Citation: | LI Feng, HE Yanjun, FENG Ying, MA Rui, SHI Kang, GUO Chen. 2025. Quantitative Evaluation of the Structure and Coal Thickness Stability of the Thin Coal Seam in Lucun No. 2 Coal Mine, Yan’an. Northwestern Geology, 58(2): 261-273. doi: 10.12401/j.nwg.2024131 |
Coal mining under thin seam conditions puts forward higher requirements for accurately understanding the spatial variation law of coal thickness and structure. A thin coal seam was developed in the north of the Huangling mining area in Yan’an, Shaanxi Province. However, the structural characteristics and spatial variation of coal thickness are not well understood, which restricts efficient coal mining and intelligent mine construction. In this study, the No. 2 coal seam, a thin coal seam mined in Lucun No. 2 Coal mine in Yan’an, was taken as a research object. Based on the elevation data of the coal seam floor, trend surface analysis and structural curvature analysis were carried out to reveal the characteristics of structural development. The variation coefficient of coal thickness of 775 grid nodes was calculated based on the mesh splitting method to reveal the variation rule of coal seam thickness and its stability zoning. It will overcome the deficiency of the traditional single evaluation value of coal thickness variation coefficient to reveal the spatial change of coal thickness stability. The results showed that the No. 2 coal seam belonged to a relatively stable coal seam with a monoclinal structure trending NE and inclining NW. Under this background, secondary undulation with a NW axis was superposed. Three new typical structures were identified, namely, a local depression developed in the northeast part of the coal mine, a local dome developed in the north-central part of the coal mine, and a saddle shaped structure developed in the south of the coal mine with a NW-SE direction. In the northern part of the saddle shaped structure, several faults discovered during coal exploration and mining were superposed, which made the structure in the southern coal mine relatively complicated. The variation coefficient of coal thickness ranged from 0.16% to 15.24%, with an average of 1.98%. The variation coefficient of coal thickness gradually increases from north to south and reaches the maximum value near the Boreholes 12-7 and 12-8 in the southwestern coal mine. Within the recoverable area of coal seam, the thickness stability of coal seam gradually deteriorated from northeast to southwest. The saddle shaped structure was highly consistent with the high value area of coal thickness variation coefficient. Based on the classification of coal thickness and coal thickness variation coefficient, six combination schemes of coal thickness and stability were identified, and a partition evaluation of coal thickness and stability was realized. It revealed that the mining conditions in the eastern part of the recoverable area were better than those in the western part, with the worst occur in the southwest. The change of coal thickness was exacerbated by the saddle shaped structure. The research results would provide geological support for safe, efficient, and accurate mining of thin coal seam.
[1] | 曹代勇, 周云霞, 魏迎春. 矿井地质构造定量评价信息系统的开发及应用[J]. 煤炭学报, 2002, 27(4): 379−382. doi: 10.3321/j.issn:0253-9993.2002.04.010 CAO Daiyong, ZHOU Yunxia, WEI Yingchun. Development and application of quantitative evaluation information system for mine geological structure[J]. Journal of China Coal Society,2002,27(4):379−382. doi: 10.3321/j.issn:0253-9993.2002.04.010 |
[2] | 常会珍, 郝春生, 张蒙, 等. 煤层气开发地质信息在完善矿井地质保障中的应用[J]. 煤炭技术, 2018, 37(2): 126−128. CHANG Huizhen, HAO Chunsheng, ZHANG Meng, et al. Application of Coalbed Methane Development Geological Information in Perfecting Mine Geological Guarantee[J]. Coal Technology,2018,37(2):126−128. |
[3] | 段中会, 马丽, 高阳, 等. 煤矿复杂地质条件精细预测预报技术及应用[J]. 中国煤炭地质, 2017, 29(9): 53−60. doi: 10.3969/j.issn.1674-1803.2017.09.11 DUAN Zhonghui, MA Li, GAO Yang, et al. Precise Prediction and Forecasting Technologies and Their Application under Coalmine Complex Geological Condition[J]. Coal Geology of China,2017,29(9):53−60. doi: 10.3969/j.issn.1674-1803.2017.09.11 |
[4] | 高文华, 周利华. 趋势面分析在洪山殿矿区构造和厚煤带分布研究中的应用[J]. 湖南地质, 1997(3): 59−63. GAO Wenhua, ZHOU Lihua. Application of Trend Analysis to the Study of Structure and Thickness of Coal Layer in Hongshandian Mine[J]. Hunan Geology,1997(3):59−63. |
[5] | 郭晨, 夏玉成, 孙学阳, 等. 高瓦斯矿井采煤工作面瓦斯地质分级评价方法与实践[J]. 煤炭学报, 2019, 44(8): 2409−2418. GUO Chen, XIA Yucheng, SUN Xueyang, et al. Method and practice of gas geological grading evaluation on coal mining face of high gas mine[J]. Journal of China Coal Society,2019,44(8):2409−2418. |
[6] | 黄建国, 崔春龙, 杨剑, 等. 西昆仑库斯拉甫一带侏罗纪断陷盆地演化及成煤环境分析[J]. 西北地质, 2016, 49(4): 201−206. doi: 10.3969/j.issn.1009-6248.2016.04.012 HUANG Jianguo, CUI Chunlong, YANG Jian, et al. Evolution and Coal-forming Environment Analysis of Jurassic Rift Basin in Kusilafu Area, Western Kunlun[J]. Northwestern Geology,2016,49(4):201−206. doi: 10.3969/j.issn.1009-6248.2016.04.012 |
[7] | 李克庆, 张延凯编. 数学地质[M]. 北京: 冶金工业出版社, 2015. LI Keqing,ZHANG Yankai,Ed. Mathematical Geology[M]. Beijing: Metallurgical Industry Press,2015. |
[8] | 李亮, 田增辉. 综合地质保障技术在崔木煤矿开采中的应用[J]. 陕西煤炭, 2018, 37(6): 113−116. doi: 10.3969/j.issn.1671-749X.2018.06.028 LI Liang, TIAN Zenghui. Application of comprehensive geological guarantee technology in the mining of Cuimu coal mine[J]. Shaanxi Coal,2018,37(6):113−116. doi: 10.3969/j.issn.1671-749X.2018.06.028 |
[9] | 李盛富, 陈洪德, 周剑, 等. 新疆伊犁盆地南缘中新生代以来构造演化与聚煤规律研究[J]. 西北地质, 2016, 49(2): 220−228. doi: 10.3969/j.issn.1009-6248.2016.02.021 LI Shengfu, CHEN Hongde, ZHOU Jian, et al. Tectonic Evolution and Coal Accumulation about the Southern Margin of Yili Basin in Xinjiang since Middle Cenozoic Era[J]. Northwestern Geology,2016,49(2):220−228. doi: 10.3969/j.issn.1009-6248.2016.02.021 |
[10] | 李增学. 煤地质学[M].北京:地质出版社, 2009. LI Zengxue. Coal Geology [M].Beijing:Geological Publishing House,2009. |
[11] | 李志勇, 曾佐勋, 罗文强. 构造面曲率分析及三维可视化软件3DCAVF开发与实践[J]. 中山大学学报(自然科学版), 2003, 42(5): 101−104. doi: 10.3321/j.issn:0529-6579.2003.05.027 LI Zhiyong, ZENG Zuoxun, LUO Wenqiang. Development and practice of 3DCAVF software for structural surface curvature analysis and 3D visualization[J]. Acta Scientiarum Naturalium Universitatis Sunyatsen,2003,42(5):101−104. doi: 10.3321/j.issn:0529-6579.2003.05.027 |
[12] | 刘峰. 适应保护层开采的薄煤层采煤机研制与应用[J]. 煤矿机械, 2023, 44(9): 66−67. LIU Feng. Development and Application of Thin Coal Seam Shearer Suitable for Protective Layer Mining[J]. Coal Mine Machinery,2023,44(9):66−67. |
[13] | 刘伟, 吴基文, 胡儒, 等. 矿井构造复杂程度定量评价与涌(突)水耦合分析[J]. 工矿自动化, 2019, 45(12): 17−22. LIU Wei, WU Jiwen, HU Ru, et al. Quantitative evaluation of mine structure complexity and its coupling analysis with water bursting[J]. Industry and Mine Automation,2019,45(12):17−22. |
[14] | 马慧妍. 趋势面分析在瓦窑堡油田油藏分布规律研究中的应用[J]. 地质学刊, 2023, 47(2): 175−181. doi: 10.3969/j.issn.1674-3636.2023.02.009 MA Huiyan. Application of trend surface analysis to reservoir distribution in Wayaopu oilfield[J]. Journal of Geology,2023,47(2):175−181. doi: 10.3969/j.issn.1674-3636.2023.02.009 |
[15] | 马田生, 张林山. 趋势面分析在山西朔州王坪井田构造研究中的应用[J]. 新疆地质, 2004, 22(1): 107−110. doi: 10.3969/j.issn.1000-8845.2004.01.021 MA Tiansheng, ZHANG Linshan. Application of trend surface analysis to structural study of Wangping mine field in Shuozhou, Shanxi[J]. Xinjiang Geology,2004,22(1):107−110. doi: 10.3969/j.issn.1000-8845.2004.01.021 |
[16] | 彭涛, 王生全, 樊敏, 等. 基于趋势面分析法的下峪口井田褶皱构造发育新认识[J]. 矿业安全与环保, 2017, 44(3): 77−81. doi: 10.3969/j.issn.1008-4495.2017.03.019 PENG Tao, WANG Shengquan, FAN Min, et al. New Cognition on Development of Folded Structure in Xiayukou Mine Based on Trend Surface Analysis[J]. Mining Safety and Environmental Protection,2017,44(3):77−81. doi: 10.3969/j.issn.1008-4495.2017.03.019 |
[17] | 秦勇, 姜波, 王继尧, 等. 沁水盆地煤层气构造动力条件耦合控藏效应[J]. 地质学报, 2008(10): 1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007 QIN Yong, JIANG Bo, WANG Jiyao, et al. Coupling Control of Tectonic Dynamical Conditions to Coalbed Methane Reservoir Formation in the Qinshui Basin, Shanxi, China[J]. Acta Geologica Sinica,2008(10):1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007 |
[18] | 屈争辉, 姜波, 汪吉林, 等. 不同煤级煤大分子结构对应力-应变环境的响应分析[J]. 中国矿业大学学报, 2015, 44(4): 656−663. QU Zhenghui, JIANG Bo, WANG Jilin et al. Reaction of macromolecular structure of coals of various ranks to stress-strain environments[J]. Journal of China University of Mining and Technology,2015,44(4):656−663. |
[19] | 苏德华. 山西灵石荡荡岭煤矿矿井构造特征及复杂程度评价[D]. 徐州: 中国矿业大学, 2018. SU Dehua. Characteristics and Evaluation of Geological Structure of Dangdangling Coal Mine in Shanxi Province[D]. Xuzhou:China University of Mining and Technology, 2018. |
[20] | 孙洪泉, 陆国桢, 邵玉宏, 等. 判别分析法在矿井地质构造预测中的应用[J]. 煤炭学报, 1996, 22(5): 9−12. SUN Hongquan, LU Guozhen, SHAO Yuhong, et al. Application of discriminant analysis method in prediction of geological structures in coal mines[J]. Journal of China Coal Society,1996,22(5):9−12. |
[21] | 唐恩贤. 黄陵矿业公司智能化开采核心技术及其应用实践[J]. 中国煤炭, 2019, 45(4): 13−18+113. doi: 10.3969/j.issn.1006-530X.2019.04.002 TANG Enxian. Core technology of intelligent mining in Huangling Mining Company and its application practice[J]. China Coal,2019,45(4):13−18+113. doi: 10.3969/j.issn.1006-530X.2019.04.002 |
[22] | 王成祥, 张玉良. 让井下无人采煤成为引领未来煤炭发展新坐标——陕煤黄陵矿业公司实施智能化开采的调查与思考[J]. 陕西煤炭, 2016, 35(5): 1−6+14. doi: 10.3969/j.issn.1671-749X.2016.05.001 WANG Chengxiang, ZHANG Yuliang. Making the unmanned mining as the new coordinate of coal industry development in the future—The survey and thinking on the implementation of intelligent mining in Shaanxi Huangling Mining Corp[J]. Shaanxi Coal,2016,35(5):1−6+14. doi: 10.3969/j.issn.1671-749X.2016.05.001 |
[23] | 王红霞. 窑街煤田外围赋煤特征及找煤方向[J]. 西北地质, 2015, 48(1): 191−195. WANG Hongxia. Coal-Bearing Features and Propecting Orientation in Peripheral Yaojie Coalfield[J]. Northwestern Geology,2015,48(1):191−195. |
[24] | 汪吉林. 矿井构造定量评价理论与方法研究——以鲍店矿为例[D]. 徐州: 中国矿业大学, 2005. WANG Jilin. Research on theory and method of quantitative evaluation of mine structure -- taking Baodian Mine as an example [D]. Xuzhou: China University of Mining and Technology, 2005. |
[25] | 王双明, 孙强, 袁士豪, 等. 论煤–水–土多资源协调开发[J]. 西北地质, 2024, 57(5): 1−10. doi: 10.12401/j.nwg.2024069 WANG Shuangming, SUN Qiang, YUAN Shihao, et al. On the Coordinated Development of Coal-Water-Soil Mul tiple Resources[J]. Northwestern Geology,2024,57(5):1−10. doi: 10.12401/j.nwg.2024069 |
[26] | 王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(1): 8−15. WANG Shuangming, SUN Qiang, QIAO Junwei, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15. |
[27] | 王文平, 朱良嘉. 动态地质模型规划开采技术在薄煤层中的应用[J]. 陕西煤炭, 2023, 42(6): 176−179. doi: 10.3969/j.issn.1671-749X.2023.06.034 WANG Wenping, ZHU Liangjia. Application of dynamic geological model planning mining technology in thin coal seam[J]. Shaanxi Coal,2023,42(6):176−179. doi: 10.3969/j.issn.1671-749X.2023.06.034 |
[28] | 王晓. 芦村二号煤矿开拓方式的比选确定研究[J]. 山东煤炭科技, 2018(6): 182−184. doi: 10.3969/j.issn.1005-2801.2018.06.076 WANG Xiao. Contrast and Determination of the Development Form of Lucun No. 2 Coal Mine[J]. Shandong Coal Science and Technology,2018(6):182−184. doi: 10.3969/j.issn.1005-2801.2018.06.076 |
[29] | 王雅春, 油气数学地质[M]. 北京: 石油工业出版社, 2015. WANG Yachun, Mathematical Geology of Oil and Gas [M]. Beijing: Petroleum Industry Press,2015. |
[30] | 吴勇, 马腾, 王玉, 等. 移动趋势面法识别微幅度构造的多参数分析[J]. 西南石油大学学报(自然科学版), 2017, 39(3): 34−46. WU Yong, MA Teng, WANG Yu, et al. Multi-parameter analysis of micro amplitude structures by moving trend surface method[J]. Journal of Southwest Petroleum University (Science and Technology Edition),2017,39(3):34−46. |
[31] | 夏玉成, 孙廷臣, 梁倩文, 等. 韩城矿区纵弯褶皱的几何学特征及其形成演化机理[J]. 煤炭学报, 2018, 43(3): 801−809. XIA Yucheng, SUN Tingchen, LIANG Qianwen, et al. Geometry and geodynamic mechanism of buckle folds in Hancheng mining area[J]. Journal of China Coal Society,2018,43(3):801−809. |
[32] | 徐凤银, 龙荣生, 夏玉成, 等. 矿井地质构造定量评价及其预测[J]. 煤炭学报, 1991, 17(4): 93−102. XU Fengyin, LONG Rongsheng, XIA Yucheng, et al. Quantitative evaluation and prediction of mine geological structure[J]. Journal of China Coal Society,1991,17(4):93−102. |
[33] | 杨帆, 李艳清. 浅析黄陵矿区瓦斯地质规律[J]. 陕西煤炭, 2019, 38(1): 88−90. YANG Fan, LI Yanqing. Research of gas geological law in Huangling mining area[J]. Shaanxi Coal,2019,38(1):88−90. |
[34] | 杨燕敏. 薄煤层综采工作面智能化控制技术应用[J]. 江西煤炭科技, 2023(4): 244−246. doi: 10.3969/j.issn.1006-2572.2023.04.075 YANG Yanmin. Key Technology Application of Intelligent Mining in Thin-seam Fully-mechanized Working Face[J]. Jiangxi Coal Science and Technology,2023(4):244−246. doi: 10.3969/j.issn.1006-2572.2023.04.075 |
[35] | 杨雨晨. 薄煤层采煤机智能控制关键技术研究[J]. 煤, 2023, 32(10): 43−46. doi: 10.3969/j.issn.1005-2798.2023.10.011 YANG Yuchen. Research on Key Technology of Quick Control in Thin Seam Mining[J]. Coal,2023,32(10):43−46. doi: 10.3969/j.issn.1005-2798.2023.10.011 |
[36] | 周云霞, 曹代勇. 矿井地质构造定量评价模型探讨[J]. 煤田地质与勘探, 2001(2): 16−19. doi: 10.3969/j.issn.1001-1986.2001.02.006 ZHOU Yunxia, CAO Daiyong. Discussion on quantitative evaluation model of mine geological structure[J]. Coal Geology and Exploration,2001(2):16−19. doi: 10.3969/j.issn.1001-1986.2001.02.006 |
[37] | Roberts A. Curvature attributes and their application to 3D interpreted horizons[J]. First Break,2001,19(2):85−100. doi: 10.1046/j.0263-5046.2001.00142.x |
Contour line and disclosure structure of No. 2 coal seam floor in Lusun No. 2 Coal Mine
(a) Contour map of the secondary trend value and (b) contour map of the residual value of the floor elevation of No. 2 coal seam
Contour map of mean curvature
Contour map of gaussian curvature
Characteristics of structural development based on curvature analysis
Distribution of coal thickness frequency
Contour map of coal seam thickness
Grid profile of coal thickness variation coefficient calculation
Frequency distribution of coal thickness variation coefficient
Contour map of variation coefficient of coal thickness
Combined partition of coal thickness and stability
Coal thickness zoning and structure superposition diagram