2025 Vol. 58, No. 3
Article Contents

GAO Xiaofeng, SUI Qinglin, YOU Minxin, HU Chaobin, ZHA Xianfeng, LI Meng, REN Guangli, LI Ting, YANG Min. 2025. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts. Northwestern Geology, 58(3): 206-220. doi: 10.12401/j.nwg.2025012
Citation: GAO Xiaofeng, SUI Qinglin, YOU Minxin, HU Chaobin, ZHA Xianfeng, LI Meng, REN Guangli, LI Ting, YANG Min. 2025. Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts. Northwestern Geology, 58(3): 206-220. doi: 10.12401/j.nwg.2025012

Study on Dynamic Mechanism of Magmatic Copper-Nickel Sulfide Deposits in Orogenic Belts

  • Previous studies have proposed various ore-forming dynamic models for magmatic Cu-Ni deposits in orogenic belts, including mantle plume overlapping orogenic belts, plate subduction and mantle plume interaction, partial melting of the lithospheric mantle, mixing of asthenospheric and lithospheric mantle during post-collision extension, and decompression melting caused by tearing of slab leading to asthenospheric mantle upwelling. However, the multiple episodes of subduction-accretion orogeny throughout the history of Earth evolution, the above dynamic processes have occurred, but Cu-Ni sulfide deposits have not been formed. Therefore, the key factors for the formation of Cu-Ni sulfide deposits in orogenic belts await further clarification. Based on the fact that the above models all point to Cu-Ni sulfide deposits in orogenic belts originating from subducted metasomatic mantle sources and forming after the peak subduction period, we propose a two-stage ore-forming dynamic model for Cu-Ni sulfide deposits in orogenic belts. Stage One: During the subduction period, interactions between mantle peridotites and silicic melts from the subducting slab lead to the release of elements such as nickel from olivine and sulfur carried by the subduction melts, thus forming a mantle source dominated by pyroxenite containing orthopyroxene and nickel sulfides. Stage Two: After the end of the subduction-collision period, the pyroxenite mantle source enriched during subduction enters the asthenospheric mantle through delamination and undergoes remelting, where the melting conditions change to near hydrous-free conditions. In this condition, these mafic magmas differentiate to form sulfur-rich, copper-affinitive sulfides crystallizing into sulfide piles or magma sulfide deposits. The large depth fault, ductile shear zones, and suture zones serve as magma conduits for the enrichment of the parent magma, with the combined action of source region and magmatic process leading to the formation of Cu-Ni sulfide deposits in orogenic belts.

  • 加载中
  • [1] 陈文, 孙枢, 张彦, 等. 新疆东天山秋格明塔什—黄山韧性剪切带40Ar/39Ar年代学研究[J]. 地质学报, 2005, 796): 790804.

    Google Scholar

    CHEN Wen, SUN Su, ZHANG Yan, et al. 40Ar/39Ar geochronology of the Qiugemingtashi-Huangshan ductile shear zone in east Tianshan, Xinjiang, NW China[J]. Acta Gological Sinica, 2005, 796): 790804.

    Google Scholar

    [2] 邓宇峰, 宋谢炎, 颉炜, 等. 新疆北天山黄山东含铜镍矿镁铁-超镁铁岩体的岩石成因: 主量元素、微量元素和Sr-Nd同位素证据[J]. 地质学报, 2011, 859): 3955.

    Google Scholar

    DENG Yufeng, SONG Xieyan, XIE Wei, et al. Petrogenesis of the Huangshandong Ni-Cu Sulfide-Bearing Mafic-Ultramafic Intrusion, Northern Tianshan, Xinjiang: Evidence from Major and Trace Elements and Sr-Nd Isotope[J]. Acta Geologica Sinica, 2011, 859): 3955.

    Google Scholar

    [3] 翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动—前沿热点介绍与展望[J]. 岩石学报, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

    CrossRef Google Scholar

    ZHAI Mingguo, ZHAO Lei, ZHU Xiyan, et al. Review and overview for the frontier hotspot: Early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

    CrossRef Google Scholar

    [4] 韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 4922): 24242429.

    Google Scholar

    HAN Baofu, JI Jianqing, SONG Biao, et al. SHRIMP zircon U-Pb ages of Kalatongke no. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 2004, 4922): 24242429.

    Google Scholar

    [5] 姜常义, 程松林, 叶书锋, 等. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因[J]. 岩石学报, 2006, 221): 115126. doi: 10.3321/j.issn:1000-0569.2006.01.012

    CrossRef Google Scholar

    JIANG Changyi, CHENG Songlin, YE Shufeng, et al. Lithogeochemistry and petrogenesis of Zhongposhanbei maflc rock body, at Beishan region, Xinjiang[J]. Acta Petrologica Sinica, 2006, 221): 115126. doi: 10.3321/j.issn:1000-0569.2006.01.012

    CrossRef Google Scholar

    [6] 姜常义, 凌锦兰, 周伟, 等. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 2015, 314): 11171136.

    Google Scholar

    JIANG Changyi, LING Jinlan, ZHOU Wei, et al. Petrogenesis of the Xiarihamu Ni-bearing layered mafic-ultramafic intrusion, East Kunlun: Implications for its extensional island arc environment[J]. Acta Petrologica Sinica, 2015, 314): 11171136.

    Google Scholar

    [7] 李文渊, 牛耀龄, 张照伟, 等. 新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景[J]. 地学前缘, 2012, 194): 4150.

    Google Scholar

    LI Wenyuan, NIU Yaoling, ZHANG Zhaowei, et al. Geodynamic setting and further exploration of magmatism related mineralization concentrated in the Late Paleozoic in the northern Xinjiang Autonomous Region[J]. Earth Science Frontiers, 2012, 194): 4150.

    Google Scholar

    [8] 李文渊, 王亚磊, 钱兵, 等. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 2020, 272): 276293.

    Google Scholar

    LI Wenyuan, WANG Yalei, QIAN Bing, et al. Discussion on the formation of magmatic Cu-Ni-Co sulfide deposits in mar-gin of Tarim Block[J]. Earth Science Frontiers, 2020, 272): 276293.

    Google Scholar

    [9] 李文渊. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 2018, 348): 22012210.

    Google Scholar

    LI Wenyuan. The primary discussion on the relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean[J]. Acta Petrologica Sinica, 2018, 348): 22012210.

    Google Scholar

    [10] 李文渊. 岩浆Ni-Cu-PGE矿床研究现状及发展趋势[J]. 西北地质, 2007, 402): 128. doi: 10.3969/j.issn.1009-6248.2007.02.001

    CrossRef Google Scholar

    LI Wenyuan. The Current Status and Prospect on Magmatic Ni-Cu-PGE Deposits[J]. Northwestern Geology, 2007, 402): 128. doi: 10.3969/j.issn.1009-6248.2007.02.001

    CrossRef Google Scholar

    [11] 马吉雄, 赵海超, 冶建虎. 青海格尔木市水仙南地区基性—超基性岩体特征及找矿前景分析[J]. 矿产勘查, 2022, 1310): 14301436.

    Google Scholar

    MA Jixiong, ZHAO Haichao, YE Jianhu. Characteristics of basic-ultrabasic rock mass and ore prospecting potential in Shuixiannan area, Ge’ermu city, Qinghai Province[J]. Mineral Exploration, 2022, 1310): 14301436.

    Google Scholar

    [12] 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 3011): 33453356.

    Google Scholar

    QI Shengsheng, SONG Shuguang, SHI Lianchang, et al. Discovery and its geological significance of Early Paleozoic eclogite inXiarihamu-Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 2014, 3011): 33453356.

    Google Scholar

    [13] 阮班晓, 吕新彪, 俞颖敏, 等. 新疆北山二叠纪镁铁-超镁铁质岩成因、成矿作用和找矿信息[J]. 地球科学, 2020, 4512): 44814497.

    Google Scholar

    RUAN Banxiao, LU Xinbiao, YU Yingmin, et al. Petrogenesis, Mineralization and Prospecting Information of Permian Mafic-Ultramafic Rocks, Beishan, Xinjiang[J]. Earth Science, 2020, 4512): 44814497.

    Google Scholar

    [14] 三金柱, 秦克章, 汤中立, 等. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J]. 岩石学报, 2010, 2610): 30273035.

    Google Scholar

    SAN Jinzhu, QIN Kezhang, TANG Zhongli, et al. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications[J]. Acta Petrologica Sinica, 2010, 2610): 30273035.

    Google Scholar

    [15] 宋谢炎, 胡瑞忠, 陈列锰. 中国岩浆铜镍硫化物矿床地质特点及其启示[J]. 南京大学学报(自然科学), 2018, 542): 221235.

    Google Scholar

    SONG XieYan, HU Ruizhong, CHEN Liemeng, et al. Characteristics and inspirations of the Ni-Cu sulfide deposits in China[J]. Journal of Nanjing University (Natural Science), 2018, 542): 221235.

    Google Scholar

    [16] 宋谢炎. 岩浆硫化物矿床研究现状及重要科学问题[J]. 矿床地质, 2019, 384): 699710.

    Google Scholar

    SONG Xieyan. Current research status and important issues of magmatic sulfide deposits[J]. Mineral Deposits, 2019, 384): 699710.

    Google Scholar

    [17] 苏本勋. 新疆北山镁铁-超镁铁岩的成岩过程、成矿作用及对东天山-北山构造演化与早二叠世地幔柱的制约[D]. 北京: 中国科学院研究生院, 2011.

    Google Scholar

    [18] 孙涛, 钱壮志, 汤中立, 等. 新疆葫芦铜镍矿床锆石U-Pb年代学、铂族元素地球化学特征及其地质意义[J]. 岩石学报, 2010, 2611): 33393349.

    Google Scholar

    SUN Tao, QIAN Zhuangzhi, TANG Zhongli, et al. Zircon U-Pb chronology, platinum group element geochemistry characteristics of Hulu Cu-Ni deposit, East Xinjiang, and its geological significance[J]. Acta Petrologica Sinica, 2010, 2611): 33393349.

    Google Scholar

    [19] 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 216): 381401.

    Google Scholar

    WANG Guan, SUN Fengyue, LI Bile, et al. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun, with implications for geodynamic setting[J]. Earth Science Frontiers, 2014, 216): 381401.

    Google Scholar

    [20] 王小红, 杨建国, 王磊, 等. 地质物化探综合方法在甘肃北山红柳沟铜镍矿的应用[J]. 西北地质, 2023, 566): 254261.

    Google Scholar

    WANG Xiaohong, YANG Jianguo, WANG Lei, et al. The Application Effect of Geological Geophysical and Geochemical Exploration Comprehensive Method in Hongliugou Copper–Nickel Deposit, Beishan, Gansu Province[J]. Northwestern Geology, 2023, 566): 254261.

    Google Scholar

    [21] 王亚磊, 李文渊, 林艳海, 等. 金川超大型铜镍矿床钴的赋存状态与富集过程研究[J]. 西北地质, 2023, 562): 133150.

    Google Scholar

    WANG Yalei, LI Wenyuan, LIN Yanhai, et al. Study on the Occurrence State and Enrichment Process of Cobalt in Jinchuan Giant Magmatic Ni−Cu Sulfide Deposit[J]. Northwestern Geology, 2023, 562): 133150.

    Google Scholar

    [22] 王振朝. 塔里木二叠纪溢流玄武岩岩石成因研究[D]. 北京: 中国地质大学(北京), 2019: 29−33.

    Google Scholar

    WANG Zhenchao. Petrogenesis of Permian overflow basalt in Tarim [D]. Beijing: China University of Geosciences (Beijing), 2019: 29−33.

    Google Scholar

    [23] 夏明哲, 姜常义, 钱壮志, 等. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因[J]. 岩石学报, 2010, 268): 24132430.

    Google Scholar

    XIA Mingzhe, JIANG Changyi, QIAN Zhuangzhi, et al. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 268): 24132430.

    Google Scholar

    [24] 肖庆华, 秦克章, 唐冬梅, 等. 新疆哈密香山铜镍-钛铁矿床系同源岩浆分异演化产物—矿相学、锆石U-Pb年代学及岩石地球化学证据[J]. 岩石学报, 2010, 262): 503522.

    Google Scholar

    XIAO Qinghua, QIN Kezhang, TANG Dongmei, et al. Xiangshanxi composite Cu-Ni-Ti-Fe deposit belongs to comagmatic evolution product: Evidences from ore microscopy, zircon U-Pb chronology and petrological geochemistry, Hami, Xinjiang, NW China[J]. Acta Petrologica Sinica, 2010, 262): 503522.

    Google Scholar

    [25] 熊小林, 刘星成, 李立, 等. 俯冲带微量元素分配行为研究: 进展和展望[J]. 中国科学: 地球科学, 2020, 6312): 19381951.

    Google Scholar

    XIONG Xiaolin, LIU Xingcheng, LI Li, et al. The Partitioning behavior of trace elements in subduction zones: Advances and Prospects[J]. Science China Earth Sciences, 2020, 6312): 19381951.

    Google Scholar

    [26] 徐刚. 甘肃北山地区黑山铜镍硫化物矿床成矿作用研究[D]. 西安: 长安大学, 2013.

    Google Scholar

    XU Gang. Study on mineralization of Heishan Copper-nickel sulfide deposit in Beishan area, Gansu Province [D]. Xi'an: Chang 'an University, 2013.

    Google Scholar

    [27] 薛胜超, 刘金宇, 周翊, 等. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03

    CrossRef Google Scholar

    XUE Shengchao, LIU Jinyu, ZHOU Yi, et al. Genetic correlation of metasomatized mantle source with Ni-Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03

    CrossRef Google Scholar

    [28] 杨兴科, 张连昌, 姬金生, 等. 东天山秋格明塔什-黄山韧性剪切带变形特征分析[J]. 西安工程学院学报, 1998, 203): 1118.

    Google Scholar

    YANG Xingke, ZHANG Lianchang, JI Jinshen, et al. Analysis of deformation features of Qiumingtashi Huangshan ductile shear zone, Eastern Tianshan[J]. Journal of Xi’an Engineering University, 1998, 203): 1118.

    Google Scholar

    [29] 尤敏鑫. 新疆东天山西段岩浆铜镍硫化物矿床岩浆起源与成矿机制[D]. 北京: 中国地质科学院, 2022: 1−251.

    Google Scholar

    YOU Minxin. Origin and genetic mechanism of magmatic Ni-Cu sulfide deposits in the western part of Eastern Tianshan region, Xinjiang, China[D]. Beijing: Chinese Academy of Geological Sciences, 2022: 1−251.

    Google Scholar

    [30] 余星. 塔里木早二叠世大火成岩省的岩浆演化与深部地质作用[D]. 杭州: 浙江大学, 2009: 1−141.

    Google Scholar

    YU Xing. Magmatic evolution and deep geological processes of the large igneous province in the Early Permian, Tarim [D]. Hangzhou: Zhejiang University, 2009: 1−141.

    Google Scholar

    [31] 张照伟, 谭文娟, 杜辉, 等. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究[J]. 西北地质, 2023, 566): 242253.

    Google Scholar

    ZHANG Zhaowei, TAN Wenjuan, DU Hui, et al. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China[J]. Northwestern Geology, 2023, 566): 242253.

    Google Scholar

    [32] 张宗清, 杜安道, 唐索寒, 等. 金川铜镍矿床年龄和源区同位素地球化学特征[J]. 地质学报, 2004, 783): 359365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    CrossRef Google Scholar

    ZHANG Zhongqing, DU Andao, TANG Suohan, et al. Age of the Jinchuan Copper-Nickel Deposit and Isotopic Geochemical Feature of Its Source[J]. Acta Geologica Sinica, 2004, 783): 359365. doi: 10.3321/j.issn:0001-5717.2004.03.009

    CrossRef Google Scholar

    [33] 赵子福, 戴立群, 郑永飞. 大陆俯冲带两类壳幔相互作用[J]. 中国科学: 地球科学, 2015, 587): 12691283.

    Google Scholar

    ZHAO Zhifu, DAI Liqun, ZHENG Yongfei. Two types of the crust-mantle interaction in continental subduction zones[J]. Science China: Earth Sciences, 2015, 587): 12691283.

    Google Scholar

    [34] 赵达成, 王美乐, 李章志贤, 等. 夏日哈木岩浆硫化物矿床中钴和镍关键金属的赋存状态及分布规律[J]. 西北地质, 2023, 566): 1740.

    Google Scholar

    ZHAO Dacheng, WANG Meile, LI Zhangzhixian, et al. The Occurrence and Distribution of Cobalt and Nickel Key Metals in the Xiarihamu Magmatic Sulfide Deposit[J]. Northwestern Geology, 2023, 566): 1740.

    Google Scholar

    [35] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 593): 651681.

    Google Scholar

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones[J]. Science China Earth Sciences, 2016, 593): 651681.

    Google Scholar

    [36] 周伟, 汪帮耀, 夏明哲, 等. 东昆仑石头坑德镁铁-超镁铁质岩体矿物学特征及成矿潜力分析[J]. 岩石矿物学杂志, 2016, 351): 8196. doi: 10.3969/j.issn.1000-6524.2016.01.006

    CrossRef Google Scholar

    ZHOU Wei, WANG Bangyao, XIA Mingzhe, et al. Mineralogical characteristics of Shitoukengde mafic_ultramafic intrusion and analysis of its metallogenic potential, East Kunlun[J]. Acta Petrologica et Mineralogica, 2016, 351): 8196. doi: 10.3969/j.issn.1000-6524.2016.01.006

    CrossRef Google Scholar

    [37] 钟世华, 黄宇, 刘永乐, 等. 东昆仑志留纪—泥盆纪关键金属成矿大爆发[J]. 地质通报, 2025, 444): 574586.

    Google Scholar

    ZHONG Shihua, HUANG Yu, LIU Yongle, et al. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt[J]. Geological Bulletin of China, 2025, 444): 574586.

    Google Scholar

    [38] Abzalov M Z, Both R A. The Pechenga Ni-Cu deposits, Russia-Data on PGE and Au distribution and sulphur-isotope compositions[J]. Mineralogy and Petrology, 1997, 61: 119143. doi: 10.1007/BF01172480

    CrossRef Google Scholar

    [39] Annen C, Blundy J D, Sparks R S J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones[J]. Journal of Petrology, 20063): 505539.

    Google Scholar

    [40] Barnes S J, Godel B, Gűrer D, et al. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides[J]. Economic Geology, 2013, 108: 19711982.

    Google Scholar

    [41] Barnes S J, Makkonen H V, Dowling S E, et al. The 1.88 Ga Kotalahti and Vammala Nickel Belts, Finland: Geochemistry of the mafic and ultramafic metavolcanic rocks[J]. Bulletin of Geology Society of Finland, 2009, 81: 103141. doi: 10.17741/bgsf/81.2.002

    CrossRef Google Scholar

    [42] Barnes, Sarah-Jane, Melezhik VA et al. The composition and mode of formation of the Pechenga nickel deposits, Kola Peninsula, northwestern Russia[J]. The Canadian Mineralogist, 2001, 39: 447471. doi: 10.2113/gscanmin.39.2.447

    CrossRef Google Scholar

    [43] Bird, P. Continental delamination and the Colorado Plateau[J]. Journal of Geophysical Research-Solid Earth, 1979, 84: 75617571. doi: 10.1029/JB084iB13p07561

    CrossRef Google Scholar

    [44] Bizimis M, Peslier A H. Water in Hawaiian garnet pyroxenites: implications for water heterogeneity in the mantle[J]. Chemical Geology, 2015, 397: 6175. doi: 10.1016/j.chemgeo.2015.01.008

    CrossRef Google Scholar

    [45] Branquet Y, Gumiaux C, Sizaret S, et al. Synkinematic mafic/ultramafic sheeted intrusions: Emplacement mechanismand strain restoration of the Permian Huangshan Ni-Cu ore belt (eastern Tianshan, NW China)[J]. Journal of Asian Earth Sciences, 2012, 56: 240257. doi: 10.1016/j.jseaes.2012.05.021

    CrossRef Google Scholar

    [46] Brzozowski M J, Good D J, Yan W H, et al. Mg-Fe isotopes link the geochemical complexity of the Coldwell Complex, Midcontinent Rift to metasomatic processes in the mantle[J]. Journal of Petrology, 2022, 638): egac081. doi: 10.1093/petrology/egac081

    CrossRef Google Scholar

    [47] Brzozowski M J, Samson I M, Gagnon J E, et al. Oxide mineralogy and trace element chemistry as an index to magma evolution and Marathon-type mineralization in the Eastern Gabbro of the alkaline Coldwell Complex, Canada[J]. Mineralium Deposita, 2021, 56: 621642. doi: 10.1007/s00126-020-00985-7

    CrossRef Google Scholar

    [48] Casquet C, Galindo C, Tornos F et al. The Aguablanca Cu–Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd)and ore (S)[J]. Ore Geology Reviews, 2001, 18: 237250.

    Google Scholar

    [49] Chauvel C, Marini J C, Plank T, et al. Ludden, J. N., 2009. Hf–Nd input flux in the Izu–Mariana subduction zone and recycling of subducted material in the mantle[J]. Geochemistry, Geophysics, Geosystems, 2009, 10, Q01001.

    Google Scholar

    [50] Chen L M, Song X Y, Hu R Z, et al. Mg- Sr-Nd isotopic insights into petrogenesis of the Xiarihamu mafic-ultramafic intrusion, northern Xizang Plateau, China[J]. Journal of Petrology, 2021, 622): egaa113. doi: 10.1093/petrology/egaa113

    CrossRef Google Scholar

    [51] Condie K C, Kröner A. When did plate tectonics begin? Evidence from the geologic record. In: Condie K C and Pease V(eds.). When did Plate Tectonics Begin on Planet Earth? [M]. Geological Society of America, 2008, 440: 281−294.

    Google Scholar

    [52] Cui M M, Su B X, Wang J, et al. Linking selective alteration, mineral compositional zonation and sulfide melt emplacement in orogenic-type magmatic Ni-Cu sulfide deposits[J]. Journal of Petrology, 2022, 636): egac043. doi: 10.1093/petrology/egac043

    CrossRef Google Scholar

    [53] Deng Y F, Song X Y, Xie W, et al. The role of external sulfur in triggering sulfide immiscibility at depth: Evidence from the Huangshan-Jingerquan Ni-Cu Metallogenic Belt, NW China[J]. Economic Geology, 2022, 1178): 18671879. doi: 10.5382/econgeo.4928

    CrossRef Google Scholar

    [54] Deng Z B, Chaussidon M, Guitreau M, et al. An oceanic subduction origin for Archaern granitoids revealed by silicon isotopes[J]. Nature Geoscience, 2019, 129): 774778. doi: 10.1038/s41561-019-0407-6

    CrossRef Google Scholar

    [55] Ding X, Ripley E M, Li C S et al. Multiple S isotopic study of the Eagle Ni-Cu-PGE magmatic deposit, northern Michigan, USA [abs.]: American Geophysical Union, Fall Meeting 2009, abstract, V21A-1971.

    Google Scholar

    [56] Dong Y P, He D F, Sun S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth Science Reviews, 2018, 186: 231–261.

    Google Scholar

    [57] Duan J, Li C S, Qian Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China[J]. Mineralium Deposita, 2016, 514): 557574. doi: 10.1007/s00126-015-0626-8

    CrossRef Google Scholar

    [58] Ducea M N, Bowman E, Chapman A D, et al. Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry[J]. Earth Science Reviews, 2021, 314: 103375.

    Google Scholar

    [59] Gao J F, Zhou M F, Lightfoot P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshangdong Ni-Cu sulfide deposit, Xinjiang, northwestern China[J]. Economic Geology, 2013, 1088): 18331848. doi: 10.2113/econgeo.108.8.1833

    CrossRef Google Scholar

    [60] Ge R F, Zhu W B, Wilde S A, et al. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 42): eaao3159. doi: 10.1126/sciadv.aao3159

    CrossRef Google Scholar

    [61] Good D J, Hollings P, Dunning G, et al. A new model for the Coldwell Complex and associated dykes of the Midcontinent Rift, Canada[J]. Journal of Petrology, 2021, 627): egab036. doi: 10.1093/petrology/egab036

    CrossRef Google Scholar

    [62] Good D J, Lightfoot P C. Significance of the metasomatized lithospheric mantle in the formation of early basalts and Cu-platinum group element sulfide mineralization in the Coldwell Complex Midcontinent Rift, Canada[J]. Canadian Journal of Earth Sciences, 2019, 567): 693714. doi: 10.1139/cjes-2018-0042

    CrossRef Google Scholar

    [63] Grinenko L N. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform[J]. International Geology Review, 1985, 28: 695708.

    Google Scholar

    [64] Helmy H M and Mogessie A. Gabbro Akarem, eastern Desert, Egypt: Cu-Ni-PGE mineralization in a concentrically zoned mafic-ultramafic complex[J]. Mineralium Deposita, 2001, 361): 5871. doi: 10.1007/s001260050286

    CrossRef Google Scholar

    [65] Herzberg C, Gazel E. Petrological evidence for secular cooling in mantle plumes[J]. Nature, 2009, 458: 619622. doi: 10.1038/nature07857

    CrossRef Google Scholar

    [66] Herzberg C. Petrological evidence from komatiites for an early Earth carbon and water cycle[J]. Journal of Petrology, 2016, 57: 117. doi: 10.1093/petrology/egw007

    CrossRef Google Scholar

    [67] Himmelberg G R and Loney R A. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska[J]. US Geological Survey, Professional Papers, 1995, 1564: 147.

    Google Scholar

    [68] Ivanov A V. Why volatiles are required for cratonic flood basalt volcanism: Two examples from the Siberian craton, in Foulger, G. R., Lustrino, M., and King, S. D., eds., The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson: Geological Society of America Special Paper 514 and American Geophysical Union Special Publication, 2015, 71: 325-338.

    Google Scholar

    [69] Lee C T, Anderson D. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle[J]. Science Bulletin, 2015, 60: 11411156. doi: 10.1007/s11434-015-0828-6

    CrossRef Google Scholar

    [70] Lee C T, Cheng X, Horodyskyj U. The development and refinement of continental arcs by primary basalt magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California[J]. Contributions to Mineralogy and Petrology, 2006, 151: 222242. doi: 10.1007/s00410-005-0056-1

    CrossRef Google Scholar

    [71] Li C S, Ripley E M, Naldrett A J. Compositional variation of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia—Implications for ore-forming processes in dynamic magma conduits[J]. Economic Geology, 2003, 98: 6886.

    Google Scholar

    [72] Li C, Zhang M J, Fu P, et al. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism?[J]. Mineralium Deposita, 2012, 47: 5167.

    Google Scholar

    [73] Li C, Zhang Z, Li W, et al. Geochronology, petrology and Hf-S isotope geochemistry of the newly discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Xizang plateau, western China[J]. Lithos, 2015, 216-217: 224240. doi: 10.1016/j.lithos.2015.01.003

    CrossRef Google Scholar

    [74] Li Y Q, Li Z L, Sun Y L, et al. Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin, northwest China: Implications for the evolution of the Tarim Large Igneous Province[J]. Chemical Geology, 2012a, 328: 278289. doi: 10.1016/j.chemgeo.2012.03.007

    CrossRef Google Scholar

    [75] Lightfoot P C and Evans-Lamswood D. Structural controls on the primary distribution of mafic-ultramafic intrusions containing Ni-Cu-Co-(PGE) sulfide mineralization in the roots of large igneous provinces[J]. Ore Geology Reviews, 2015, 64: 354386. doi: 10.1016/j.oregeorev.2014.07.010

    CrossRef Google Scholar

    [76] Lightfoot P C, Naldrett A J, Hawkesworth C J. The geology and geochemistry of the Waterfall Gorge Section of the Insizwa Complex with particular reference to the origin of the nickel sulfide deposits[J]. Economic Geology, 1984, 79: 18571879. doi: 10.2113/gsecongeo.79.8.1857

    CrossRef Google Scholar

    [77] Liu J, Xia Q K, Kuritani T, et al. Mantle hydration and the role of water in the generation of large igneous provinces[J]. Nature Communications, 2017, 81): 1824. doi: 10.1038/s41467-017-01940-3

    CrossRef Google Scholar

    [78] Loney R A and Himmelberg G R. Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales Island; an Early Paleozoic Alaskan-type ultramafic body[J]. The Canadian Mineralogist, 1992, 304): 10051022.

    Google Scholar

    [79] Maier W D, Barnes S J, Chinyepi G, et al. The composition of magmatic Ni-Cu-(PGE) sulfide deposits in the Tati and Selebi-Phikwe belts of eastern Botswana[J]. Mineralium Deposita, 2008, 431): 3760. doi: 10.1007/s00126-007-0143-5

    CrossRef Google Scholar

    [80] Maier W D, Barnes S J. The Kabanga Ni sulfide deposits, Tanzania-II. Chalcophile and siderophile element geochemistry[J]. Mineralium Deposita, 2010, 45: 443460. doi: 10.1007/s00126-010-0283-x

    CrossRef Google Scholar

    [81] Makkonen H V, Huhma H. Sm-Nd data for mafic-ultramafic intrusions in the Svecofennian (1.88 Ga) Kotalahti Nickel Belt, Finland–implications for crustal contamination at the Archaean/Proterozoic boundary[J]. Bulletin of the Geological Society of Finland, 2007, 79: 175201. doi: 10.17741/bgsf/79.2.003

    CrossRef Google Scholar

    [82] Manning C E. The chemistry of subduction-zone fluids[J]. Earth Planetary Science Letters, 2004, 2231-2): 116. doi: 10.1016/j.jpgl.2004.04.030

    CrossRef Google Scholar

    [83] Manor M J, Scoates J S, Nixon G T, et al. The giant Mascot Ni-Cu-PGE deposit, British Columbia: Mineralized conduits in a convergent margin tectonic setting[J]. Economic Geology, 2016, 1111): 5783. doi: 10.2113/econgeo.111.1.57

    CrossRef Google Scholar

    [84] Mao Y J, Qin K Z, Li C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Centeral Asian Orogenic Belt, western China[J]. Lithos, 2014, 200-201: 111125. doi: 10.1016/j.lithos.2014.04.008

    CrossRef Google Scholar

    [85] Meissner R, Mooney W. 1998 Weakness of the lower continental crust: a condition for delamination, uplift, and escape[J]. Tectonophysics, 1998, 296: 4760. doi: 10.1016/S0040-1951(98)00136-X

    CrossRef Google Scholar

    [86] Naldrett A J. Magmatic sulfide deposits-geology, geochemistry and exploration[M]. Berlin: Heidelberg. New York: Springer. 2004, 1728.

    Google Scholar

    [87] Niu Y, Wilson M, Humphreys E R, et al. The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications[J]. Journal of Petrology, 2011, 52: 14431468. doi: 10.1093/petrology/egr030

    CrossRef Google Scholar

    [88] O′Neil J, Maurice C, Stevenson R K, et al. The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) greenstone belt, northeastern Superior Province, Canada[J]. Developments in Precambrian Geology, 2007, 15: 219250. doi: 10.1016/S0166-2635(07)15034-9

    CrossRef Google Scholar

    [89] Ortega L, Lunar R, Garcia-Palomero F, et al. The Aguablanca Ni-Cu-PGE Deposit, southwestern Iberia: Magmatic ore-forming processes and retrograde evolution[J]. Canadian Mineralogist, 2004, 42: 325350. doi: 10.2113/gscanmin.42.2.325

    CrossRef Google Scholar

    [90] Peltonen P. Magma-country rock interaction and the genesis of Ni-Cu deposits in the Vammala nickel belt, SW Finland[J]. Mineralogy and Petrology, 1995, 52: 124. doi: 10.1007/BF01163124

    CrossRef Google Scholar

    [91] Peng B, Sun F Y, Li B L, et al. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Ore Geology Reviews, 2016, 73: 1328. doi: 10.1016/j.oregeorev.2015.10.014

    CrossRef Google Scholar

    [92] Pettigrew N T and Hattori K H. The Quetico intrusions of western superior province: Neo-Archean examples of Alaskan /Uraltype mafic-ultramafic intrusions[J]. Precambrian Research, 2006, 1491-2): 2142. doi: 10.1016/j.precamres.2006.06.004

    CrossRef Google Scholar

    [93] Piňa R, Lunar R, Ortega L, et al. Petrology and geochemistry of mafic-ultramafic fragments from the Aguablanca Ni-Cu Ore Breccia, southwest Spain[J]. Economic Geology, 2006, 101: 865881. doi: 10.2113/gsecongeo.101.4.865

    CrossRef Google Scholar

    [94] Piña R, Romeo I, Ortega L, et al. Origin and emplacement of the Aguablanca magmatic Ni-Cu-(PGE) sulfide deposit, SW Iberia: A multidisciplinary approach[J]. Geological Society of America Bulletin, 2012, 1225-6): 915925.

    Google Scholar

    [95] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145: 325394. doi: 10.1016/S0009-2541(97)00150-2

    CrossRef Google Scholar

    [96] Qin K Z, Su B X, Sakyi P A, et al. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim basin (NW China): Constraints on a ca. 280 Ma mantle plume2006[J]. American Journal of Science, 2011, 311: 237260. doi: 10.2475/03.2011.03

    CrossRef Google Scholar

    [97] Ripley E M, Li C S and Thakurta J. Magmatic Cu-Ni-PGE mineralization at a convergent plate boundary: Preliminary mineralogic and isotopic studies of the Duke Island complex, Alaska[A]. In: Mao J and Bierlein F P, eds. Mineral deposit research: Meeting the global challenge[C]. Berlin, Heidelberg: Springer, 2005, 49−51.

    Google Scholar

    [98] Ripley E M, Park Y R, Li C S, et al. Sulfur and oxygen isotopic evidence of country-rock contamination in the Voisey’s Bay Ni-Cu-Co deposit, Labrador, Canada[J]. Lithos, 1999, 47: 5368. doi: 10.1016/S0024-4937(99)00007-9

    CrossRef Google Scholar

    [99] Ripley E M, Sarkar A, Li C S. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China[J]. Economic Geology, 2005a, 100: 13491361. doi: 10.2113/gsecongeo.100.7.1349

    CrossRef Google Scholar

    [100] Ripley EM, Li, Chusi. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits[J]. Economic Geology, 2003, 98: 635641. doi: 10.2113/gsecongeo.98.3.635

    CrossRef Google Scholar

    [101] Scheel J E, Scoates J S, Nixon G T. Chromian spinel in the Turnagain Alaskan-type ultramafic intrusion, northern British Columbia, Canada[J]. The Canadian Mineralogist, 2009, 471): 6380. doi: 10.3749/canmin.47.1.63

    CrossRef Google Scholar

    [102] Schmidt M W, Poli S. Devolatilization during subduction[M]. In: Turekian K K, ed. Treatise on Geochemistry (Second Edition). Oxford: Elsevier, 2014, 669–697.

    Google Scholar

    [103] Seat Z, Beresford S W, Grguric B A, et al. Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits—Evidence from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia[J]. Economic Geology, 2009, 104: 521538. doi: 10.2113/gsecongeo.104.4.521

    CrossRef Google Scholar

    [104] Song S G, Bi H Z, Qi S S, et al. HP-UHP metamorphic belt in the East Kunlun Orogen: Final closure of the proto-tethys Ocean and formation of the Pan-North-China Continent[J]. Journal of Petrology, 2018, 5911): 20432060. doi: 10.1093/petrology/egy089

    CrossRef Google Scholar

    [105] Song X Y and Li X R. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide Mineralization in a post-collisional environment[J]. Mineralium Deposita, 2009, 44: 303327. doi: 10.1007/s00126-008-0219-x

    CrossRef Google Scholar

    [106] Song X Y, Chen L M, Deng Y F et al. Syn-collisional tholeiitic magmatism induced by asthenosphere upwelling due to slab detachment at the southern margin of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, London, 2013, 170: 941950. doi: 10.1144/jgs2012-130

    CrossRef Google Scholar

    [107] Song X Y, Deng Y F, Xie W, et al. Prolonged basaltic magmatism and short-lived magmatic sulfide mineralization in Orogenic belts[J]. Lithos, 2021, 390-391: 106114. doi: 10.1016/j.lithos.2021.106114

    CrossRef Google Scholar

    [108] Song X Y, Xie W, Deng Y F, et al. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China[J]. Lithos, 2011, 127: 128143. doi: 10.1016/j.lithos.2011.08.011

    CrossRef Google Scholar

    [109] Song X Y, Yi J N, Chen L M, et al. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun Orogenic Belt, northern Xizang Plateau, China[J]. Economic Geology, 2016, 111: 2955. doi: 10.2113/econgeo.111.1.29

    CrossRef Google Scholar

    [110] Su B X, Qin K Z, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 202-3): 516531. doi: 10.1016/j.gr.2010.11.015

    CrossRef Google Scholar

    [111] Su B X, Qin K Z, Sakyi P A, et al. Occurrence of an Alaskan-type complex in the middle Tianshan massif, Central Asian Orogenic Belt: Inferences from petrological and mineralogical studies[J]. International Geology Review, 2012, 543): 249269. doi: 10.1080/00206814.2010.543009

    CrossRef Google Scholar

    [112] Su B X, Qin K Z, Tang D M, et al. Late Paleozoic mafic-ultramafic intrusions in southern Central Asian Orogenic belt (NW China): Insight into magmatic Ni-Cu sulfide mineralization in orogenic setting[J]. Ore Geology Reviews, 2013, 51: 5773. doi: 10.1016/j.oregeorev.2012.11.007

    CrossRef Google Scholar

    [113] Sun T, Qian Z Z, Deng, Y F, et al. PGE and isotopte (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, Northwestern China[J]. Economic Geology, 2013, 108: 18491864. doi: 10.2113/econgeo.108.8.1849

    CrossRef Google Scholar

    [114] Tang D M, Qin K Z, Li C S, et al. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intruison in the Central Asian Orogenic Belt, NW China[J]. Lithos, 2011, 126: 8498. doi: 10.1016/j.lithos.2011.06.007

    CrossRef Google Scholar

    [115] Tang D M, Qin K Z, Su B X, et al. Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: Evidence from isotopic geochemistry of olivine and zircon[J]. Mineralium Deposita, 2022, 572): 235254. doi: 10.1007/s00126-021-01063-2

    CrossRef Google Scholar

    [116] Tang D M, Qin K Z, Su B X, et al. Magma source and tectonics of the Xiangshanzhong mafic–ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures[J]. Lithos, 2013, 170-171: 144163. doi: 10.1016/j.lithos.2013.02.013

    CrossRef Google Scholar

    [117] Tang D M, Qin K Z, Sun H, et al. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwest China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes[J]. Journal of Asian Earth Sciences, 2012, 49: 145160. doi: 10.1016/j.jseaes.2011.11.014

    CrossRef Google Scholar

    [118] Tang Q Y, Bao J, Dang Y X et al. Mg–Sr–Nd isotopic constraints on the genesis of the giant Jinchuan Ni–Cu–(PGE) sulfide deposit, NW China[J]. Earth and Planetary Science Letters, 2018, 502: 221230. doi: 10.1016/j.jpgl.2018.09.008

    CrossRef Google Scholar

    [119] Taylor H P. The zoned ultramafic complexes of southeastern Alaska[A]. Part 4. In: Wyllie P J, ed. Ultramafic related rocks[M]. New York: John Wiley and Sons Incorporated, 1967, 96−118.

    Google Scholar

    [120] Thakurta J, Ripley E M and Li C. Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska[J]. Geochemistry Geophysics Geosystems, 2008, 9: Q07003.

    Google Scholar

    [121] Ueda, K., Gerya, T. V. & Burg, J. -P. Delamination in collisional orogens: thermomechanical modeling[J]. Journal of Geophysical Research-Solid Earth, 2012, 117, 2012JB009144.

    Google Scholar

    [122] Vervoort J D, Patchett P J, Blichert-Toft J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Planetary Science Letters, 1999, 1681): 7999.

    Google Scholar

    [123] Wang B, Chuzel D, Jahn B M, et al. Late Paleozoic pre- and syn-kinematic plutons of the Kangguer-Huangshan shear zone: Inference on the tectonic evolution of the Eastern Chinese North Tianshan[J]. American Journal of scicence, 2014, 314: 4379. doi: 10.2475/01.2014.02

    CrossRef Google Scholar

    [124] Wang Y L, Xue S C, Wang X M, et al. PGE geochemical and Os-S-Sr-Nd isotopic constrains on the genesis of the Shitoukengde magmatic sulfide deposit in the East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews, 2023, 156: 105396. doi: 10.1016/j.oregeorev.2023.105396

    CrossRef Google Scholar

    [125] Wei B, Wang C Y, Li P. Syn-collisional extension and Ni-Cu sulfide-bearing mafic magma emplacement along the Irtysh Shear Zone in the Central Asian Orogenic belt[J]. Geological Society of America Bulletin, 2023, 1361/2): 403417.

    Google Scholar

    [126] Wei X, Xu Y G, Feng Y X, et al. Plume-lithosphere interaction in the generation of the Tarim large igneous province, NW China: Geochronological and geochemical constraints[J]. American Journal of Science, 2014, 314: 314356. doi: 10.2475/01.2014.09

    CrossRef Google Scholar

    [127] Windley B F. Overview and history of investigation of early earth rocks[J]. Developments in Precambrian Geology, 2007, 15: 37. doi: 10.1016/S0166-2635(07)15011-8

    CrossRef Google Scholar

    [128] Xia L Q, Xia Z C, Xu X Y, et al. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 2008, 31: 357378. doi: 10.1016/j.jseaes.2007.07.002

    CrossRef Google Scholar

    [129] Xia L Q, Xu X Y, Li X M, et al. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas[J]. Geoscience Frontiers, 2012, 3: 445471. doi: 10.1016/j.gsf.2011.12.011

    CrossRef Google Scholar

    [130] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304: 370395. doi: 10.2475/ajs.304.4.370

    CrossRef Google Scholar

    [131] Xie W, Song X Y, Chen L M, et al. Geochemistry insights on the genesis of the subduction- related Heishan Magmatic Ni-Cu-(PGE) deposit in Gansu, NW China, at the southern margin of the Central Asian Orogenic Belt[J]. Economic Geology, 2014, 109: 15631583. doi: 10.2113/econgeo.109.6.1563

    CrossRef Google Scholar

    [132] Xie W, Song X Y, Deng Y F, et al. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt[J]. Lithos, 2012, 144-145: 209230. doi: 10.1016/j.lithos.2012.03.010

    CrossRef Google Scholar

    [133] Xie W, Xu Y G, Chen Y B, et al. High-alumina basalts from the Bogda Mountains suggest an arc setting for Chinese Northern Tianshan during the Late Carboniferous[J]. Lithos, 2016, 256-257: 165181. doi: 10.1016/j.lithos.2016.04.005

    CrossRef Google Scholar

    [134] Xue S C, Li C S, Qin K Z, et al. A non-plume model for the Permian protracted (266-286 Ma) basaltic magmatism in the Beishan-Tianshan region, Xinjiang, western China[J]. Lithos, 2016, 256-257: 243249. doi: 10.1016/j.lithos.2016.04.018

    CrossRef Google Scholar

    [135] Xue S C, Li C S, Qin K Z, et al. Sub-arc mantle heterogeneity in oxygen isotopes: evidence from Permian mafic-ultramafic intrusions in the Central Asian Orogenic Belt[J]. Contributions to Mineralogy and Petrology, 2018, 17311): 94. doi: 10.1007/s00410-018-1521-y

    CrossRef Google Scholar

    [136] Xue S C, Wang Q F, Wang Y L, et al. The roles of various types of crustal contamination in the genesis of the Jinchuan magmatic Ni-Cu-PGE deposit: New mineralogical and C-S-Sr-Nd isotope constraints. Economic Geology, 2023, 118(8): 1795-1812.

    Google Scholar

    [137] Yuan C, Sun M, Wilde S, Xiao W, et al. 2010. Post-collisional plutons in the Balikun area, East Chinese Tianshan: evolving magmatism in response to extension and slab break-off[J]. Lithos, 2010, 1193-4): 269288. doi: 10.1016/j.lithos.2010.07.004

    CrossRef Google Scholar

    [138] Zelenski M, Kamenetsky V S, Nekrylov N, et al. Sulfide-sulfate metasomatism and nickel release in the suprasubduction mantle[J]. Earth and Planetary Science Letters, 2024, 626: 118500. doi: 10.1016/j.jpgl.2023.118500

    CrossRef Google Scholar

    [139] Zha X F, Dong Y P, He D F, et al. Early Palaeozoic arc-continent collision in East Kunlun, northern Xizang: Evidence fromminerology, geochemistry, and geochronology of the Adatan garnet amphibolites[J]. International Geology Review, 2023, 653): 357377. doi: 10.1080/00206814.2022.2045641

    CrossRef Google Scholar

    [140] Zhang D Y, Zhou T F, Yuan F, et al. Source, evolution and emplacement of Permian Tarim Basalts: Evidence from U–Pb dating, Sr–Nd–Pb–Hf isotope systematics and whole rock geochemistry of basalts from the Keping area, Xinjiang Uygur Autonomous region, northwest China[J]. Journal of Asian Earth Sciences, 2012, 49: 175190. doi: 10.1016/j.jseaes.2011.10.018

    CrossRef Google Scholar

    [141] Zhang Y, Sun M, Yuan C, et al. Alternating trench advance and retreat: Insights from Paleozoic magmatism in the eastern Tianshan, Central Asian Orogenic Belt[J]. Tectonics, 2018, 37: 21422164. doi: 10.1029/2018TC005051

    CrossRef Google Scholar

    [142] Zhang Z C, Mao J W, Chai F M, et al. Geochemistry of the permian Kalatongke mafic intrusions, northern Xinjiang, northwest China: Implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Economic Geology, 2009, 104: 185203. doi: 10.2113/gsecongeo.104.2.185

    CrossRef Google Scholar

    [143] Zhang Z W, Tang QY, Li CS, et al. Sr-Nd-Os-S isotope and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai–Xizang plateau, China[J]. Mineralium Deposita, 2017, 52: 5168. doi: 10.1007/s00126-016-0645-0

    CrossRef Google Scholar

    [144] Zhou M F, Lesher C M, Yang Z X, et al. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sufide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209: 233257. doi: 10.1016/j.chemgeo.2004.05.005

    CrossRef Google Scholar

    [145] Zhou M F, Zhao J H, Jiang C Y, et al. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province[J]. Lithos, 2009, 1133-4): 583594. doi: 10.1016/j.lithos.2009.06.027

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(348) PDF downloads(117) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint