2025 Vol. 58, No. 2
Article Contents

WEI Bo, QI Qi, WANG Liwei, ZHANG Qi, WANG Weiping, FENG Minxuan. 2025. U-Pb Zircon Age, Geochemistry and Geological Significance of the Late Silurian Diabase in the Southwest Margin of Tarim. Northwestern Geology, 58(2): 288-301. doi: 10.12401/j.nwg.2024117
Citation: WEI Bo, QI Qi, WANG Liwei, ZHANG Qi, WANG Weiping, FENG Minxuan. 2025. U-Pb Zircon Age, Geochemistry and Geological Significance of the Late Silurian Diabase in the Southwest Margin of Tarim. Northwestern Geology, 58(2): 288-301. doi: 10.12401/j.nwg.2024117

U-Pb Zircon Age, Geochemistry and Geological Significance of the Late Silurian Diabase in the Southwest Margin of Tarim

More Information
  • There are a large number of diabase dikes (walls) developed in the paleoproterozoic granite body and Setula Group in the Yecheng area of Tiekerike structural belt, southwestern margin of Tarim Basin. Through detailed geological, chronological, geochemical and tectonic environment studies, the results show that the diabases belong to the subbasic lapidous basalt series, with the characteristics of high Fe, Ti, Na and low K.The chondrite normalized REE patterns show the slightly enriched of LREE, which are right-sloping distribution. The diabases enrich LILEs and relatively loses HFSEs, resembling the feature of intraplate basalts. The study of lithogenesis showed that the diabases had the characteristics of a depleted lithospheric mantle source, and were mixed by subduction fluid or melt, and the original magma source area were mainly spinel dipyroxene peridotite. Diabases were formed in an intraplate tensioning environment. The LA-ICP-MS zircon U-Pb age of (424±2.7) Ma was obtained from diabase, formed in the Late Silurian, combined with the tectonic evolution of the West Kunlun region, it is believed that this period is in the post-orogenic stage, representing the end of the tectonic cycle of the original Proto-Tethyan Ocean. Diabases contain a large amount of inherited zircon, the first group inherits the zircon age of (2242±19) Ma, which indicates that there is a Paleoproterozoic crystalline basement in the Tiekerek block, and the second group inherits the zircon age of (1 842±42) Ma, representing the magmatic and tectonic records of late Paleoproterozoic Tarim Craton.

  • 加载中
  • [1] 邓万明. 喀喇昆仑—西昆仑地区蛇绿岩的地质特征及其大地构造意义[J]. 岩石学报, 1995, 11(z1): 98−111.

    Google Scholar

    DENG Wanming. Geological Features of Ophiolite and Tectonic Significance in the Karakorum-West Kunlun Mts.[J]. Acta Petrologica Sinica,1995,11(z1):98−111.

    Google Scholar

    [2] 葛荣峰, 朱文斌, 周腾, 等. 塔里木克拉通太古宙大陆起源: 进展与问题[J]. 西北地质, 2024, 57(6): 1−24.

    Google Scholar

    GE Rongfeng,ZHU Wenbin,ZHOU Teng,et al. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues[J]. Northwestern Geology,2024,57(6):1−24.

    Google Scholar

    [3] 韩芳林. 西昆仑增生造山带演化及成矿背景[D]. 北京: 中国地质大学(北京), 2006: 1−232.

    Google Scholar

    HAN Fanglin. Evolution and mineralization background of West Kunlun orogenic belt[D]. Beijing: China University of Geosciences (Beijing), 2006: 1−232.

    Google Scholar

    [4] 计文化, 周辉, 李荣社, 等. 西昆仑新藏公路北段古-中生代多期次构造-热事件年龄确定[J]. 地球科学: 中国地质大学学报, 2007, 32(5): 671−680.

    Google Scholar

    JI Wenhua, ZHOU Hui, LI Rongshe, et al. The deformation age of Palaeozoic-Mesozoic tectonic alongnorth Xin-Zang road in west Kunlun[J]. Earth Science-Journal of China University of Geosciences,2007,32(5):671−680.

    Google Scholar

    [5] 姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京: 地质出版社, 2000, 1−154.

    Google Scholar

    JIANG Chunfa, WANG Zongqi, LI Jinyi. Open and close structure of Central Orogenic Belt[M]. Beijing: Geological Publishing House, 2000,1−154.

    Google Scholar

    [6] 李荣社, 徐学义, 计文化. 对中国西部造山带地质研究若干问题的思考[J]. 地质通报, 2008, 27(12): 2020−2025.

    Google Scholar

    LI Rongshe, XU Xueyi, JI Wenhua. Some problems of geological study in the western China orogenic belt[J]. Geological Bulletin of China,2008,27(12):2020−2025.

    Google Scholar

    [7] 李天福, 张建新. 西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 岩石学报, 2014, 30(8): 2393−2401.

    Google Scholar

    LI Tianfu, ZHANG Jianxin. Zircon LA-ICP-MS U-Pb ages of webserite and basalt in Kudi ophiolite and the implication, West Kunlun[J]. Acta Petrologica Sinica,2014,30(8):2393−2401.

    Google Scholar

    [8] 廖世勇. 西昆仑古生代花岗岩成因与造山带演化[D]. 南京: 南京大学, 2010, 1−120.

    Google Scholar

    LIAO Shiyong. Genesis and orogenic evolution of Paleozoic granites in the West Kunlun Mountains[D]. Nanjing: Nanjin University, 2010, 1−120.

    Google Scholar

    [9] 刘鑫, 朱志新, 郭瑞清, 等. 塔里木南缘铁克里克地区西段晚古生代辉绿岩 LA-ICP-MS 锆石U-Pb定年及其地质意义[J]. 地球科学, 2016, 51(3): 794−805.

    Google Scholar

    LIU Xin, ZHU Zhixin, GUO Ruiqing, et al. LA-ICP-MS U-Pb zircon dating and its geological significance for the Late Paleozoic diabase from the west part of Tiekelike area, South Tarim[J]. Earth Science,2016,51(3):794−805.

    Google Scholar

    [10] 刘成军. 西昆仑造山带(西段)及周缘早古生代—早中生代物质组成与构造演化[D]. 西安: 长安大学, 2015: 1−210.

    Google Scholar

    LIU Chengjun. Material composition and tectonic evolution of the West Kunlun orogenic belt and its periphery from early Paleozoic to early Mesozoic[D]. Xi’an: Chang’an University, 2015, 1−210.

    Google Scholar

    [11] 刘东晓, 王玉玺, 贾志磊, 等. 塔里木克拉通Columbia聚合后大陆裂解的高热事件痕迹[J]. 兰州大学学报(自然科学版), 2017, 53(6): 727−731.

    Google Scholar

    LIU Dongxiao, WANG Yuxi, JIA Zhilei, et al. Traces of high heat events of continental cleavage after Tarim craton Columbia polymerization[J]. Journal of Lanzhou University(Natural Science Edition),2017,53(6):727−731.

    Google Scholar

    [12] 柳坤峰, 王永和, 姜高磊, 等. 西昆仑新元古代中生代沉积盆地演化[J]. 地球科学, 2014, 39(8): 987−999. doi: 10.3799/dqkx.2014.090

    CrossRef Google Scholar

    LIU Kunfeng, WANG Yonghe, JIANG Gaolei, et al. Evolution of neoproterozoic-mesozoic sedimentary basins of West Kunlun area[J]. Earth Sciences,2014,39(8):987−999. doi: 10.3799/dqkx.2014.090

    CrossRef Google Scholar

    [13] 陆松年. 从罗迪尼亚到冈瓦纳超大陆—对新元古代超大陆研究几个问题的思考[J]. 地学前缘, 2001, 8(4): 442−449.

    Google Scholar

    LU Songnian. From Rodinia to Gondwana Supercontinent: Reflections on Several Issues in the Study of Neoproterozoic Supercontinents[J]. Frontiers of Geoscience,2001,8(4):442−449.

    Google Scholar

    [14] 陶再礼, 尹继元, 袁超, 等. 西昆仑造山带晚奥陶世侵入岩的岩石成因: 对原特提斯洋俯冲过程的制约[J]. 岩石学报, 2022, 38(11): 3321−3340. doi: 10.18654/1000-0569/2022.11.05

    CrossRef Google Scholar

    TAO Zaili, YIN Jiyuan, YUAN Chao, et al. Petrogenesis of Late Ordovician intrusive rocks in the WestKunlun orogenic belt: Constraints on thesubduction process of the Proto-Tethys Ocean[J]. Acta Petrologica Sinica,2022,38(11):3321−3340. doi: 10.18654/1000-0569/2022.11.05

    CrossRef Google Scholar

    [15] 王超, 刘良, 何世平, 等. 西昆仑早古生代岩浆作用过程: 布隆花岗岩地球化学和锆石 U-Pb-Hf同位素组成研究[J]. 地质科学, 2013, 48(4): 997−1014. doi: 10.3969/j.issn.0563-5020.2013.04.004

    CrossRef Google Scholar

    WANG Chao, LIU Liang, HE Shiping, et al. Early Paleozoic magmatic process in West Kunlun: Bloom granite geochemistry and zircon U-Pb-Hf isotopic composition[J]. Chinese Journal of Geology,2013,48(4):997−1014. doi: 10.3969/j.issn.0563-5020.2013.04.004

    CrossRef Google Scholar

    [16] 王向利, 高小平, 刘幼骐, 等. 塔里木盆地南缘铁克里克断隆结晶基底特征[J]. 西北地质, 2010, 43(4): 95-112.

    Google Scholar

    WANG Xiangli, GAO Xiaoping, LIU Youqi, et al. Crystal basement feature of Tiekelike fault-uplift at southern margin of Tarim Basin[J]. Northwestern Geology, 2010, 43(4): 95−112.

    Google Scholar

    [17] 魏博, 张旗, 吴锋, 等. 新疆西昆仑北缘叶城棋盘—西河休一带构造岩浆活动与成矿关系[J]. 地质与勘探, 2018, 54(S1): 1327−1337. doi: 10.12134/j.dzykt.2018.S1.003

    CrossRef Google Scholar

    WEI Bo, ZHANG Qi, WU Feng, et al. Tectonic magmatic activity in relation to mineralization in the Yecheng-Xihexiu area, northern margin of the West Kunlun, Xinjiang[J]. Geology and Exploration,2018,54(S1):1327−1337. doi: 10.12134/j.dzykt.2018.S1.003

    CrossRef Google Scholar

    [18] 肖文交, 侯泉林, 李继亮, 等. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑), 2000, 30(z1): 22−28. doi: 10.3969/j.issn.1674-7240.2000.z1.004

    CrossRef Google Scholar

    XIAO Wenjiao, HOU Quanlin, LI Jiliang, et al. Anatomy of tectonic facies in West Kunlun and its multi-island hyperplasia process[J]. Science in China (Series D),2000,30(z1):22−28. doi: 10.3969/j.issn.1674-7240.2000.z1.004

    CrossRef Google Scholar

    [19] 肖序常, 王军, 苏犁, 等. 再论西昆仑库地蛇绿岩及其构造意义[J]. 地质通报, 2003, 22(10): 745−750. doi: 10.3969/j.issn.1671-2552.2003.10.001

    CrossRef Google Scholar

    XIAO Xuchang, WANG Jun, SU Li, et al. A further discussion of the Kudi ophiolite, West Kunlun and its tectonic significance[J]. Geological Bulletin of China,2003,22(10):745−750. doi: 10.3969/j.issn.1671-2552.2003.10.001

    CrossRef Google Scholar

    [20] 袁超, 孙敏, 肖文交, 等. 原特提斯的消减极性: 西昆仑128公里岩体的启示[J]. 岩石学报, 2003, 19(3): 339−408.

    Google Scholar

    YUAN Chao, SUN Min, XIAO Wenjiao, et al. The reduced polarity of Proto-Tethys: The enlightenment of the 128 km rock mass in West Kunlun[J]. Journal of Petrology,2003,19(3):339−408.

    Google Scholar

    [21] 袁四化, 潘桂棠, 王立全, 等. 大陆边缘增生造山作用[J]. 地学前缘, 2009, 16(3): 32−48.

    Google Scholar

    YUAN Sihua, PAN Guitang, WANG Liquan, et al. Accretionary orogenesis in the active continental margins[J]. Earth Science Frontiers,2009,16(3):32−48.

    Google Scholar

    [22] 张传林, 马华东, 朱炳玉, 等. 西昆喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 2019, 65(5): 1077−1102.

    Google Scholar

    ZHANG Chuanlin, MA Huadong, ZHU Bingyu, et al. Tectonic evolution and metallogenic effect of West Kunkarakorum[J]. Geological Review,2019,65(5):1077−1102.

    Google Scholar

    [23] 张海军, 李宁波. 新疆库尔勒上户地区辉绿岩的地球化学特征及成因[J]. 地球化学, 2018, 47(2): 196−208.

    Google Scholar

    ZHANG Haijun,LI Ningbo. Geochemical features and petrogenesis of the Shanghu diabase, Kuerle, Xinjiang[J]. Geochimica,2018,47(2):196−208.

    Google Scholar

    [24] 张健, 张传林, 李怀坤, 等. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境: 来自锆石U-Pb年龄、Hf同位素的新证据[J]. 岩石学报, 2014, 30(11): 3357−3365.

    Google Scholar

    ZHANG Jian, ZHANG Chuanlin, LI Huaikun, et al. Revisit to time and tectonic environment of the Aksu blueschist terrane in Northern Tarim, NW China: New evidence from zircon U-Pb age and Hf isotope[J]. Acta Petrologica Sinica,2014,30(11):3357−3365.

    Google Scholar

    [25] 张永旺, 刘汇川, 于志琪, 等. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 2021, 37(4): 1122−1138. doi: 10.18654/1000-0569/2021.04.10

    CrossRef Google Scholar

    ZHANG Yongwang, LIU Huichuan, YU Zhiqi, et al. Petrogenesis of late Paleoproterozoic A type granites in theTarim Craton and implications for the Columbia assembly and break up[J]. Acta Petrologica Sinica,2021,37(4):1122−1138. doi: 10.18654/1000-0569/2021.04.10

    CrossRef Google Scholar

    [26] Anderson D L. Komatites and picrites: Evidence that “plume” source is depleted[J]. Earth and Planetary Science Letters,1994,128(3-4):303−311. doi: 10.1016/0012-821X(94)90152-X

    CrossRef Google Scholar

    [27] Bogaard P J F, Wörner G. Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany[J]. Journal of Petrology,2003,44(3):569−602. doi: 10.1093/petrology/44.3.569

    CrossRef Google Scholar

    [28] Boynton W V. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry[J]. Elservier, Amsterdam, 1984: 63-114.

    Google Scholar

    [29] Condie KC. Plate Tectonics and Crustal Evolution[J]. Oxford Pergamon Press, London, 1989: 476.

    Google Scholar

    [30] Cox, J C, S A Ross, et al. Rubinstein. Option pricing: A simplified approach[J]. Journal of Financial Economics,1979,7(3):229−263.

    Google Scholar

    [31] Chen F K, Hegner E, Todt W. Zircon Ages, Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany: Evidencefora Cambrian Magmatic Arc[J]. International Journal of Earth Sciences,2000,88:791−802. doi: 10.1007/s005310050306

    CrossRef Google Scholar

    [32] Chen F K, Siebel W, Satir M, et al. Geochronology of the Karadere Basement(NW Turkey)and Implications for the Geological Evolution of the Istanbul Zone[J]. International Journal of Earth Sciences,2002,91:469−481. doi: 10.1007/s00531-001-0239-6

    CrossRef Google Scholar

    [33] Gibbons D A., Mueller D R, Zahirovic S, et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[J]. Gondwana research,2015,28(2):451−492. doi: 10.1016/j.gr.2015.01.001

    CrossRef Google Scholar

    [34] Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contribution in arc magmas[J]. Annual Review of Earth and Planetary Sciences,1993,21:175−204. doi: 10.1146/annurev.ea.21.050193.001135

    CrossRef Google Scholar

    [35] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters,1986,79(1-2):33−45. doi: 10.1016/0012-821X(86)90038-5

    CrossRef Google Scholar

    [36] Jahn B M, Wu F Y , Chen B. Granitoids of the Central Asianorogenic belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences,2000,91:181−193. doi: 10.1017/S0263593300007367

    CrossRef Google Scholar

    [37] Jia Ruya, Jiang Yaohui, Liu Zheng, et al. Petrogenesis and tectonic implications of early Silurian high-K calc-alkaline granites and their potassic microgranular enclaves, western Kunlun orogen, NW Tibetan Plateau[J]. International Geology Review,2013,55(8):958−975. doi: 10.1080/00206814.2012.755766

    CrossRef Google Scholar

    [38] Jiang Y H, Jia R Y, Liu Z, et al. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, Northwest China: A record of the closure of Paleo-Tethys[J]. Lithos,2013,156-159:13−30. doi: 10.1016/j.lithos.2012.10.004

    CrossRef Google Scholar

    [39] Li Y Q, Ma C Q, Robinson P T, et al. Petrology and Geochemistry of Cenozoic intra-plate basalts in east-central China: constraints on recycling of an oceanic slab in the source region[J]. Lithos,2016:27−43.

    Google Scholar

    [40] Liao Shiyong, Jiang Yaohui, Jiang Shaoyong, et al. Subducting sediment-derived arc granitoids: evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, Northwest China[J]. Mineralogy& Petrology,2010,100(1):55−74.

    Google Scholar

    [41] Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. America Journal of Science,1974,274:321−355.

    Google Scholar

    [42] McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters,1991,102(3):358−374.

    Google Scholar

    [43] Saunders A D, Storey M, Kent R W, et al. Consequences of plume-lithosphere interaction[J]. In: Storey B C, Alabaster T, Pankhurst R J (eds). Magmatism and the causes of continental break-up. Geological Society Special Publication, London,1992,68:41−60.

    Google Scholar

    [44] Schandl E S. Application of high field strength elements to discriminate tectonic settings in VMS environments[J]. Economic Geology,2002,97(3):629−642.

    Google Scholar

    [45] Sun, S S. McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A D, Norry, M J, eds., Magmatism in the Ocean Basins[J]. Geological Society of London, 1989: 313-345.

    Google Scholar

    [46] Sklyarov E V, Gladkochub D P, Mazukabzov A M, et al. Neoproterozoic mafic dikeswarms of the Sharyzhalgai metamorphic massif, southern Siberiancraton[J]. Precambrian Research,2003,122(1):359−376.

    Google Scholar

    [47] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 57-72.

    Google Scholar

    [48] Kieffer B, Arndt N, Lapierre H. Fllod and shield basalts from Ethiopia: magmas from the African superswell[J]. Petrol,2004,45(4):793−834. doi: 10.1093/petrology/egg112

    CrossRef Google Scholar

    [49] Wang P, Zhao G C, Liu Q, et al. Slab-controlled progressive evolution of the Kudi back-arc ophiolite in response to the rollback of the Proto-Tethys oceanic slab, in Western Kunlun, NW Tibetan Plateau[J]. Lithos,2020,105(887):380−381.

    Google Scholar

    [50] Wang P, Zhao G C, Han Y G, et al. Petrogenesis of Ordovician granitoids in Western Kunlun, NW Tibetan Plateau: Insights into the evolution of the Proto-Tethys Ocean[J]. Geological Society of America Bulletin,2021,133(5-6):1071−1089. doi: 10.1130/B35740.1

    CrossRef Google Scholar

    [51] Wang Z H. Tectonic evolution of the western Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences,2004,24(2):153−161. doi: 10.1016/j.jseaes.2003.10.007

    CrossRef Google Scholar

    [52] Wilson M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989, 1−464.

    Google Scholar

    [53] Xiao W, Han F, Windley B F. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia[J]. International Geology Review,2003,45(4):303−328.

    Google Scholar

    [54] Yin A , Harrison T M. Geologic evolution of the Himalyan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28(1):211−280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [55] Yin J, Xiao W, Sun M, et al. Petrogenesis of Early Cambrian granitoids in the western Kunlun orogenic belt, Northwest Tibet: Insight into early stage subduction of the Proto-Tethys Ocean[J]. Geological Society of America Bulletin,2020,132(9-10):2221−2240.

    Google Scholar

    [56] Yuan Chao, Sun Min, Zhou Meifu, et al. Tectonic Evolution of the West Kunlun: Geochronologic and Geochemical Constraints from Kudi Granitoids[J]. International Geology Review,2002,44(7):653−669.

    Google Scholar

    [57] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards & Geoanalytical Research,2004,28(3):353−370.

    Google Scholar

    [58] Zhang C L, Zou H B, Li H K. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research,2013,23(4):1306−1315. doi: 10.1016/j.gr.2012.05.009

    CrossRef Google Scholar

    [59] Zhang Chuanlin, Zou Haibo, Ye Xiantao, et al. Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology[J]. Tectonophysics,2018a,723:27−40. doi: 10.1016/j.tecto.2017.11.036

    CrossRef Google Scholar

    [60] Zhang C L, Zou H B, Ye X T, et al. Timing of subduction initiation in the Proto-Tethys Ocean: Evidence from the Cambrian gabbros from the NE Pamir Plateau[J]. Lithos,2018b,314-315:40−51. doi: 10.1016/j.lithos.2018.05.021

    CrossRef Google Scholar

    [61] Zhao G C, Sun M, Wilde S A, et al. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton[J]. Gondwana Research,2003,6(3):417−434. doi: 10.1016/S1342-937X(05)70996-5

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(9) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint