10.1016/j.jappgeo.2018.05.004

    CrossRef Google Scholar

    [95] Liu S, Liang M, Hu X. Particle swarm optimization inversion of magnetic data: Field examples from iron ore deposits in China[J]. Geophysics, 2018d, 834): 4359.

    Google Scholar

    [96] Lv M, Zhang Y, Liu S. Fast forward approximation and multitask inversion of gravity anomaly based on UNet3+[J]. Geophysical Journal International, 2023, 2342): 972984. doi: 10.1093/gji/ggad106

    CrossRef Google Scholar

    [97] Maag E, Li Y. Discrete-valued gravity inversion using the guided fuzzy c-means clustering technique[J]. Geophysics, 2018, 834): G59G77. doi: 10.1190/geo2017-0594.1

    CrossRef Google Scholar

    [98] Mandal A, Niyogi S. Filter assisted bi-dimensional empirical mode decomposition: A hybrid approach for regional-residual separation of gravity anomaly[J]. Journal of Applied Geophysics, 2018, 159: 218227. doi: 10.1016/j.jappgeo.2018.09.003

    CrossRef Google Scholar

    [99] Medeiros W E, Silva J B C. Geophysical inversion using approximate equality constraints[J]. Geophysics, 1996, 616): 16781688. doi: 10.1190/1.1444086

    CrossRef Google Scholar

    [100] Mickus K L, Aiken C L V, Kennedy W D. Regional-residual gravity anomaly separation using the minimum-curvature technique[J]. Geophysics, 1991, 562): 279283. doi: 10.1190/1.1443041

    CrossRef Google Scholar

    [101] Moghadas D, Behroozmand A A, Christiansen A V. Soil electrical conductivity imaging using a neural network-based forward solver: applied to large-scale Bayesian electromagnetic inversion[J]. Journal of Applied Geophysics, 2020, 176: 104012. doi: 10.1016/j.jappgeo.2020.104012

    CrossRef Google Scholar

    [102] Molodtsov D M, Troyan V N, Roslov Y V, et al. Joint inversion of seismic traveltimes and magnetotelluric data with a directed structural constraint[J]. Geophysical Prospecting, 2013, 616): 12181228. doi: 10.1111/1365-2478.12060

    CrossRef Google Scholar

    [103] Montesinos F G, Arnoso J, Vieira R. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands)[J]. International Journal of Earth Sciences, 2005, 94: 301316. doi: 10.1007/s00531-005-0471-6

    CrossRef Google Scholar

    [104] Moorkamp M, Heincke B, Jegen M, et al. A framework for 3-D joint inversion of MT, gravity and seismic refraction data[J]. Geophysical Journal International, 2011, 1841): 477493. doi: 10.1111/j.1365-246X.2010.04856.x

    CrossRef Google Scholar

    [105] Moreau F, Gibert D, Holschneider M, et al. Wavelet analysis of potential fields[J]. Inverse Problems, 1997, 131): 165178. doi: 10.1088/0266-5611/13/1/013

    CrossRef Google Scholar

    [106] Mosher C R W, Farquharson C G. Minimum-structure borehole gravity inversion for mineral exploration: A synthetic modeling study[J]. Geophysics, 2013, 782): G25G39. doi: 10.1190/geo2012-0373.1

    CrossRef Google Scholar

    [107] Nind C, Seigel H O, Chouteau M, et al. Development of a borehole gravimeter for mining applications[J]. First Break, 2007, 25(7).

    Google Scholar

    [108] Oropeza V, Sacchi M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 763): V25V32. doi: 10.1190/1.3552706

    CrossRef Google Scholar

    [109] Paoletti V, Hintersberger E, Schattauer I, et al. Geophysical Study of the Diendorf-Boskovice Fault System (Austria)[J]. Remote Sensing, 2022, 14(8).

    Google Scholar

    [110] Patella D. Introduction to ground surface self-potential tomography[J]. Geophysical Prospecting, 1997, 454): 653681. doi: 10.1046/j.1365-2478.1997.430277.x

    CrossRef Google Scholar

    [111] Pawlowski R S, Hansen R O. Gravity anomaly separation by Wiener filtering[J]. Geophysics, 1990, 555): 539548. doi: 10.1190/1.1442865

    CrossRef Google Scholar

    [112] Pedersen L B. Relations Between Potential Fields and Some Equivalent Sources[J]. Geophysics, 1991, 567): 961971. doi: 10.1190/1.1443129

    CrossRef Google Scholar

    [113] Pilkington M, Beiki M. Mitigating remanent magnetization effects in magnetic data using the normalized source strength[J]. Geophysics, 2013, 783): J25J32. doi: 10.1190/geo2012-0225.1

    CrossRef Google Scholar

    [114] Pilkington M, Cowan D R. Model-based separation filtering of magnetic data[J]. Geophysics, 2006, 712): L17L23. doi: 10.1190/1.2187772

    CrossRef Google Scholar

    [115] Pilkington M. 3D magnetic data-space inversion with sparseness constraints[J]. Geophysics, 2009, 741): L7L15. doi: 10.1190/1.3026538

    CrossRef Google Scholar

    [116] Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999, 643): 874887. doi: 10.1190/1.1444596

    CrossRef Google Scholar

    [117] Rim H, Li Y. Advantages of borehole vector gravity in density imaging[J]. Geophysics, 2015, 801): G1G13. doi: 10.1190/geo2013-0394.1

    CrossRef Google Scholar

    [118] Rothman D H. Nonlinear inversion, statistical mechanics, and residual statics estimation[J]. Geophysics, 1985, 5012): 27842796. doi: 10.1190/1.1441899

    CrossRef Google Scholar

    [119] Rybakov M, Goldshmidt V, Rotstein Y, et al. Petrophysical constraints on gravity/magnetic interpretation in Israel[J]. The Leading Edge, 1999, 182): 269272. doi: 10.1190/1.1438274

    CrossRef Google Scholar

    [120] Seigel H O, Nind C J M, Milanovic A, et al. Results from the initial field trials of a borehole gravity meter for mining and geotechnical applications[C]. 11th SAGA Biennial Technical Meeting and Exhibition, European Association of Geoscientists & Engineers, 2009: cp-241-00021.

    Google Scholar

    [121] Shamsipour P, Marcotte D, Chouteau M, et al. 3D stochastic inversion of gravity data using cokriging and cosimulation[J]. Geophysics, 2010, 751): I1I10. doi: 10.1190/1.3295745

    CrossRef Google Scholar

    [122] Shamsipour P, Marcotte D, Chouteau M. 3D stochastic joint inversion of gravity and magnetic data[J]. Journal of Applied Geophysics, 2012, 79: 2737. doi: 10.1016/j.jappgeo.2011.12.012

    CrossRef Google Scholar

    [123] Shamsipour P, Schetselaar E, Bellefleur G, et al. 3D stochastic inversion of potential field data using structural geologic constraints[J]. Journal of Applied Geophysics, 2014, 111: 173182. doi: 10.1016/j.jappgeo.2014.09.013

    CrossRef Google Scholar

    [124] Shearer S, Li Y. 3D inversion of magnetic total gradient data in the presence of remanent magnetization[C]. SEG International Exposition and Annual Meeting, SEG, 2004: SEG-2004-0774.

    Google Scholar

    [125] Shi B, Yu P, Zhao C, et al. Linear correlation constrained joint inversion using squared cosine similarity of regional residual model vectors[J]. Geophysical Journal International, 2018, 2152): 12911307. doi: 10.1093/gji/ggy336

    CrossRef Google Scholar

    [126] Shi K, Liu S, Jian X, et al. 3D Joint Inversion of Borehole, Surface, and Airborne Magnetic Anomaly[J]. Pure and Applied Geophysics, 2025: 1-23.

    Google Scholar

    [127] Shu Y, Liu S, Wang T, et al. Gravity and magnetic joint imaging based on Gramian constraints[J]. Geophysics, 2024, 895): G75G92. doi: 10.1190/geo2023-0732.1

    CrossRef Google Scholar

    [128] Silva J B C, Barbosa V C F. Generalized radial inversion of 2D potential field data[J]. Geophysics, 2004, 696): 14051413. doi: 10.1190/1.1836815

    CrossRef Google Scholar

    [129] Simpson Jr S M. Least squares polynomial fitting to gravitational data and density plotting by digital computers[J]. Geophysics, 1954, 192): 255269. doi: 10.1190/1.1437990

    CrossRef Google Scholar

    [130] Spector A, Grant F S. Statistical models for interpreting aeromagnetic data[J]. Geophysics, 1970, 352): 293302. doi: 10.1190/1.1440092

    CrossRef Google Scholar

    [131] Sun J, Li Y. Geophysical inversion using petrophysical constraints with application to lithology differentiation[C]. 12th International Congress of the Brazilian Geophysical Society, European Association of Geoscientists & Engineers, 2011: cp-264-00114.

    Google Scholar

    [132] Sun J, Li Y. Inversion of surface and borehole gravity with thresholding and density constraints[M]. SEG Technical Program Expanded Abstracts 2010, Society of Exploration Geophysicists, 2010: 1798−1803.

    Google Scholar

    [133] Sun J, Li Y. Joint inversion of multiple geophysical data using guided fuzzy c-means clustering[J]. Geophysics, 2016, 813): ID37ID57. doi: 10.1190/geo2015-0457.1

    CrossRef Google Scholar

    [134] Sun J, Li Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering[J]. Geophysics, 2015, 804): ID1ID18. doi: 10.1190/geo2014-0049.1

    CrossRef Google Scholar

    [135] Tikhonov A N, Arsenin V. Solutions of ill-posed problems[M]. Winston, New York: V. H. Winston & Sons, 1977.

    Google Scholar

    [136] Vatankhah S, Liu S, Renaut R A, et al. An Efficient Alternating Algorithm for the Lp-Norm Cross-Gradient Joint Inversion of Gravity and Magnetic Data Using the 2-D Fast Fourier Transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 1−16.

    Google Scholar

    [137] Vatankhah S, Renaut R A, Huang X, et al. Large-scale focusing joint inversion of gravity and magnetic data with Gramian constraint[J]. Geophysical Journal International, 2022, 2303): 15851611. doi: 10.1093/gji/ggac138

    CrossRef Google Scholar

    [138] Virgil C, Ehmann S, Hördt A, et al. Measuring and interpretation of three-component borehole magnetic data[C]//EGU General Assembly Conference Abstracts. 2012: 10105.

    Google Scholar

    [139] Wan L, Zhdanov M S. Iterative migration of gravity and gravity gradiometry data[C]. SEG Technical Program Expanded Abstracts 2013, 2013: 1211−1215.

    Google Scholar

    [140] Xiao F. Gravity correlation imaging with a moving data window[J]. Journal of Applied Geophysics, 2015, 112: 2932. doi: 10.1016/j.jappgeo.2014.11.004

    CrossRef Google Scholar

    [141] Yang Q, Hu X, Liu S, et al. 3-D gravity inversion based on deep convolution neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 15.

    Google Scholar

    [142] Zeng H, Xu D, Tan H. A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China[J]. Geophysics, 2007, 724): I45I50. doi: 10.1190/1.2719497

    CrossRef Google Scholar

    [143] Zhang C, Lü Q, Yan J, et al. Numerical solutions of the mean-value theorem: New methods for downward continuation of potential fields[J]. Geophysical Research Letters, 2018, 458): 34613470. doi: 10.1002/2018GL076995

    CrossRef Google Scholar

    [144] Zhang H, Qian J, Zhang B, et al. Low-rank matrix recovery via modified Schatten-p norm minimization with convergence guarantees[J]. IEEE Transactions on Image Processing, 2019, 29: 31323142.

    Google Scholar

    [145] Zhang L, Hao T, Jiang W. Separation of potential field data using 3-D principal component analysis and textural analysis[J]. Geophysical Journal International, 2009, 1793): 13971413. doi: 10.1111/j.1365-246X.2009.04357.x

    CrossRef Google Scholar

    [146] Zhang L, Zhang G, Liu Y, et al. Deep learning for 3-D inversion of gravity data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021c, 60: 118.

    Google Scholar

    [147] Zhang R, Li T, Liu C. Joint inversion of multiphysical parameters based on a combination of cosine dot-gradient and joint total variation constraints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021a, 60: 110.

    Google Scholar

    [148] Zhang Y, Xu Y, Mooney W D, et al. Local separation of potential field anomalies using equivalent sources: application for the 3-D structure of mantle uplift beneath Von Kármán crater, the Moon[J]. Geophysical Journal International, 2021b, 2273): 16121623. doi: 10.1093/gji/ggab307

    CrossRef Google Scholar

    [149] Zhdanov M S, Gribenko A, Wilson G. Generalized joint inversion of multimodal geophysical data using Gramian constraints[J]. Geophysical Research Letters, 2012, 39(9).

    Google Scholar

    [150] Zhdanov M S, Liu X J, Wilson G A, et al. Potential field migration for rapid imaging of gravity gradiometry data[J]. Geophysical Prospecting, 2011, 596): 10521071. doi: 10.1111/j.1365-2478.2011.01005.x

    CrossRef Google Scholar

    [151] Zhdanov M S. Geophysical inverse theory and regularization problems[M]. Amsterdam, Boston: Elsevier Science, 2002.

    Google Scholar

    [152] Zhu D, Hu X, Liu S, et al. Can Targeted Source Information Be Extracted From Superimposed Magnetic Anomalies?[J]. Journal of Geophysical Research: Solid Earth, 2022, 1275): e2022JB024279. doi: 10.1029/2022JB024279

    CrossRef Google Scholar

    [153] Zhu D, Li H, Liu T, et al. Low-rank matrix decomposition method for potential field data separation[J]. Geophysics, 2020a, 851): G1G16. doi: 10.1190/geo2019-0016.1

    CrossRef Google Scholar

    [154] Zhu D, Renaut R, Li H, et al. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory[J]. Inverse Problems and Imaging, 2020b, 151): 125.

    Google Scholar

    [155] Zuo B, Hu X, Leão-Santos M, et al. Downward continuation and transformation of total-field magnetic anomalies into magnetic gradient tensors between arbitrary surfaces using multilayer equivalent sources[J]. Geophysical Research Letters, 2020, 4716): e2020GL088678. doi: 10.1029/2020GL088678

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(196) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint