2025 Vol. 58, No. 3
Article Contents

YANG Xiaoyu, JIA Hailiang, WEI Yao, SUN Qiang, WANG Yabiao. 2025. Mechanism of Salt Swelling Weathering of Sandstone Subjected to Cyclic Imbibition of Saline and Drying. Northwestern Geology, 58(3): 246-257. doi: 10.12401/j.nwg.2025013
Citation: YANG Xiaoyu, JIA Hailiang, WEI Yao, SUN Qiang, WANG Yabiao. 2025. Mechanism of Salt Swelling Weathering of Sandstone Subjected to Cyclic Imbibition of Saline and Drying. Northwestern Geology, 58(3): 246-257. doi: 10.12401/j.nwg.2025013

Mechanism of Salt Swelling Weathering of Sandstone Subjected to Cyclic Imbibition of Saline and Drying

More Information
  • Investigating the pore structure modification and damage features of porous rocks under cyclic imbibition of saline and drying is the premise of building up a full picture of rock weathering. In this study, we designed the experiments on the imbibition-drying cycle under 6 concentrations of Na2SO4 solutions, and tested difference in dry mass, imbibition mass, P-wave velocity, NMR T2 spectrum and three-dimensional morphology in sandstone after 30 cycles. The following conclusions were obtained: ①During the imbibition-drying cycle, the salt crystals initially blocked the pores, and the crystals continued to accumulate, which ultimately led to the destruction of the pores and the gradual deterioration of the physical properties of the sandstone. With the increase in number of cycles, the test parameters such as difference in drying mass, imbibition mass and P-wave velocity of sandstone exhibited a three-stage variational trend.②The rate of variation in above test parameters at each stage is proportional to the concentration.③The crystallization occurs in both capillary imbibition and drying. With the increase in cycles numbers, the generation, accumulation, recrystallization and enlargement of crystals contributes to mineral grains shedding on the surface of sandstone. The morphology was proportional to the number of cycles and solution concentrations.

  • 加载中
  • [1] 崔凯, 顾鑫, 吴国鹏, 等. 不同条件下贺兰口岩画载体变质砂岩干湿损伤特征与机制研究[J]. 岩石力学与工程学报, 2021, 40(6): 1236−1247.

    Google Scholar

    CUI Kai, GU Xin, WU Guopeng, et al. Dry-wet damage characteristics and mechanism of metamorphic sandstone carrying Helan mouths rock paintings under different conditions[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,40(6):1236−1247.

    Google Scholar

    [2] 陈雪, 汪小祥, 景山, 等. 宁镇矿集区岩石风化成土过程中重金属迁移富集特征[J]. 西北地质, 2025, 58(1): 231−244.

    Google Scholar

    CHEN Xue,WANG Xiaoxiang,JING Shan,et al. Migration and Enrichment of Heavy Metals During the Weathering Pedogenesis of Rocks in the Ningzhen Ore Cluster Area[J]. Northwestern Geology,2025,58(1):231−244.

    Google Scholar

    [3] 胡鑫, 孙强, 晏长根, 等. 陕北烧变岩水−岩作用的劣化特性[J]. 煤田地质与勘探, 2023, 51(4): 76−84. doi: 10.12363/issn.1001-1986.22.06.0496

    CrossRef Google Scholar

    HU Xin, SUN Qiang, YAN Changgen, et al. Deterioration characteristics of water-rock interaction on combustion meta-morphic rocks in northern Shaanxi[J]. Coal Geology & Exploration,2023,51(4):76−84. doi: 10.12363/issn.1001-1986.22.06.0496

    CrossRef Google Scholar

    [4] 李震, 张景科, 刘盾, 等. 大足石刻小佛湾造像砂岩室内模拟劣化试验研究[J]. 岩土工程学报, 2019, 41(8): 1513−1521. doi: 10.11779/CJGE201908016

    CrossRef Google Scholar

    LI Zhen, ZHANG Jingke, LIU Dun, et al. Experimental study on indoor simulated deterioration of sandstone of Xiaofowan statues at Dazu Rock Carvings[J]. Chinese Journal of Geotechnical Engineering,2019,41(8):1513−1521. doi: 10.11779/CJGE201908016

    CrossRef Google Scholar

    [5] 刘新荣, 张梁, 傅晏. 酸性环境干湿循环对泥质砂岩力学特性影响的试验研究[J]. 岩土力学, 2014, 35(S2): 45−52.

    Google Scholar

    LIU Xinrong, ZHANG Liang, FU Yan. Experimental study of mechanical properties of argillaceous sandstone under wet and dry cycle in acid environment[J]. Rock and Soil Mechanics,2014,35(S2):45−52.

    Google Scholar

    [6] 刘新荣, 袁文, 傅晏, 等. 化学溶液和干湿循环作用下砂岩抗剪强度劣化试验及化学热力学分析[J]. 岩石力学与工程学报, 2016, 35(12): 2534−2541.

    Google Scholar

    LIU Xinrong, YUAN Wen, FU Yan, et al. Tests on shear strength deterioration of sandstone under the action of chemical solution and drying-wetting cycles and analysis of chemical thermodynamics[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,35(12):2534−2541.

    Google Scholar

    [7] 刘新荣, 袁文, 傅晏, 等. 干湿循环作用下砂岩溶蚀的孔隙度演化规律[J]. 岩土工程学报, 2018, 40(3): 527−532. doi: 10.11779/CJGE201803017

    CrossRef Google Scholar

    LIU Xinrong, YUAN Wen, FU Yan, et al. Porosity evolution of sandstone dissolution under wetting and drying cycles[J]. Chinese Journal of Geotechnical Engineering,2018,40(3):527−532. doi: 10.11779/CJGE201803017

    CrossRef Google Scholar

    [8] 欧阳渊, 刘洪, 张景华, 等. 西南山区生态地质调查技术方法研究[J]. 西北地质, 2023, 56(4): 218−242.

    Google Scholar

    OUYANG Yuan, LIU Hong, ZHANG Jinghua, et al. Exploration Techniques and Methods of the Eco−Geological Survey in Mountainous Region, Southwest China[J]. Northwestern Geology,2023,56(4):218−242.

    Google Scholar

    [9] 谈云志, 胡莫珍, 周玮韬, 等. 荷载-干湿循环共同作用下泥岩的压缩特性[J]. 岩土力学, 2016, 37(8): 2165−2171.

    Google Scholar

    TAN Yunzhi, HU Mozhen, ZHOU Weitao, et al. Effects of drying-wetting cycle and loading on compressive property of mudstone[J]. Rock and Soil Mechanics,2016,37(8):2165−2171.

    Google Scholar

    [10] 谢凯楠, 姜德义, 孙中光, 等. 基于低场核磁共振的干湿循环对泥质砂岩微观结构劣化特性的影响[J]. 岩土力学, 2019, 40(2): 653−659+667.

    Google Scholar

    XIE Kainan, JIANG Deyi, SUN Zhongguang, et al. Influence of drying-wetting cycles on microstructure degradation of argillaceous sandstone using low field nuclear magnetic resonance[J]. Rock and Soil Mechanics,2019,40(2):653−659+667.

    Google Scholar

    [11] 原鹏博, 杨烜宇, 赵天宇. 水-盐作用下红层砂岩声波特性劣化试验[J]. 岩土力学, 2019, 40(1): 227−234.

    Google Scholar

    YUAN Pengbo, YANG Xuanyu, ZHAO Tianyu. Deterioration characteristics of red-bed sandstone acoustic wave properties due to water and salt solution[J]. Rock and Soil Mechanics,2019,40(1):227−234.

    Google Scholar

    [12] 杨圣奇, 荆晓娇. 盐水干湿循环后砂岩物理力学特性试验研究[J]. 岩土工程学报, 2023, 45(10): 2165−2171. doi: 10.11779/CJGE20220830

    CrossRef Google Scholar

    YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering,2023,45(10):2165−2171. doi: 10.11779/CJGE20220830

    CrossRef Google Scholar

    [13] 张虎元, 杨盛清, 孙博, 等. 石质文物盐害类型与蒸发速率的关系研究[J]. 岩石力学与工程学报, 2021(S02): 040.

    Google Scholar

    ZHANG Huyuan, YANG Shengqing, SUN Bo, et al. Research on the relationship between salt damage types and evaporation rate of stone relics[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021(S02):040.

    Google Scholar

    [14] Arnold A, Zehnder K. Monitoring wall paintings affected by soluble salts. Marina Del Rey: Getty Conservation Institute[M]. London, Marina Del Rey: Getty Conservation Institute, 1987.

    Google Scholar

    [15] Benavente D, del Cura M G, Fort R, et al. Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone[J]. Journal of Crystal growth,1999,204(1-2):168−178. doi: 10.1016/S0022-0248(99)00163-3

    CrossRef Google Scholar

    [16] Brai M, Camaiti M, Casieri C, et al. Nuclear magnetic resonance for cultural heritage[J]. Magnetic Resonance Imaging,2007,25(4):461−465. doi: 10.1016/j.mri.2006.11.007

    CrossRef Google Scholar

    [17] Camassel B, Sghaier N, Prat M, et al. Evaporation in a capillary tube of square cross-section: application to ion transport[J]. Chemical Engineering Science,2005,60(3):815−826. doi: 10.1016/j.ces.2004.09.044

    CrossRef Google Scholar

    [18] Çelik M Y, Sert M. An assessment of capillary water absorption changes related to the different salt solutions and their concentrations ratios in the Döğer tuff (Afyonkarahisar-Turkey) used as building stone of cultural heritages[J]. Journal of Building Engineering,2021,35:102102. doi: 10.1016/j.jobe.2020.102102

    CrossRef Google Scholar

    [19] Correns C W, Steinborn W. Experimente zur Messung und Erklärung der sogenannten Kristallisationskraft[J]. Zeitschrift für Kristallographie-Crystalline Materials,1939,101(1-6):117−133.

    Google Scholar

    [20] Everett D H. The thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society,1961,57:1541−1551. doi: 10.1039/tf9615701541

    CrossRef Google Scholar

    [21] Flatt R J, Caruso F, Sanchez A M A, et al. Chemo-mechanics of salt damage in stone[J]. Nature Communications,2014,5(1):4823. doi: 10.1038/ncomms5823

    CrossRef Google Scholar

    [22] Hall K, Hall A. Weathering by wetting and drying: some experimental results[J]. Earth Surface Processes and Landforms,1996,21(4):365−376. doi: 10.1002/(SICI)1096-9837(199604)21:4<365::AID-ESP571>3.0.CO;2-L

    CrossRef Google Scholar

    [23] Hu T, Brimblecombe P, Zhang Z, et al. Capillary rise induced salt deterioration on ancient wall paintings at the Mogao Grottoes[J]. Science of The Total Environment,2023,881:163476. doi: 10.1016/j.scitotenv.2023.163476

    CrossRef Google Scholar

    [24] Jia H, Ding S, Wang Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology,2019,168:102893. doi: 10.1016/j.coldregions.2019.102893

    CrossRef Google Scholar

    [25] Jia H, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks[J]. Catena,2020,195:104915. doi: 10.1016/j.catena.2020.104915

    CrossRef Google Scholar

    [26] Jia H, Dong B, Wu D, et al. Capillary imbibition in layered sandstone[J]. Water,2023,15(4):737. doi: 10.3390/w15040737

    CrossRef Google Scholar

    [27] Jia H, Yang X, Wei Y, et al. Capillary imbibition laws of fresh–brackish waters in sandstone[J]. Water,2024,16(8):1180. doi: 10.3390/w16081180

    CrossRef Google Scholar

    [28] Lewin S Z. The mechanism of masonry decay through crystallization[J]. Conservation of Historic Stones Buildings and Monuments,1982(1):120−144.

    Google Scholar

    [29] Loubser M J. Weathering of basalt and sandstone by wetting and drying: a process isolation study[J]. Geografiska Annaler: Series A, Physical Geography,2013,95(4):295−304. doi: 10.1111/geoa.12023

    CrossRef Google Scholar

    [30] Lubelli B, Cnudde V, Diaz-Goncalves T, et al. Towards a more effective and reliable salt crystallization test for porous building materials: state of the art[J]. Materials and Structures,2018,51:1−21. doi: 10.1617/s11527-017-1129-0

    CrossRef Google Scholar

    [31] Murphy B P, Johnson J P L, Gasparini N M, et al. Chemical weathering as a mechanism for the climatic control of bedrock river incision[J]. Nature,2016,532(7598):223−227. doi: 10.1038/nature17449

    CrossRef Google Scholar

    [32] Pappalardo G, Mineo S, Caliò D, et al. Evaluation of natural stone weathering in heritage building by infrared thermography[J]. Heritage,2022,5(3):2594−2614. doi: 10.3390/heritage5030135

    CrossRef Google Scholar

    [33] Pel L, Huinink H, Kopinga K. Salt transport and crystallization in porous building materials[J]. Magnetic Resonance Imaging,2003,21(3-4):317−320. doi: 10.1016/S0730-725X(03)00161-9

    CrossRef Google Scholar

    [34] Richter D D, Eppes M C, Austin J C, et al. Soil production and the soil geomorphology legacy of Grove Karl Gilbert[J]. Soil Science Society of America Journal,2020,84(1):1−20. doi: 10.1002/saj2.20030

    CrossRef Google Scholar

    [35] Rodriguez-Navarro C, Doehne E. Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group,1999,24(3):191−209. doi: 10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G

    CrossRef Google Scholar

    [36] Sawdy-Heritage A M, Heritage A, Pel L. A review of salt transport in porous media, assessment methods and salt reduction treatments. In: Ottosen, L. M. (Ed.) Salt weathering on buildings and stone sculptures (SWBSS) proceedings[C]. Lyngby, Denmark, 2008, 1−27.

    Google Scholar

    [37] Scherer G W. Theory of drying[J]. Journal of the American Ceramic Society,1990,73(1):3−14. doi: 10.1111/j.1151-2916.1990.tb05082.x

    CrossRef Google Scholar

    [38] Scherer G W. Stress from crystallization of salt[J]. Cement and Concrete Research,2004,34(9):1613−1624. doi: 10.1016/j.cemconres.2003.12.034

    CrossRef Google Scholar

    [39] Sghaier N, Prat M. Effect of efflorescence formMeation on drying kinetics of porous media[J]. Transport in Porous Media,2009,80:441−454. doi: 10.1007/s11242-009-9373-6

    CrossRef Google Scholar

    [40] Shahidzadeh-Bonn N, Desarnaud J, Bertrand F, et al. Damage in porous media due to salt crystallization[J]. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,2010,81(6):066110.

    Google Scholar

    [41] Shen Y, Wang Y, Yang Y, et al. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface[J]. Construction and Building Materials,2019,213:156−166. doi: 10.1016/j.conbuildmat.2019.04.078

    CrossRef Google Scholar

    [42] Shokri N, Lehmann P, Or D. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-scale processes near vaporization surface[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,2010,81(4):046308. doi: 10.1103/PhysRevE.81.046308

    CrossRef Google Scholar

    [43] Siegesmund S, Weiss T, Vollbrecht A. Natural stone, weathering phenomena, conservation strategies and case studies: introduction[J]. Geological Society, London, Special Publications,2002,205(1):1−7. doi: 10.1144/GSL.SP.2002.205.01.01

    CrossRef Google Scholar

    [44] Steiger M, Asmussen S. Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4-H2O and the generation of stress.[J]. Geochimica et Cosmochimica Acta,2008,72(17):4291−4306. doi: 10.1016/j.gca.2008.05.053

    CrossRef Google Scholar

    [45] Wang T, Jia H, Sun Q, et al. Effects of thawing-induced softening on fracture behaviors of frozen rock[J]. Journal of Rock Mechanics and Geotechnical Engineering,2024,16(3):979−989. doi: 10.1016/j.jrmge.2023.07.016

    CrossRef Google Scholar

    [46] Wu Q, Meng Z, Tang H, et al. Experimental investigation on weakening of discontinuities at the interface between different rock types induced by wetting and drying cycles[J]. Rock Mechanics and Rock Engineering, 2022: 1−17.

    Google Scholar

    [47] Zhao Y, Ren S, Jiang D, et al. Influence of wetting-drying cycles on the pore structure and mechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials,2018,191:923−931. doi: 10.1016/j.conbuildmat.2018.10.069

    CrossRef Google Scholar

    [48] Zhang D, Kang Y, Selvadurai A P S, et al. Experimental investigation of the effect of salt precipitation on the physical and mechanical properties of a tight sandstone[J]. Rock Mechanics and Rock Engineering,2020,53(10):4367−4380. doi: 10.1007/s00603-019-02032-y

    CrossRef Google Scholar

    [49] Zhang Z T, Gao W H. Effect of different test methods on the disintegration behaviour of soft rock and the evolution model of disintegration breakage under cyclic wetting and drying[J]. Engineering Geology,2020a,279:105888. doi: 10.1016/j.enggeo.2020.105888

    CrossRef Google Scholar

    [50] Zhang Z, Niu Y, Shang X, et al. Deterioration of physical and mechanical properties of rocks by cyclic drying and wetting[J]. Geofluids,2021,2021(1):6661107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(289) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint