[1]
|
陈华根, 李嘉虓, 吴健生, 等. MT-重力模拟退火联合反演研究[J]. 地球物理学报, 2012, 55(2): 663−670. doi: 10.6038/j.issn.0001-5733.2012.02.030
CrossRef Google Scholar
CHEN Huagen, LI Jiaxiao, WU Jiansheng, et al. Study on simulated-anncaling MT-gravity joint inversion[J]. Chinese Journal of Geophysics, 2012, 55(2): 663−670. doi: 10.6038/j.issn.0001-5733.2012.02.030
CrossRef Google Scholar
|
[2]
|
程建华, 尹秉喜, 杨勇. 双石垒子航磁异常查证中的重磁电综合解释[J]. 西北地质, 2010, 43(2): 163−168. doi: 10.3969/j.issn.1009-6248.2010.02.024
CrossRef Google Scholar
CHENG Jianhua, YIN Bingxi, YANG Yong. Comprehensive Interpretation of Gravity, Magnetism, and Electricity in Aeromagnetic Anomalies Confirmation at Shuangshileizi[J]. Northwestern Geology, 2010, 43(2): 163−168. doi: 10.3969/j.issn.1009-6248.2010.02.024
CrossRef Google Scholar
|
[3]
|
冯杰, 刘天佑, 杨宇山, 等. 3D井地磁测联合反演技术及应用[J]. 地球物理学进展, 2010, 25(5): 1685−1691.
Google Scholar
FENG Jie, LIU Tianyou, YANG Yushan, et al. 3D Joint Inversion of Surface and Borehole Magnetic Data and its Application[J]. Progress in Geophys, 2010, 25(5): 1685−1691.
Google Scholar
|
[4]
|
高秀鹤, 于长春, 李行素, 等. 深源矿致异常提取方法对比及应用: 以山东齐河—禹城地区航磁数据为例[J]. 现代地质, 2024, 38(1): 25−34.
Google Scholar
GAO Xiuhe, YU Changchun, LI Xingsu, et al. Comparison and Application of Extraction Methods for Aeromagnetic Anomaly Caused by Deep Magnetite: A Case Study of the Qihe-Yucheng Ore Area, Shandong[J]. Geoscience, 2024, 38(1): 25−34.
Google Scholar
|
[5]
|
管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
Google Scholar
|
[6]
|
纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 34(4): 1441−1452. doi: 10.6038/pg2019AA0098
CrossRef Google Scholar
JI Xiaolin, WANG Wanyin, QIU Zhiyun. Parameter choose experimental research to the minimum curvature technique potential field data separation method[J]. Progress in Geophysics, 2019, 34(4): 1441−1452. doi: 10.6038/pg2019AA0098
CrossRef Google Scholar
|
[7]
|
李昌隆. 基于深度学习的磁异常三维反演研究及应用[D]. 武汉: 中国地质大学, 2023.
Google Scholar
LI Changlong. Research and Application of 3D Inversion of Magnetic Anomalies Based on Deep Learning[D]. Wuhan: China University of Geosciences, 2023.
Google Scholar
|
[8]
|
刘乃征, 朱培民, 杜利明. 基于改进FCM聚类算法的三维重力反演[J]. 地质科技通报, 2023, 42(3): 338−349.
Google Scholar
LIU Naizheng, ZHU Peimin, DU Liming. Three-dimensional gravity inversion based on improved FCM clustering algorithm[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 338−349.
Google Scholar
|
[9]
|
刘双, 张大莲, 刘天佑, 等. 井地磁测资料联合反演及应用[J]. 地质与勘探, 2008, 44(6): 69−72.
Google Scholar
LIU Shuang, ZHANG Dalian, LIU Tianyou, et al. Cooperative Inversion and Application of Surface and Borehole Magnetic Data[J]. Geology and Prospecting, 2008, 44(6): 69−72.
Google Scholar
|
[10]
|
刘双, 胡祥云, 郭宁, 等. 无人机航磁测量技术综述[J]. 武汉大学学报(信息科学版), 2023, 48(6): 823−840.
Google Scholar
LIU Shuang, HU Xiangyun, GUO Ning, et al. Overview on UAV Aeromagnetic Survey Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 823−840.
Google Scholar
|
[11]
|
刘武. 三维重磁联合反演研究及应用——以山东济宁铁矿为例[D]. 武汉: 中国地质大学, 2024.
Google Scholar
LIU Wu. Research and Application of 3D Joint Gravity-Magnetic Inversion: A Case Study of the Jining Iron Deposit, Shandong[D]. Wuhan: China University of Geosciences, 2024.
Google Scholar
|
[12]
|
马国庆, 吴琪, 熊盛青, 等. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法[J]. 地球科学, 2021, 46(9): 3365−3375.
Google Scholar
MA Guoqing, WU Qi, XIONG Shengqing, et al. Ratio Method for Calculating the Source Location of Gravity and Magnetic Anomalies Based on Deep Learning[J]. Earth Science, 2021, 46(9): 3365−3375.
Google Scholar
|
[13]
|
马国庆, 杜晓娟, 李丽丽. 改进的位场相关成像方法[J]. 地球科学(中国地质大学学报), 2013, 38(5): 1121−1127. doi: 10.3799/dqkx.2013.111
CrossRef Google Scholar
MA Guoqing, DU Xiaojuan, LI Lili. Improved Potential Field Correlation Imaging Method[J]. Earth Science–Journal of Chian University of Geoscience, 2013, 38(5): 1121−1127. doi: 10.3799/dqkx.2013.111
CrossRef Google Scholar
|
[14]
|
那旭. 基于Pearson相关性约束的航空电磁与航空磁法数据三维联合反演研究[D]. 长春: 吉林大学, 2022.
Google Scholar
NA Xu. 3D joint inversion of airborne electromagnetic and magnetic data based on Pearson correlation constraints[D]. Changchun: Jilin University, 2022.
Google Scholar
|
[15]
|
孙石达. 磁总场异常及其梯度联合反演方法研究[D]. 武汉: 中国地质大学, 2016.
Google Scholar
SUN Shida. Research on Joint Inversion Methods of Total Magnetic Anomaly and Its Gradient[D]. Wuhan: China University of Geosciences, 2016.
Google Scholar
|
[16]
|
王泰涵, 马国庆, 熊盛青, 等. 空-地-井重力异常正则化协同密度反演方法[J]. 地球物理学报, 2020, 63(7): 2737−2750. doi: 10.6038/cjg2020N0200
CrossRef Google Scholar
WANG Taihan, MA Guoqing, XIONG Shengqing, et al. Joint regularized density inversion method of airborne. surface and borehole gravity anomaly data[J]. Chinese Journal of Geophysics, 2020, 63(7): 2737−2750. doi: 10.6038/cjg2020N0200
CrossRef Google Scholar
|
[17]
|
王逸宸, 柳林涛, 许厚泽. 利用卷积自编码器重建含噪重力数据[J]. 武汉大学学报(信息科学版), 2022, 47(4): 543−550.
Google Scholar
WANG Yichen, LIU Lintao, XU Houze. Noisy Gravity Data Reconstruction Using the Convolutional Autoencoder[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 543−550.
Google Scholar
|
[18]
|
魏泽坤, 冯旭亮, 马佳月, 等. 鄂尔多斯盆地东南部重磁场特征及其氦气勘探意义[J]. 西北地质, 2023, 56(5): 98−110. doi: 10.12401/j.nwg.2023070
CrossRef Google Scholar
WEI Zekun, FENG Xuliang, MA Jiayue, et al. Characteristics of Gravity and Magnetic Field and their Significance of Helium Resources Exploration in the Southeastern Ordos Basin[J]. Northwestern Geology, 2023, 56(5): 98−110. doi: 10.12401/j.nwg.2023070
CrossRef Google Scholar
|
[19]
|
文百红, 程方道. 用于划分磁异常的新方法—插值切割法[J]. 中南矿冶学院学报, 1990, 21(3): 229−235.
Google Scholar
WEN Baihong, CHENG Fangdao. A New Interpolating Cut Method for Identifying Regional and Local Fields of Magnetic Anomaly[J]. Journal of Central South University(Science and Technology), 1990, 21(3): 229−235.
Google Scholar
|
[20]
|
习宇飞, 刘天佑, 刘双. 井中磁测三分量联合反演[J]. 石油地球物理勘探, 2012, 47(2): 344−352.
Google Scholar
XI Yufei, LIU Tianyou, LIU Shuang. A Joint Inversion Method for Borehole Magnetic Three-Component Data[J]. Oil Geophysical Prospecting, 2012, 47(2): 344−352.
Google Scholar
|
[21]
|
相鹏, 谭绍泉, 陈学国, 等. 利用高斯径向基函数的拟神经网络重力反演方法[J]. 石油地球物理勘探, 2021, 56(6): 1409−1418.
Google Scholar
XIANG Peng, TANG Shaoquan, CHEN Xueguo, et al. Gravity inversion method based on quasi-neural network featuring Gaussian radial basis function[J]. Oil Geophysical Prospecting, 2021, 56(6): 1409−1418.
Google Scholar
|
[22]
|
熊盛青. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 2020, 26(5): 791−818. doi: 10.12090/j.issn.1006-6616.2020.26.05.063
CrossRef Google Scholar
XIONG Shengqing. Innovation and application of airborne geophysical exploration technology[J]. Journal of Geomechanics, 2020, 26(5): 791−818. doi: 10.12090/j.issn.1006-6616.2020.26.05.063
CrossRef Google Scholar
|
[23]
|
杨文采. 非线性地球物理反演方法: 回顾与展望[J]. 地球物理学进展, 2002, (2): 255−261. doi: 10.3969/j.issn.1004-2903.2002.02.010
CrossRef Google Scholar
YANG Wencai. Non-linear Geophysical Inversion Methods: Review and Perspective[J]. Progress in Geophysics, 2002, (2): 255−261. doi: 10.3969/j.issn.1004-2903.2002.02.010
CrossRef Google Scholar
|
[24]
|
殷长春, 孙思源, 高秀鹤, 等. 基于局部相关性约束的三维大地电磁数据和重力数据的联合反演[J]. 地球物理学报, 2018, 61(1): 358−367. doi: 10.6038/cjg2018K0765
CrossRef Google Scholar
YIN Changchun, SUN Siyua, GAO Xiuhe, et al. 3D joint inversion of magnetotelluric and gravity data based on local correlation constraints[J]. Chinese Journal of Geophysics, 2018, 61(1): 358−367. doi: 10.6038/cjg2018K0765
CrossRef Google Scholar
|
[25]
|
于鹏, 王家林, 吴健生, 等. 地球物理联合反演的研究现状和分析[J]. 勘探地球物理进展, 2006, (2): 87−93.
Google Scholar
YU Peng, WANG Jialin, WU Jiansheng, et al. Review and Discussions on Geophysical Joint Inversion[J]. Progress in Exploration Geophysics, 2006, (2): 87−93.
Google Scholar
|
[26]
|
于长春, 熊盛青, 郭志红, 等. 改进的非线性滤波方法在中高山地区的应用[J]. 物探与化探, 2003, 27(1): 39−42.
Google Scholar
YU Changchun, XIONG Shengqing, GUO Zhihong, et al. The Improved Nonlinear Filtering Method and Its Application in Middle and High Mountain Areas[J]. Geophysical and Geochemical Exploration, 2003, 27(1): 39−42.
Google Scholar
|
[27]
|
曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.
Google Scholar
ZENG Hualin. Gravity Field and Gravity Exploration[M]. Beijing: Geological Publishing House, 2005.
Google Scholar
|
[28]
|
张镕哲, 李桐林, 邓海, 等. 大地电磁、重力、磁法和地震初至波走时的交叉梯度二维联合反演研究[J]. 地球物理学报, 2019, 62(6): 2139−2149. doi: 10.6038/cjg2019L0713
CrossRef Google Scholar
ZHANG Rongzhe, LI Tonglin, DENG Hai, et al. 2D Joint Inversion Of MT, Gravity, Magnetic and Seismic First-Arrival Wave Traveltime with Cross-Gradient Constraints[J]. Chinese Journal of Geophysics, 2019, 62(6): 2139−2149. doi: 10.6038/cjg2019L0713
CrossRef Google Scholar
|
[29]
|
张志厚, 廖晓龙, 曹云勇, 等. 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 64(4): 1435−1452. doi: 10.6038/cjg2021O0151
CrossRef Google Scholar
ZHANG Zhihong, LIAO Xiaolong, CAO Yunyong, et al. Joint Gravity and Gravity Gradient Inversion Based on Deep Learning[J]. Chinese Journal of Geophysics, 2021, 64(4): 1435−1452. doi: 10.6038/cjg2021O0151
CrossRef Google Scholar
|
[30]
|
张紫薇, 李厚朴, 张恒磊, 等. 基于低秩稀疏分解的重磁异常分离方法及应用[J]. 物探与化探, 2025, 49(1): 118−128.
Google Scholar
ZHANG Ziwei, LI Houpu, ZHANG Henglei, et al. A low-rank decomposition-based method for separating gravity and magnetic anomalies and its application[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 118−128.
Google Scholar
|
[31]
|
Abbas M A, Fedi M, Florio G. Improving the local wavenumber method by automatic DEXP transformation[J]. Journal of Applied Geophysics, 2014b, 111: 250−255. doi: 10.1016/j.jappgeo.2014.10.004
CrossRef Google Scholar
|
[32]
|
Abbas M A, Fedi M. Automatic DEXP imaging of potential fields independent of the structural index[J]. Geophysical Journal International, 2014a, 199(3): 1625−1632. doi: 10.1093/gji/ggu354
CrossRef Google Scholar
|
[33]
|
Agocs W B. Least squares residual anomaly determination[J]. Geophysics, 1951, 16(4): 686−696. doi: 10.1190/1.1437720
CrossRef Google Scholar
|
[34]
|
Al-Garni M A. Inversion of residual gravity anomalies using neural network[J]. Arabian Journal of Geosciences, 2013, 6(5): 1509−1516. doi: 10.1007/s12517-011-0452-y
CrossRef Google Scholar
|
[35]
|
Baniamerian J, Fedi M, Oskooi B. Research Note: Compact Depth from Extreme Points: a tool for fast potential field imaging[J]. Geophysical Prospecting, 2016, 64(5): 1386−1398. doi: 10.1111/1365-2478.12365
CrossRef Google Scholar
|
[36]
|
Barbosa V C F, Silva J B C. Generalized compact gravity inversion[J]. Geophysics, 1994, 59(1): 57−68. doi: 10.1190/1.1443534
CrossRef Google Scholar
|
[37]
|
Bertete-Aguirre H, Cherkaev E, Oristaglio M. Non-smooth gravity problem with total variation penalization functional[J]. Geophysical Journal International, 2002, 149(2): 499−507. doi: 10.1046/j.1365-246X.2002.01664.x
CrossRef Google Scholar
|
[38]
|
Bianco L, La Manna M, Russo V, et al. Magnetic and GPR data modelling via multiscale methods in San Pietro in Crapolla Abbey, Massa Lubrense (Naples)[J]. Archaeological Prospection, 2024, 31(2): 139−147. doi: 10.1002/arp.1936
CrossRef Google Scholar
|
[39]
|
Bosch M, Meza R, Jiménez R, et al. Joint gravity and magnetic inversion in 3D using Monte Carlo methods[J]. Geophysics, 2006, 71(4): G153−G156. doi: 10.1190/1.2209952
CrossRef Google Scholar
|
[40]
|
Bosch M. The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction[J]. Geophysics, 2004, 69(5): 1272−1282. doi: 10.1190/1.1801944
CrossRef Google Scholar
|
[41]
|
Cai H, Kong R, He Z, et al. Joint inversion of potential field data with adaptive unstructured tetrahedral mesh[J]. Geophysics, 2024, 89(3): G45−G63. doi: 10.1190/geo2023-0280.1
CrossRef Google Scholar
|
[42]
|
Camacho A G, Montesinos F G, Vieira R. Gravity inversion by means of growing bodies[J]. Geophysics, 2000, 65(1): 95−101. doi: 10.1190/1.1444729
CrossRef Google Scholar
|
[43]
|
Candès E J, Li X, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM (JACM), 2011, 58(3): 1−37.
Google Scholar
|
[44]
|
Cella F, Fedi M. High-resolution geophysical 3D imaging for archaeology by magnetic and EM data: The case of the iron age settlement of Torre Galli, Southern Italy[J]. Surveys in Geophysics, 2015, 36(6): 831−850. doi: 10.1007/s10712-015-9341-3
CrossRef Google Scholar
|
[45]
|
Cribb J. Application of the Generalized Linear Inverse to the Inversion of Static Potential Data[J]. Geophysics, 1976, 41(6): 1365−1369. doi: 10.1190/1.1440686
CrossRef Google Scholar
|
[46]
|
Ehmann S, Virgil C, Hördt A, et al. Directional location of buried objects using three-component magnetic borehole data demonstrated for the case of a drill string[J]. Geophysical Journal International, 2016, 205(3): 1916−1925. doi: 10.1093/gji/ggw139
CrossRef Google Scholar
|
[47]
|
Farquharson C G, Ash M R, Miller H G. Geologically constrained gravity inversion for the Voisey's Bay ovoid deposit[J]. The Leading Edge, 2008, 27(1): 64−69. doi: 10.1190/1.2831681
CrossRef Google Scholar
|
[48]
|
Farquharson C G. Constructing piecewise-constant models in multidimensional minimum-structure inversions[J]. Geophysics, 2008a, 73(1): K1−K9. doi: 10.1190/1.2816650
CrossRef Google Scholar
|
[49]
|
Fedi M, Abbas M A. A fast interpretation of self-potential data using the depth from extreme points method[J]. Geophysics, 2013, 78(2): E107−E116. doi: 10.1190/geo2012-0074.1
CrossRef Google Scholar
|
[50]
|
Fedi M, Florio G, Rapolla A. A method to estimate the total magnetization direction from a distortion analysis of magnetic anomalies[J]. Geophysical Prospecting, 1994, 42(3): 261−274. doi: 10.1111/j.1365-2478.1994.tb00209.x
CrossRef Google Scholar
|
[51]
|
Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics, 2012, 77(1): G13−G24. doi: 10.1190/geo2011-0078.1
CrossRef Google Scholar
|
[52]
|
Fedi M, Primiceri R, Quarta T, et al. Joint application of continuous and discrete wavelet transform on gravity data to identify shallow and deep sources[J]. Geophysical Journal International, 2004, 156(1): 7−21. doi: 10.1111/j.1365-246X.2004.02118.x
CrossRef Google Scholar
|
[53]
|
Fedi M, Quarta T. Wavelet analysis for the regional-residual and local separation of potential field anomalies[J]. Geophysical Prospecting, 1998, 46(5): 507−525. doi: 10.1046/j.1365-2478.1998.00105.x
CrossRef Google Scholar
|
[54]
|
Fedi M. DEXP: A fast method to determine the depth and the structural index of potential fields sources[J]. Geophysics, 2007, 72(1): I1−I11. doi: 10.1190/1.2399452
CrossRef Google Scholar
|
[55]
|
Feng W, Zheng J. Triassic magmatism and tectonic setting of the eastern Tianshan, NW China: constraints from the Weiya intrusive complex[J]. Lithos, 2021, 394: 106171.
Google Scholar
|
[56]
|
Gallardo L A, Meju M A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data[J]. Geophysical Research Letters, 2003, 30(13).
Google Scholar
|
[57]
|
Gao B L, Tao D Y, Zhan Y L, et al. Application of aero-surface and borehole magnetic exploration to the prospecting of exhausted mines in the Daye iron mine[J]. Geology & Exploration, 2010, 46(3): 0483−0490.
Google Scholar
|
[58]
|
Gao J, Sacchi M D, Chen X. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions[J]. Geophysics, 2013, 78(1): V21−V30. doi: 10.1190/geo2012-0038.1
CrossRef Google Scholar
|
[59]
|
Guillen A, Menichetti V. Gravity and magnetic inversion with minimization of a specific functional[J]. Geophysics, 1984, 49(8): 1354−1360. doi: 10.1190/1.1441761
CrossRef Google Scholar
|
[60]
|
Guo L, Meng X, Chen Z, et al. Preferential filtering for gravity anomaly separation[J]. Computers & Geosciences, 2013, 51: 247−254.
Google Scholar
|
[61]
|
Guo W, Dentith M C, Bird R T, et al. Systematic error analysis of demagnetization and implications for magnetic interpretation[J]. Geophysics, 2001, 66(2): 562−570. doi: 10.1190/1.1444947
CrossRef Google Scholar
|
[62]
|
Han M, Wan L, Zhdanov M S. Joint iterative migration of surface and borehole gravity gradiometry data[C]. SEG International Exposition and Annual Meeting, SEG, 2018: SEG-2018-2996358.
Google Scholar
|
[63]
|
Hornik K. Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 4(2): 251−257.
Google Scholar
|
[64]
|
Huang R, Liu S, Qi R, et al. Deep learning 3D sparse inversion of gravity data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): 1−18.
Google Scholar
|
[65]
|
Innocent Oboué Y A S, Chen W, Wang H, et al. Robust damped rank-reduction method for simultaneous denoising and reconstruction of 5D seismic data[J]. Geophysics, 2021, 86(1): V71−V89. doi: 10.1190/geo2020-0032.1
CrossRef Google Scholar
|
[66]
|
Iuliano T, Mauriello P, Patella D. Looking inside Mount Vesuvius by potential fields integrated probability tomographies[J]. Journal of Volcanology and Geothermal Research, 2002, 113(3-4): 363−378. doi: 10.1016/S0377-0273(01)00271-2
CrossRef Google Scholar
|
[67]
|
Jordi C, Doetsch J, Günther T, et al. Structural joint inversion on irregular meshes[J]. Geophysical Journal International, 2020, 220(3): 1995−2008. doi: 10.1093/gji/ggz550
CrossRef Google Scholar
|
[68]
|
Krahenbuhl R A, Li Y. Investigation of magnetic inversion methods in highly magnetic environments under strong self-demagnetization effect[J]. Geophysics, 2017, 82(6): J83−J97. doi: 10.1190/geo2016-0676.1
CrossRef Google Scholar
|
[69]
|
Last B J, Kubik K. Compact gravity inversion[J]. Geophysics, 1983, 48(6): 713−721. doi: 10.1190/1.1441501
CrossRef Google Scholar
|
[70]
|
Lelièvre P G, Oldenburg D W. A 3D total magnetization inversion applicable when significant, complicated remanence is present[J]. Geophysics, 2009a, 74(3): L21−L30. doi: 10.1190/1.3103249
CrossRef Google Scholar
|
[71]
|
Lelièvre P G, Oldenburg D W. A comprehensive study of including structural orientation information in geophysical inversions[J]. Geophysical Journal International, 2009b, 178(2): 623−637. doi: 10.1111/j.1365-246X.2009.04188.x
CrossRef Google Scholar
|
[72]
|
Lelièvre P G, Oldenburg D W. Magnetic forward modelling and inversion for high susceptibility[J]. Geophysical Journal International, 2006, 166(1): 76−90. doi: 10.1111/j.1365-246X.2006.02964.x
CrossRef Google Scholar
|
[73]
|
Lelièvre P G, Farquharson C G, Hurich C A. Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration[J]. Geophysics, 2012, 77(1): K1−K15.
Google Scholar
|
[74]
|
Li G, Liu S, Shi K, et al. Transformations of borehole magnetic data in the frequency domain and estimation of the total magnetization direction: A case study from the Mengku iron-ore deposit, Northwest China[J]. Geophysics, 2023, 88(1): B1−B19. doi: 10.1190/geo2022-0216.1
CrossRef Google Scholar
|
[75]
|
Li W, Qian J, Li Y. Joint inversion of surface and borehole magnetic data: A level-set approach[J]. Geophysics, 2020, 85(1): J15−J32. doi: 10.1190/geo2019-0139.1
CrossRef Google Scholar
|
[76]
|
Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998, 63(1): 109−119. doi: 10.1190/1.1444302
CrossRef Google Scholar
|
[77]
|
Li Y, Oldenburg D W. 3-D inversion of magnetic data[J]. Geophysics, 1996, 61(2): 394−408. doi: 10.1190/1.1443968
CrossRef Google Scholar
|
[78]
|
Li Y, Oldenburg D W. Incorporating geological dip information into geophysical inversions[J]. Geophysics, 2000a, 65(1): 148−157. doi: 10.1190/1.1444705
CrossRef Google Scholar
|
[79]
|
Li Y, Oldenburg D W. Joint inversion of surface and three-component borehole magnetic data[J]. Geophysics, 2000b, 65(2): 540−552. doi: 10.1190/1.1444749
CrossRef Google Scholar
|
[80]
|
Li Y, Oldenburg D W. Separation of regional and residual magnetic field data[J]. Geophysics, 1998a, 63(2): 431−439. doi: 10.1190/1.1444343
CrossRef Google Scholar
|
[81]
|
Li Y, Shearer S E, Haney M M, et al. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization[J]. Geophysics, 2010, 75(1): L1−L11. doi: 10.1190/1.3294766
CrossRef Google Scholar
|
[82]
|
Li Y, Sun J, Li S L, et al. A paradigm shift in magnetic data interpretation: Increased value through magnetization inversions[J]. The Leading Edge, 2021, 40(2): 89−98. doi: 10.1190/tle40020089.1
CrossRef Google Scholar
|
[83]
|
Lin W, Zhdanov M S. Joint multinary inversion of gravity and magnetic data using Gramian constraints[J]. Geophysical Journal International, 2018, 215(3): 1540−1557.
Google Scholar
|
[84]
|
Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv preprint arXiv: 1009.5055, 2010.
Google Scholar
|
[85]
|
Lin Z, Zhang H. Low-rank models in visual analysis: Theories, algorithms, and applications[M]. New York, NY, USA: Academic Press, 2017.
Google Scholar
|
[86]
|
Liu S, Baniamerian J, Fedi M. Imaging Methods Versus Inverse Methods: An Option or An Alternative?[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3484−3494. doi: 10.1109/TGRS.2019.2957412
CrossRef Google Scholar
|
[87]
|
Liu S, Fedi M, Hu X, et al. Extracting induced and remanent magnetizations from magnetic data modeling[J]. Journal of Geophysical Research: Solid Earth, 2018a, 123(11): 9290−9309. doi: 10.1029/2017JB015364
CrossRef Google Scholar
|
[88]
|
Liu S, Fedi M, Hu X, et al. Three-dimensional inversion of magnetic data in the simultaneous presence of significant remanent magnetization and self-demagnetization: Example from Daye iron-ore deposit, Hubei province, China[J]. Geophysical Journal International, 2018b, 215(1): 614−634. doi: 10.1093/gji/ggy299
CrossRef Google Scholar
|
[89]
|
Liu S, Hu X, Fedi M, et al. Petrophysical and geophysical constrained inversion of gravity data based on starting and referenced models[J]. Journal of Geophysics and Engineering, 2025, 22(1): 36−47. doi: 10.1093/jge/gxae111
CrossRef Google Scholar
|
[90]
|
Liu S, Hu X, Liu T, et al. Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints[J]. Journal of Applied Geophysics, 2015a, 112: 115−128. doi: 10.1016/j.jappgeo.2014.11.010
CrossRef Google Scholar
|
[91]
|
Liu S, Hu X, Liu T, et al. Magnetization vector imaging for borehole magnetic data based on magnitude magnetic anomaly[J]. Geophysics, 2013, 78(6): D429−D444. doi: 10.1190/geo2012-0454.1
CrossRef Google Scholar
|
[92]
|
Liu S, Hu X, Liu T. A stochastic inversion method for potential field data: ant colony optimization[J]. Pure and Applied Geophysics, 2014, 171: 1531−1555. doi: 10.1007/s00024-013-0712-8
CrossRef Google Scholar
|
[93]
|
Liu S, Hu X, Xi Y, et al. 2D sequential inversion of total magnitude and total magnetic anomaly data affected by remanent magnetization[J]. Geophysics, 2015b, 80(3): K1−K12. doi: 10.1190/geo2014-0019.1
CrossRef Google Scholar
|
[94]
|
Liu S, Hu X, Zhu R. Joint inversion of surface and borehole magnetic data to prospect concealed orebodies: A case study from the Mengku iron deposit, northwestern China[J]. Journal of Applied Geophysics, 2018c, 154: 150−158. doi: 10.1016/j.jappgeo.2018.05.004
CrossRef Google Scholar
|
[95]
|
Liu S, Liang M, Hu X. Particle swarm optimization inversion of magnetic data: Field examples from iron ore deposits in China[J]. Geophysics, 2018d, 83(4): 43−59.
Google Scholar
|
[96]
|
Lv M, Zhang Y, Liu S. Fast forward approximation and multitask inversion of gravity anomaly based on UNet3+[J]. Geophysical Journal International, 2023, 234(2): 972−984. doi: 10.1093/gji/ggad106
CrossRef Google Scholar
|
[97]
|
Maag E, Li Y. Discrete-valued gravity inversion using the guided fuzzy c-means clustering technique[J]. Geophysics, 2018, 83(4): G59−G77. doi: 10.1190/geo2017-0594.1
CrossRef Google Scholar
|
[98]
|
Mandal A, Niyogi S. Filter assisted bi-dimensional empirical mode decomposition: A hybrid approach for regional-residual separation of gravity anomaly[J]. Journal of Applied Geophysics, 2018, 159: 218−227. doi: 10.1016/j.jappgeo.2018.09.003
CrossRef Google Scholar
|
[99]
|
Medeiros W E, Silva J B C. Geophysical inversion using approximate equality constraints[J]. Geophysics, 1996, 61(6): 1678−1688. doi: 10.1190/1.1444086
CrossRef Google Scholar
|
[100]
|
Mickus K L, Aiken C L V, Kennedy W D. Regional-residual gravity anomaly separation using the minimum-curvature technique[J]. Geophysics, 1991, 56(2): 279−283. doi: 10.1190/1.1443041
CrossRef Google Scholar
|
[101]
|
Moghadas D, Behroozmand A A, Christiansen A V. Soil electrical conductivity imaging using a neural network-based forward solver: applied to large-scale Bayesian electromagnetic inversion[J]. Journal of Applied Geophysics, 2020, 176: 104012. doi: 10.1016/j.jappgeo.2020.104012
CrossRef Google Scholar
|
[102]
|
Molodtsov D M, Troyan V N, Roslov Y V, et al. Joint inversion of seismic traveltimes and magnetotelluric data with a directed structural constraint[J]. Geophysical Prospecting, 2013, 61(6): 1218−1228. doi: 10.1111/1365-2478.12060
CrossRef Google Scholar
|
[103]
|
Montesinos F G, Arnoso J, Vieira R. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands)[J]. International Journal of Earth Sciences, 2005, 94: 301−316. doi: 10.1007/s00531-005-0471-6
CrossRef Google Scholar
|
[104]
|
Moorkamp M, Heincke B, Jegen M, et al. A framework for 3-D joint inversion of MT, gravity and seismic refraction data[J]. Geophysical Journal International, 2011, 184(1): 477−493. doi: 10.1111/j.1365-246X.2010.04856.x
CrossRef Google Scholar
|
[105]
|
Moreau F, Gibert D, Holschneider M, et al. Wavelet analysis of potential fields[J]. Inverse Problems, 1997, 13(1): 165−178. doi: 10.1088/0266-5611/13/1/013
CrossRef Google Scholar
|
[106]
|
Mosher C R W, Farquharson C G. Minimum-structure borehole gravity inversion for mineral exploration: A synthetic modeling study[J]. Geophysics, 2013, 78(2): G25−G39. doi: 10.1190/geo2012-0373.1
CrossRef Google Scholar
|
[107]
|
Nind C, Seigel H O, Chouteau M, et al. Development of a borehole gravimeter for mining applications[J]. First Break, 2007, 25(7).
Google Scholar
|
[108]
|
Oropeza V, Sacchi M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis[J]. Geophysics, 2011, 76(3): V25−V32. doi: 10.1190/1.3552706
CrossRef Google Scholar
|
[109]
|
Paoletti V, Hintersberger E, Schattauer I, et al. Geophysical Study of the Diendorf-Boskovice Fault System (Austria)[J]. Remote Sensing, 2022, 14(8).
Google Scholar
|
[110]
|
Patella D. Introduction to ground surface self-potential tomography[J]. Geophysical Prospecting, 1997, 45(4): 653−681. doi: 10.1046/j.1365-2478.1997.430277.x
CrossRef Google Scholar
|
[111]
|
Pawlowski R S, Hansen R O. Gravity anomaly separation by Wiener filtering[J]. Geophysics, 1990, 55(5): 539−548. doi: 10.1190/1.1442865
CrossRef Google Scholar
|
[112]
|
Pedersen L B. Relations Between Potential Fields and Some Equivalent Sources[J]. Geophysics, 1991, 56(7): 961−971. doi: 10.1190/1.1443129
CrossRef Google Scholar
|
[113]
|
Pilkington M, Beiki M. Mitigating remanent magnetization effects in magnetic data using the normalized source strength[J]. Geophysics, 2013, 78(3): J25−J32. doi: 10.1190/geo2012-0225.1
CrossRef Google Scholar
|
[114]
|
Pilkington M, Cowan D R. Model-based separation filtering of magnetic data[J]. Geophysics, 2006, 71(2): L17−L23. doi: 10.1190/1.2187772
CrossRef Google Scholar
|
[115]
|
Pilkington M. 3D magnetic data-space inversion with sparseness constraints[J]. Geophysics, 2009, 74(1): L7−L15. doi: 10.1190/1.3026538
CrossRef Google Scholar
|
[116]
|
Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999, 64(3): 874−887. doi: 10.1190/1.1444596
CrossRef Google Scholar
|
[117]
|
Rim H, Li Y. Advantages of borehole vector gravity in density imaging[J]. Geophysics, 2015, 80(1): G1−G13. doi: 10.1190/geo2013-0394.1
CrossRef Google Scholar
|
[118]
|
Rothman D H. Nonlinear inversion, statistical mechanics, and residual statics estimation[J]. Geophysics, 1985, 50(12): 2784−2796. doi: 10.1190/1.1441899
CrossRef Google Scholar
|
[119]
|
Rybakov M, Goldshmidt V, Rotstein Y, et al. Petrophysical constraints on gravity/magnetic interpretation in Israel[J]. The Leading Edge, 1999, 18(2): 269−272. doi: 10.1190/1.1438274
CrossRef Google Scholar
|
[120]
|
Seigel H O, Nind C J M, Milanovic A, et al. Results from the initial field trials of a borehole gravity meter for mining and geotechnical applications[C]. 11th SAGA Biennial Technical Meeting and Exhibition, European Association of Geoscientists & Engineers, 2009: cp-241-00021.
Google Scholar
|
[121]
|
Shamsipour P, Marcotte D, Chouteau M, et al. 3D stochastic inversion of gravity data using cokriging and cosimulation[J]. Geophysics, 2010, 75(1): I1−I10. doi: 10.1190/1.3295745
CrossRef Google Scholar
|
[122]
|
Shamsipour P, Marcotte D, Chouteau M. 3D stochastic joint inversion of gravity and magnetic data[J]. Journal of Applied Geophysics, 2012, 79: 27−37. doi: 10.1016/j.jappgeo.2011.12.012
CrossRef Google Scholar
|
[123]
|
Shamsipour P, Schetselaar E, Bellefleur G, et al. 3D stochastic inversion of potential field data using structural geologic constraints[J]. Journal of Applied Geophysics, 2014, 111: 173−182. doi: 10.1016/j.jappgeo.2014.09.013
CrossRef Google Scholar
|
[124]
|
Shearer S, Li Y. 3D inversion of magnetic total gradient data in the presence of remanent magnetization[C]. SEG International Exposition and Annual Meeting, SEG, 2004: SEG-2004-0774.
Google Scholar
|
[125]
|
Shi B, Yu P, Zhao C, et al. Linear correlation constrained joint inversion using squared cosine similarity of regional residual model vectors[J]. Geophysical Journal International, 2018, 215(2): 1291−1307. doi: 10.1093/gji/ggy336
CrossRef Google Scholar
|
[126]
|
Shi K, Liu S, Jian X, et al. 3D Joint Inversion of Borehole, Surface, and Airborne Magnetic Anomaly[J]. Pure and Applied Geophysics, 2025: 1-23.
Google Scholar
|
[127]
|
Shu Y, Liu S, Wang T, et al. Gravity and magnetic joint imaging based on Gramian constraints[J]. Geophysics, 2024, 89(5): G75−G92. doi: 10.1190/geo2023-0732.1
CrossRef Google Scholar
|
[128]
|
Silva J B C, Barbosa V C F. Generalized radial inversion of 2D potential field data[J]. Geophysics, 2004, 69(6): 1405−1413. doi: 10.1190/1.1836815
CrossRef Google Scholar
|
[129]
|
Simpson Jr S M. Least squares polynomial fitting to gravitational data and density plotting by digital computers[J]. Geophysics, 1954, 19(2): 255−269. doi: 10.1190/1.1437990
CrossRef Google Scholar
|
[130]
|
Spector A, Grant F S. Statistical models for interpreting aeromagnetic data[J]. Geophysics, 1970, 35(2): 293−302. doi: 10.1190/1.1440092
CrossRef Google Scholar
|
[131]
|
Sun J, Li Y. Geophysical inversion using petrophysical constraints with application to lithology differentiation[C]. 12th International Congress of the Brazilian Geophysical Society, European Association of Geoscientists & Engineers, 2011: cp-264-00114.
Google Scholar
|
[132]
|
Sun J, Li Y. Inversion of surface and borehole gravity with thresholding and density constraints[M]. SEG Technical Program Expanded Abstracts 2010, Society of Exploration Geophysicists, 2010: 1798−1803.
Google Scholar
|
[133]
|
Sun J, Li Y. Joint inversion of multiple geophysical data using guided fuzzy c-means clustering[J]. Geophysics, 2016, 81(3): ID37−ID57. doi: 10.1190/geo2015-0457.1
CrossRef Google Scholar
|
[134]
|
Sun J, Li Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering[J]. Geophysics, 2015, 80(4): ID1−ID18. doi: 10.1190/geo2014-0049.1
CrossRef Google Scholar
|
[135]
|
Tikhonov A N, Arsenin V. Solutions of ill-posed problems[M]. Winston, New York: V. H. Winston & Sons, 1977.
Google Scholar
|
[136]
|
Vatankhah S, Liu S, Renaut R A, et al. An Efficient Alternating Algorithm for the Lp-Norm Cross-Gradient Joint Inversion of Gravity and Magnetic Data Using the 2-D Fast Fourier Transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 1−16.
Google Scholar
|
[137]
|
Vatankhah S, Renaut R A, Huang X, et al. Large-scale focusing joint inversion of gravity and magnetic data with Gramian constraint[J]. Geophysical Journal International, 2022, 230(3): 1585−1611. doi: 10.1093/gji/ggac138
CrossRef Google Scholar
|
[138]
|
Virgil C, Ehmann S, Hördt A, et al. Measuring and interpretation of three-component borehole magnetic data[C]//EGU General Assembly Conference Abstracts. 2012: 10105.
Google Scholar
|
[139]
|
Wan L, Zhdanov M S. Iterative migration of gravity and gravity gradiometry data[C]. SEG Technical Program Expanded Abstracts 2013, 2013: 1211−1215.
Google Scholar
|
[140]
|
Xiao F. Gravity correlation imaging with a moving data window[J]. Journal of Applied Geophysics, 2015, 112: 29−32. doi: 10.1016/j.jappgeo.2014.11.004
CrossRef Google Scholar
|
[141]
|
Yang Q, Hu X, Liu S, et al. 3-D gravity inversion based on deep convolution neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1−5.
Google Scholar
|
[142]
|
Zeng H, Xu D, Tan H. A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China[J]. Geophysics, 2007, 72(4): I45−I50. doi: 10.1190/1.2719497
CrossRef Google Scholar
|
[143]
|
Zhang C, Lü Q, Yan J, et al. Numerical solutions of the mean-value theorem: New methods for downward continuation of potential fields[J]. Geophysical Research Letters, 2018, 45(8): 3461−3470. doi: 10.1002/2018GL076995
CrossRef Google Scholar
|
[144]
|
Zhang H, Qian J, Zhang B, et al. Low-rank matrix recovery via modified Schatten-p norm minimization with convergence guarantees[J]. IEEE Transactions on Image Processing, 2019, 29: 3132−3142.
Google Scholar
|
[145]
|
Zhang L, Hao T, Jiang W. Separation of potential field data using 3-D principal component analysis and textural analysis[J]. Geophysical Journal International, 2009, 179(3): 1397−1413. doi: 10.1111/j.1365-246X.2009.04357.x
CrossRef Google Scholar
|
[146]
|
Zhang L, Zhang G, Liu Y, et al. Deep learning for 3-D inversion of gravity data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021c, 60: 1−18.
Google Scholar
|
[147]
|
Zhang R, Li T, Liu C. Joint inversion of multiphysical parameters based on a combination of cosine dot-gradient and joint total variation constraints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021a, 60: 1−10.
Google Scholar
|
[148]
|
Zhang Y, Xu Y, Mooney W D, et al. Local separation of potential field anomalies using equivalent sources: application for the 3-D structure of mantle uplift beneath Von Kármán crater, the Moon[J]. Geophysical Journal International, 2021b, 227(3): 1612−1623. doi: 10.1093/gji/ggab307
CrossRef Google Scholar
|
[149]
|
Zhdanov M S, Gribenko A, Wilson G. Generalized joint inversion of multimodal geophysical data using Gramian constraints[J]. Geophysical Research Letters, 2012, 39(9).
Google Scholar
|
[150]
|
Zhdanov M S, Liu X J, Wilson G A, et al. Potential field migration for rapid imaging of gravity gradiometry data[J]. Geophysical Prospecting, 2011, 59(6): 1052−1071. doi: 10.1111/j.1365-2478.2011.01005.x
CrossRef Google Scholar
|
[151]
|
Zhdanov M S. Geophysical inverse theory and regularization problems[M]. Amsterdam, Boston: Elsevier Science, 2002.
Google Scholar
|
[152]
|
Zhu D, Hu X, Liu S, et al. Can Targeted Source Information Be Extracted From Superimposed Magnetic Anomalies?[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2022JB024279. doi: 10.1029/2022JB024279
CrossRef Google Scholar
|
[153]
|
Zhu D, Li H, Liu T, et al. Low-rank matrix decomposition method for potential field data separation[J]. Geophysics, 2020a, 85(1): G1−G16. doi: 10.1190/geo2019-0016.1
CrossRef Google Scholar
|
[154]
|
Zhu D, Renaut R, Li H, et al. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory[J]. Inverse Problems and Imaging, 2020b, 15(1): 1−25.
Google Scholar
|
[155]
|
Zuo B, Hu X, Leão-Santos M, et al. Downward continuation and transformation of total-field magnetic anomalies into magnetic gradient tensors between arbitrary surfaces using multilayer equivalent sources[J]. Geophysical Research Letters, 2020, 47(16): e2020GL088678. doi: 10.1029/2020GL088678
CrossRef Google Scholar
|