|
[1]
|
陈海霞, 王家鼎. 延安地区降雨引发黄土泥流的试验研究[J]. 水土保持通报, 2013, 33(2): 39−42.
Google Scholar
CHEN Haixia, WANG Jiading. Experimental study on loess mudflow induced by rainfall in Yan'an area[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 39−42.
Google Scholar
|
|
[2]
|
费祥俊. 高浓度浑水的宾汉极限剪应力[J]. 泥沙研究, 1981, (3): 21−30.
Google Scholar
FEI Xiangjun. Bingham limit shear stress in high concentration muddy water[J]. Journal of Sediment Research, 1981, (3): 21−30.
Google Scholar
|
|
[3]
|
傅伯杰, 刘彦随, 曹智, 等. 黄土高原生态保护和高质量发展现状、问题与建议[J]. 中国科学院院刊, 2023, 38(8): 1110−1117.
Google Scholar
FU Bojie, LIU Yansui, CAO Zhi, et al. Status quo, problems and suggestions of ecological protection and high-quality development in the Loess Plateau[J]. Proceedings of the Chinese Academy of Sciences, 2023, 38(8): 1110−1117.
Google Scholar
|
|
[4]
|
付泉, 党光普, 李致博, 等. 基于分形维数耦合支持向量机和熵权模型的滑坡易发性研究[J]. 西北地质, 2024, 57(6): 255−267.
Google Scholar
FU Quan, DANG Guangpu, LI Zhibo, et al. Study of Landslide Susceptibility Mapping Based on Fractal Dimension Integrating Support Vector Machine with Index of Entropy Model[J]. Northwestern Geology, 2024, 57(6): 255−267.
Google Scholar
|
|
[5]
|
辜超颖, 王新刚. 基于CiteSpace可视化分析的滑坡滑带土研究现状与发展趋势[J/OL]. 中国地质灾害与防治学报, 2024: 1−18.
Google Scholar
GU Chaoying, WANG Xinguang. Research status and development trend of landslide slip zone soil based on CiteSpace visual analysis [J/OL]. Chinese Journal of Geological Hazards and Prevention, 2024: 1−18.
Google Scholar
|
|
[6]
|
郭正堂, 丁仲礼, 刘东生. 黄土中的沉积-成壤事件与第四纪气候旋回[J]. 科学通报, 1996, 41(1): 56−59.
Google Scholar
GUO Zhengtang, DING Zhongli, LIU Dongsheng. Sedimentary pedogenesis events and Quaternary climatic cycles in loess[J]. Chinese Science Bulletin, 1996, 41(1): 56−59.
Google Scholar
|
|
[7]
|
韩金良, 吴树仁, 汪华斌. 地质灾害链[J]. 地学前缘, 2007, 14(6): 11−23. doi: 10.1016/S1872-5791(08)60001-9
CrossRef Google Scholar
HAN Jinliang, WU Shuren, WANG Huabin. Geological hazard chain[J]. Earth Science Frontiers, 2007, 14(6): 11−23. doi: 10.1016/S1872-5791(08)60001-9
CrossRef Google Scholar
|
|
[8]
|
胡华, 顾恒星, 俞登荣. 淤泥质软土动态流变特性与流变参数研究[J]. 岩土力学, 2008, 29(3): 696−700.
Google Scholar
HU Hua, GU Xingxing, YU Dengrong. Study on dynamic rheological properties and parameters of silty soft soil[J]. Rock and Soil Mechanics, 2008, 29(3): 696−700.
Google Scholar
|
|
[9]
|
华山, 贾晓丹, 张霞. 拦挡作用对黄土坡面泥流动力过程影响机制[J]. 西北地质, 2024, 57(3): 285−292.
Google Scholar
HUA Shan, JIA Xiaodan, ZHANG Xia. Mechanism of barrier effect on mudflow dynamic process on loess slope[J]. Northwestern Geology, 2024, 57(3): 285−292.
Google Scholar
|
|
[10]
|
黄玉华, 武文英, 冯卫, 等. 陕北延安“7.3暴雨”诱发地质灾害主要类型与特征[J]. 西北地质, 2014, 47(3): 140−146.
Google Scholar
HUANG Yuhua, WU Wenying, FENG Wei, et al. Main types and characteristics of geological disasters induced by "7.3 rainstorm" in Yan'an, northern Shaanxi[J]. Northwestern Geology, 2014, 47(3): 140−146.
Google Scholar
|
|
[11]
|
姜程, 霍艾迪, 朱兴华, 等. 黄土水力侵蚀-滑坡-泥流灾害链的研究现状[J]. 自然灾害学报, 2019, 28(1): 38−43.
Google Scholar
JIANG Cheng, HUO Aidi, ZHU Xinghua, et al. Research status of disaster chain of hydraulic erosion-landslide-mudflow in loess[J]. Journal of Natural Disasters, 2019, 28(1): 38−43.
Google Scholar
|
|
[12]
|
兰恒星, 彭建兵, 祝艳波, 等. 黄河流域地质地表过程与重大灾害效应研究与展望[J]. 中国科学: 地球科学, 2022, 52(2): 199−221.
Google Scholar
LAN Xing, PENG Jianbing, ZHU Yanbo, et al. Geological surface processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 2022, 52(2): 199−221.
Google Scholar
|
|
[13]
|
郎煜华, 曾思伟, 张又安. 天水市柿沟泥流及其防治[J]. 环境研究与监测, 1989, (1): 40−42.
Google Scholar
LANG Yuhua, ZENG Siwei, ZHANG Youan. Mudflow and its control in Shizigou, Tianshui City[J]. Environmental Research and Monitoring, 1989, (1): 40−42.
Google Scholar
|
|
[14]
|
雷祥义, 黄玉华, 王卫. 黄土高原的泥流灾害与人类活动[J]. 陕西地质, 2000, 18(1): 28−39. doi: 10.3969/j.issn.1001-6996.2000.01.006
CrossRef Google Scholar
LEI Xiangyi, HUANG Yuhua, WANG Wei. Mudflow hazards and human activities in the Loess Plateau[J]. Shaanxi Geology, 2000, 18(1): 28−39. doi: 10.3969/j.issn.1001-6996.2000.01.006
CrossRef Google Scholar
|
|
[15]
|
李昭淑. 陕西省泥石流灾害与防治[M]. 西安: 西安地图出版社, 2002.
Google Scholar
|
|
[16]
|
李学曾. 黄土高原是中华民族的摇篮和古文化的发祥地[J]. 西北大学学报(自然科学版), 1985, 47(2): 92−96.
Google Scholar
LI Xueceng. The Loess Plateau is the cradle of the Chinese nation and the birthplace of ancient culture[J]. Journal of Northwest University (Natural Science Edition), 1985, 47(2): 92−96.
Google Scholar
|
|
[17]
|
蔺晓燕. 甘肃黑方台灌区黄土滑坡一泥流形成机理研究[D]. 西安: 长安大学, 2013.
Google Scholar
LIN Xiaoyan. Study on formation mechanism of mud flow in loess landslide in Heifangtai Irrigation District, Gansu Province [D]. Xi'an: Chang'an University, 2013.
Google Scholar
|
|
[18]
|
刘东生, 孙继敏, 吴文祥. 中国黄土研究的历史、现状和未来──一次事实与故事相结合的讨论[J]. 第四纪研究, 2001, 21(3): 185−207.
Google Scholar
LIU Dongsheng, SUN Jimin, WU Wenxiang. The history, present situation and Future of Loess Research in China: a discussion combining facts and stories[J]. Quaternary Sciences, 2001, 21(3): 185−207.
Google Scholar
|
|
[19]
|
刘锋, 张茂省, 董英, 等. 基于1984~2022年榆林市地质灾害记录对其时空分布规律分析[J]. 西北地质, 2023, 56(3): 204−213.
Google Scholar
LIU Feng, ZHANG Maosheng, DONG Ying, et al. Analysis of Spatial and Temporal Distribution of Geological Disasters in Yulin City Based on the Records from 1984 to 2022[J]. Northwestern Geology, 2023, 56(3): 204−213.
Google Scholar
|
|
[20]
|
刘传正, 陈春利. 中国地质灾害防治成效与问题对策[J]. 工程地质学报, 2020, 28(2): 375−383.
Google Scholar
LIU Chuanzheng, CHEN Chunli. Effects and countermeasures of geological disaster prevention in China[J]. Journal of Engineering Geology, 2020, 28(2): 375−383.
Google Scholar
|
|
[21]
|
刘青泉, 陈力, 李家春. 坡度对坡面土壤侵蚀的影响分析[J]. 应用数学和力学, 2001, 22(5): 449−457.
Google Scholar
LIU Qingquan, CHEN Li, LI Jiachun. Effect of slope on soil erosion on slope[J]. Applied Mathematics and Mechanics, 2001, 22(5): 449−457.
Google Scholar
|
|
[22]
|
刘忠义. 咸阳地区黄土高原泥流形成的主要因素及规律[J]. 中国水土保持, 1987, (3): 19−21+65.
Google Scholar
LIU Zhongyi. Main factors and rules of mudflow formation in Loess Plateau of Xianyang area[J]. Soil and Water Conservation in China, 1987, (3): 19−21+65.
Google Scholar
|
|
[23]
|
马超. 基于土体含水量和实时降雨的泥石流预警指标研究[D]. 北京: 中国科学院大学, 2014.
Google Scholar
MA Chao. Research on debris flow warning index based on soil moisture content and real-time rainfall [D]. Beijing: University of Chinese Academy of Sciences, 2014.
Google Scholar
|
|
[24]
|
马东涛, 崔鹏, 张金山, 等. 黄土高原泥流灾害成因及特征[J]. 干旱区地理, 2005, 28(4): 19−24.
Google Scholar
MA Dongtao, CUI Peng, ZHANG Jinshan, et al. Causes and characteristics of mudflow disasters in the Loess Plateau[J]. Arid Land Geography, 2005, 28(4): 19−24.
Google Scholar
|
|
[25]
|
马东涛, 祁龙, 邓晓峰. 甘肃环县东山黄土泥流综合治理[J]. 山地学报, 2000, 18(3): 217−220.
Google Scholar
MA Dongtao, QI Long, DENG Xiaofeng. Comprehensive mudflow management of Dongshan loess in Huan County, Gansu Province[J]. Journal of Mountain Science, 2000, 18(3): 217−220.
Google Scholar
|
|
[26]
|
马鹏辉, 彭建兵. 论黄土地质灾害链(二)[J]. 自然灾害学报, 2022, 31(3): 15−24.
Google Scholar
MA Penghui, PENG Jianbing. On loess geological hazard chain (II)[J]. Journal of Natural Hazards, 2022, 31(3): 15−24.
Google Scholar
|
|
[27]
|
彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(5): 714−730.
Google Scholar
PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, et al. Dynamic mechanism of landslide hazard formation in Loess Plateau[J]. Chinese Journal of Geomechanics, 2020, 26(5): 714−730.
Google Scholar
|
|
[28]
|
史泽华. 黄土流变特性试验研究[D]. 兰州: 兰州大学, 2020.
Google Scholar
SHI Zehua. Experimental study on rheological properties of loess [D]. Lanzhou: Lanzhou University, 2020.
Google Scholar
|
|
[29]
|
孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96−107.
Google Scholar
SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Progress of geological hazard investigation in loess areas of western China[J]. Northwestern Geology, 2022, 55(3): 96−107.
Google Scholar
|
|
[30]
|
唐邦兴, 周必凡, 吴积善, 等. 中国泥石流[M]. 北京: 商务印书馆, 2000.
Google Scholar
|
|
[31]
|
唐益群, 袁斌, 李军鹏. 基于正交试验的黄土泥流运动分析[J]. 水利学报, 2015, 46(2): 183−189.
Google Scholar
TANG Yiqun, YUAN Bin, LI Junpeng. Analysis of mud flow in loess based on orthogonal test[J]. Journal of Hydraulic Engineering, 2015, 46(2): 183−189.
Google Scholar
|
|
[32]
|
王家鼎, 王靖泰, 黄海国. 饱和土蠕(滑)动液化的研究[J]. 现代地质, 1993, 7(1): 102−108.
Google Scholar
WANG Jiading, WANG Jingtai, HUANG Haiguo. Study on creep (slip) dynamic liquefaction of saturated soil[J]. Geoscience, 1993, 7(1): 102−108.
Google Scholar
|
|
[33]
|
王家鼎. 高速黄土滑坡的一种机理-饱和黄土蠕动液化[J]. 地质论评, 1992, 38(6): 532−539. doi: 10.3321/j.issn:0371-5736.1992.06.011
CrossRef Google Scholar
WANG Jiading. A mechanism of high-speed loess landslide - creep liquefaction of saturated loess[J]. Geological Review, 1992, 38(6): 532−539. doi: 10.3321/j.issn:0371-5736.1992.06.011
CrossRef Google Scholar
|
|
[34]
|
王家鼎. 中国黄土山城“依山造居”的几个灾害问题讨论(Ⅳ)-黄土泥流分析[J]. 西北大学学报(自然科学版), 1997, 27(5): 78−82.
Google Scholar
WANG Jiading. Discussion on several disaster problems of "settlement by mountain" in loess Mountain City in China (Ⅳ) -Analysis of mud flow in loess[J]. Journal of Northwest University (Natural Science Edition), 1997, 27(5): 78−82.
Google Scholar
|
|
[35]
|
王兰民, 柴少峰, 薄景山, 等. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 2023, 45(8): 1543−1554. doi: 10.11779/CJGE20220531
CrossRef Google Scholar
WANG Lanmin, CHAI Shaofeng, BO Jingshan, et al. Triggering types, characteristics and disaster mechanism of loess earthquake landslide[J]. Journal of Rock and Soil Engineering, 2023, 45(8): 1543−1554. doi: 10.11779/CJGE20220531
CrossRef Google Scholar
|
|
[36]
|
王万忠. 黄土沟道小流域的泥流特征和防治[J]. 水土保持通报, 1984, (1): 19−23.
Google Scholar
WANG Wanzhong. Mudflow characteristics and control of loess gully watershed[J]. Bulletin of Soil and Water Conservation, 1984, (1): 19−23.
Google Scholar
|
|
[37]
|
王新刚, 谷天峰, 王家鼎. 基质吸力控制下的非饱和黄土三轴蠕变试验研究[J]. 水文地质工程地质, 2017, 44(4): 57−61+70.
Google Scholar
WANG Xingang, GU Tianfeng, WANG Jiading. Experimental study on triaxial creep of unsaturated loess under matric suction control[J]. Hydrogeology and Engineering Geology, 2017, 44(4): 57−61+70.
Google Scholar
|
|
[38]
|
王新刚, 刘凯, 连宝琴, 等. 黄土卸荷蠕变特性与典型开挖型黄土滑坡机理研究[J]. 工程地质学报, 2024, 32(2): 513−521.
Google Scholar
WANG Xingang, LIU Kai, LIAN Baoqin, et al. Study on unloading creep characteristics of loess and mechanism of typical excavated loess landslide[J]. Chinese Journal of Engineering Geology, 2024, 32(2): 513−521.
Google Scholar
|
|
[39]
|
王新刚, 刘凯, 王友林, 等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质, 2022, 49(5): 137−143.
Google Scholar
WANG Xingang, LIU Kai, WANG Youlin, et al. Experimental study on creep characteristics of soil in typical loess landslide slip zone with different water content[J]. Hydrogeology and Engineering Geology, 2022, 49(5): 137−143.
Google Scholar
|
|
[40]
|
王新刚, 余宏明, 胡斌, 等. 节理控制的降雨入渗通道对黄土开挖边坡稳定性的影响[J]. 山地学报, 2013, 31(4): 413−417. doi: 10.3969/j.issn.1008-2786.2013.04.005
CrossRef Google Scholar
WANG Xingang, YU Hongming, HU Bin, et al. Effect of joint-controlled rainfall infiltration channel on stability of excavated loess slope[J]. Journal of Mountain Science, 2013, 31(4): 413−417. doi: 10.3969/j.issn.1008-2786.2013.04.005
CrossRef Google Scholar
|
|
[41]
|
王裕宜, 詹钱登, 李昌志, 等. 粘性泥石流应力应变特征的初步试验研究[J]. 山地学报, 2002, 20(1): 42−46. doi: 10.3969/j.issn.1008-2786.2002.01.007
CrossRef Google Scholar
WANG Yuyi, ZHAN Qiandeng, LI Changzhi, et al. Preliminary experimental study on stress-strain characteristics of viscous debris flow[J]. Acta Geographica Sinica, 2002, 20(1): 42−46. doi: 10.3969/j.issn.1008-2786.2002.01.007
CrossRef Google Scholar
|
|
[42]
|
王占礼, 常庆瑞. 黄土高原降雨因素对土壤侵蚀的影响[J]. 西北农业大学学报, 1998, 26(4): 106−110.
Google Scholar
WANG Zhanli, CHANG Qingrui. Effects of rainfall factors on soil erosion in Loess Plateau[J]. Journal of Northwest Agricultural University, 1998, 26(4): 106−110.
Google Scholar
|
|
[43]
|
王兆印. 高含沙水流运动力学及其应用[M]. 北京: 清华大学, 2002.
Google Scholar
WANG Zhaoyin. High sediment content flow dynamics and its application [M]. Beijing: Tsinghua University, 2002.
Google Scholar
|
|
[44]
|
王学礼, 刘世德, 赵良成. 吕二沟泥石流的形成及特性[J]. 水土保持, 1981, (2): 30−35.
Google Scholar
WANG Xueli, LIU Shide, ZHAO Liangcheng. Formation and characteristics of debris flow in Luergou[J]. Soil and Water Conservation in China, 1981, (2): 30−35.
Google Scholar
|
|
[45]
|
吴玮江, 王国亚, 任路滨, 等. 泥流型黄土滑坡的特征与成因[J]. 冰川冻土, 2015, 37(1): 138−146.
Google Scholar
WU Weijiang, WANG Guoya, REN Lubin, et al. Characteristics and genesis of mudflow type loess landslide[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 138−146.
Google Scholar
|
|
[46]
|
辛鹏, 吴树仁, 石菊松, 等. 降雨诱发浅层黄土泥流的研究进展, 存在问题与对策思考[J]. 地质论评, 2015, 61(3): 485−493.
Google Scholar
XIN Peng, WU Shuren, SHI Jusong, et al. Research progress, existing problems and countermeasures of rain-induced mud flow in shallow loess[J]. Geological Review, 2015, 61(3): 485−493.
Google Scholar
|
|
[47]
|
许强, 彭大雷, 范宣梅, 等. 甘肃积石山6.2级地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J/OL]. 武汉大学学报(信息科学版), 2024: 1−18.
Google Scholar
XU Qiang, PENG Dalei, FAN Xuanmei, et al. Characteristics and mechanism of liquefaction landslide-mudflow in Zhongchuan Township, Qinghai Province triggered by the Jishishan M6.2 earthquake [J/OL]. Journal of Wuhan University (Information Science Edition), 2024: 1−18.
Google Scholar
|
|
[48]
|
闫蕊鑫. 饱和黄土静态液化力学行为及启滑机制[D]. 西安: 长安大学, 2020.
Google Scholar
YAN Ruixin. Static liquefaction mechanical behavior and sliding mechanism of saturated loess [D]. Xi'an: Chang'an University, 2020.
Google Scholar
|
|
[49]
|
殷跃平, 高少华. 高位远程地质灾害研究: 回顾与展望[J]. 中国地质灾害与防治学报, 2024, 35(1): 1−21.
Google Scholar
YIN Yueping, GAO Shaohua. Research on high altitude remote geological hazards: Review and prospect[J]. Chinese Journal of Geological Hazards and Prevention, 2024, 35(1): 1−21.
Google Scholar
|
|
[50]
|
张林梵. 基于时序InSAR的黄土滑坡隐患早期识别—以白鹿塬西南区为例[J]. 西北地质, 2023, 56(3): 250−257.
Google Scholar
ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR: A Case Study of Southwest Bailuyuan[J]. Northwestern Geology, 2023, 56(3): 250−257.
Google Scholar
|
|
[51]
|
张宗祜. 我国黄土类土显微结构的研究[J]. 地质学报, 1964, (3): 357−369+375.
Google Scholar
ZHANG Zonghu. Study on microstructure of loess soil in China[J]. Acta Geologica Sinica, 1964, (3): 357−369+375.
Google Scholar
|
|
[52]
|
张仲福. 陇东黄土高原泥流灾害临界雨量研究[J]. 地质灾害与环境保护, 2020, 31(3): 18−24.
Google Scholar
ZHANG Zhongfu. The research on the critical rainfall ofmudflow disaster in the loess plateau of east gansu[J]. Journal of Geological Hazards and Environment Preservation, 2020, 31(3): 18−24.
Google Scholar
|
|
[53]
|
张茂省, 胡炜, 孙萍萍, 等. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报, 2016, 7(4): 323−334. doi: 10.7515/JEE201604001
CrossRef Google Scholar
ZHANG Maosheng, HU Wei, SUN Pingping, et al. Research status and prospect of water sensitivity and water-induced landslide in loess[J]. Journal of Earth Environment, 2016, 7(4): 323−334. doi: 10.7515/JEE201604001
CrossRef Google Scholar
|
|
[54]
|
赵之旭, 聂福彪, 张万福. 黄土塬区沟道流域泥流的形成因素与防治对策[J]. 防护林科技, 2005, 67(4): 33−35. doi: 10.3969/j.issn.1005-5215.2005.04.013
CrossRef Google Scholar
ZHAO Zhixu, NIE Fubiao, ZHANG Wanfu. Formation factors and control measures of mudflow in gully watershed of Loess Tableland[J]. Shelterbelt Science and Technology, 2005, 67(4): 33−35. doi: 10.3969/j.issn.1005-5215.2005.04.013
CrossRef Google Scholar
|
|
[55]
|
周明. 咸阳黄土高原泥流的形成因素及土壤侵蚀类型[J]. 人民黄河, 1996, (2): 31−33.
Google Scholar
ZHOU Ming. Formation factors and soil erosion types of mudflow in Xianyang Loess Plateau[J]. Yellow River, 1996, (2): 31−33.
Google Scholar
|
|
[56]
|
朱兴华, 彭建兵, 同霄, 等. 黄土地区地质灾害链研究初探[J]. 工程地质学报, 2017, 25(1): 117−122.
Google Scholar
ZHU Xinghua, PENG Jianbing, TONG Xiao, et al. Study on geological hazard chain in loess area[J]. Journal of Engineering Geology, 2017, 25(1): 117−122.
Google Scholar
|
|
[57]
|
Baum R L, Godt J W. Early warning of rainfall-induced shallow landslides and debris flows in the USA[J]. Landslides, 2010, 7(3): 259−272. doi: 10.1007/s10346-009-0177-0
CrossRef Google Scholar
|
|
[58]
|
Berti M, Bernard M, Gregoretti C, et al. Physical interpretation of rainfall thresholds for runoff-generated debris flows[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(6): e2019JF005513. doi: 10.1029/2019JF005513
CrossRef Google Scholar
|
|
[59]
|
Bogaard T, Greco R. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds[J]. Natural Hazards and Earth System Sciences, 2018, 18(1): 31−39. doi: 10.5194/nhess-18-31-2018
CrossRef Google Scholar
|
|
[60]
|
Boniello M A, Calligaris C, Lapasin R, et al. Rheological investigation and simulation of a debris-flow event in the Fella watershed[J]. Natural Hazards and Earth System Sciences, 2010, 10(5): 989−997. doi: 10.5194/nhess-10-989-2010
CrossRef Google Scholar
|
|
[61]
|
Caine N. The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler: Series A, Physical Geography, 1980, 62(1−2): 23−27. doi: 10.1080/04353676.1980.11879996
CrossRef Google Scholar
|
|
[62]
|
Carrière S R, Jongmans D, Chambon G, et al. Rheological properties of clayey soils originating from flow-like landslides[J]. Landslides, 2018, 15(8): 1615−1630. doi: 10.1007/s10346-018-0972-6
CrossRef Google Scholar
|
|
[63]
|
Chanson H, Coussot P, Jarny S, et al. A study of dam break wave of thixotropic fluid: Bentonite surges down an inclined plane [R]. Department of Civil Engineering, The University of Queensland, 2004, Report CH54/04.
Google Scholar
|
|
[64]
|
Chen C Y, Chen T C, Yu F C, et al. Rainfall duration and debris-flow initiated studies for real-time monitoring[J]. Environmental Geology, 2005, 47(5): 715−724.
Google Scholar
|
|
[65]
|
Chen H X, Wang J D. Regression analyses for the minimum intensity-duration conditions of continuous rainfall for mudflows triggering in Yan’an, northern Shaanxi (China)[J]. Bulletin of Engineering Geology and the Environment, 2013, 73: 917−928.
Google Scholar
|
|
[66]
|
Ciccarese G, Mulas M, Corsini A. Combining spatial modelling and regionalization of rainfall thresholds for debris flows hazard mapping in the Emilia-Romagna Apennines (Italy)[J]. Landslides, 2021, 18(11): 3513−3529. doi: 10.1007/s10346-021-01739-w
CrossRef Google Scholar
|
|
[67]
|
Coussot P, Nguyen Q D, Huynh H T, et al. Viscosity bifurcation in thixotropic, yielding fluids[J]. Journal of Rheology, 2002, 46(3): 573−589. doi: 10.1122/1.1459447
CrossRef Google Scholar
|
|
[68]
|
Coussot P, Piau J M. A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions[J]. Journal of Rheology, 1995, 39(1): 105−124. doi: 10.1122/1.550693
CrossRef Google Scholar
|
|
[69]
|
Coussot P, Piau J M. On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 33(3): 175−184. doi: 10.1007/BF00437302
CrossRef Google Scholar
|
|
[70]
|
Coussot P, Roussel N, Jarny S, et al. Continuous or catastrophic solid–liquid transition in jammed systems[J]. Physics of Fluids, 2005, 17(1): 011704. doi: 10.1063/1.1823531
CrossRef Google Scholar
|
|
[71]
|
Coussot P. Mudflow rheology and dynamics [M]. Routledge, 2017.
Google Scholar
|
|
[72]
|
Cui P, Zhou G G D, Zhu X H, et al. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 2013, 182: 173−189. doi: 10.1016/j.geomorph.2012.11.009
CrossRef Google Scholar
|
|
[73]
|
Eilertsen R S, Hansen L, Bargel T H, et al. Clay slides in the Målselv valley, northern Norway: Characteristics, occurrence, and triggering mechanisms[J]. Geomorphology, 2008, 93(3−4): 548−562. doi: 10.1016/j.geomorph.2007.03.013
CrossRef Google Scholar
|
|
[74]
|
Gens Solé A. Fundamentals of soil behaviour [J]. XXII Conferenza di Geotecnica di Torino, 2009.
Google Scholar
|
|
[75]
|
Guzzetti F, Peruccacci S, Rossi M, et al. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides, 2008, 5(1): 3−17. doi: 10.1007/s10346-007-0112-1
CrossRef Google Scholar
|
|
[76]
|
Hoch O J, McGuire L A, Youberg A M, et al. Hydrogeomorphic recovery and temporal changes in rainfall thresholds for debris flows following wildfire[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(12): e2021JF006374. doi: 10.1029/2021JF006374
CrossRef Google Scholar
|
|
[77]
|
Holthusen D, Pertile P, Awe G O, et al. Soil density and oscillation frequency effects on viscoelasticity and shear resistance of subtropical Oxisols with varying clay content[J]. Soil and Tillage Research, 2020, 203: 104677. doi: 10.1016/j.still.2020.104677
CrossRef Google Scholar
|
|
[78]
|
Hu W, Li Y, Xu Q, et al. Flowslide high fluidity induced by shear thinning[J]. Journal of Geophysical Research: Solid Earth, 2022: e2022JB024615.
Google Scholar
|
|
[79]
|
Huang Z, Aode H. A laboratory study of rheological properties of mudflows in Hangzhou Bay, China[J]. International Journal of Sediment Research, 2009, 24(4): 410−424. doi: 10.1016/S1001-6279(10)60014-5
CrossRef Google Scholar
|
|
[80]
|
Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2): 167−194. doi: 10.1007/s10346-013-0436-y
CrossRef Google Scholar
|
|
[81]
|
Ilstad T, Elverhøi A, Issler D, et al. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking[J]. Marine Geology, 2004, 213(1−4): 415−438. doi: 10.1016/j.margeo.2004.10.017
CrossRef Google Scholar
|
|
[82]
|
Iverson R M. Regulation of landslide motion by dilatancy and pore pressure feedback [J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F2).
Google Scholar
|
|
[83]
|
Iverson R M. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology, 2015, 244: 9−20. doi: 10.1016/j.geomorph.2015.02.033
CrossRef Google Scholar
|
|
[84]
|
Jeong S W, Locat J, Leroueil S, et al. Rheological properties of fine-grained sediment: the roles of texture and mineralogy[J]. Canadian Geotechnical Journal, 2010, 47(10): 1085−1100. doi: 10.1139/T10-012
CrossRef Google Scholar
|
|
[85]
|
Jeong S W. Influence of physico-chemical characteristics of fine-grained sediments on their rheological behavior [D]. Université Laval, 2006.
Google Scholar
|
|
[86]
|
Jibson R W. Debris flows in southern Puerto Rico: Landslide processes of the eastern United States and Puerto Rico[J]. Geological Society of America Special Paper, 1989, 236: 29−55.
Google Scholar
|
|
[87]
|
Jongmans D, Bièvre G, Renalier F, et al. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps)[J]. Engineering Geology, 2009, 109(1−2): 45−56. doi: 10.1016/j.enggeo.2008.10.005
CrossRef Google Scholar
|
|
[88]
|
Kaitna R, Rickenmann D, Schatzmann M. Experimental study on rheologic behaviour of debris flow material[J]. Acta Geotechnica, 2007, 2(2): 71−85. doi: 10.1007/s11440-007-0026-z
CrossRef Google Scholar
|
|
[89]
|
Kirschbaum D B, Stanley T, Simmons J. A dynamic landslide hazard assessment system for Central America and Hispaniola[J]. Natural Hazards and Earth System Sciences, 2015, 15(10): 2257−2272. doi: 10.5194/nhess-15-2257-2015
CrossRef Google Scholar
|
|
[90]
|
Lian B Q, Wang X G, Zhan H B, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589. doi: 10.1016/j.enggeo.2022.106589
CrossRef Google Scholar
|
|
[91]
|
Mainsant G, Jongmans D, Chambon G, et al. S-wave velocity as an indicator of solid-liquid transition in clay[C]. EGU General Assembly Conference Abstracts, 2013: EGU2013−4380.
Google Scholar
|
|
[92]
|
Mainsant G, Jongmans D, Larose E, et al. The solid-to-liquid transition in the Trièves clay: the lessons from rheometric and seismic tests[C]. Mountain Risks: Bringing Science to Society, 2010: 6.
Google Scholar
|
|
[93]
|
Major J J, Pierson T C. Debris flow rheology: Experimental analysis of fine-grained slurries[J]. Water Resources Research, 1992, 28(3): 841−857. doi: 10.1029/91WR02834
CrossRef Google Scholar
|
|
[94]
|
Malet J P, Laigle D, Remaitre A, et al. Triggering conditions and mobility of debris flows associated to complex earthflows[J]. Geomorphology, 2005, 66(1−4): 215−235.
Google Scholar
|
|
[95]
|
McGuire L A, Youberg A M. What drives spatial variability in rainfall intensity-duration thresholds for post-wildfire debris flows? Insights from the 2018 Buzzard Fire, NM, USA[J]. Landslides, 2020, 17(10): 2385−2399. doi: 10.1007/s10346-020-01470-y
CrossRef Google Scholar
|
|
[96]
|
Mewis J, Wagner N J. Thixotropy[J]. Advances in Colloid and Interface Science, 2009, 147: 214−227.
Google Scholar
|
|
[97]
|
O'Brien J S, Julien P Y. Laboratory analysis of mudflow properties[J]. Journal of Hydraulic Engineering, 1988, 114(8): 877−887. doi: 10.1061/(ASCE)0733-9429(1988)114:8(877)
CrossRef Google Scholar
|
|
[98]
|
Papa M N, Medina V, Ciervo F, et al. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems[J]. Hydrology and Earth System Sciences, 2013, 17(10): 4095−4107. doi: 10.5194/hess-17-4095-2013
CrossRef Google Scholar
|
|
[99]
|
Parsons J D, Whipple K X, Simoni A. Experimental study of the grain-flow, fluid-mud transition in debris flows[J]. The Journal of Geology, 2001, 109(4): 427−447. doi: 10.1086/320798
CrossRef Google Scholar
|
|
[100]
|
Peng J B, Wang S K, Wang Q Y, et al. Distribution and genetic types of loess landslides in China[J]. Journal of Asian Earth Sciences, 2019, 170: 329−350. doi: 10.1016/j.jseaes.2018.11.015
CrossRef Google Scholar
|
|
[101]
|
Pértile P, Reichert J M, Gubiani P I, et al. Rheological parameters as affected by water tension in subtropical soils [J]. Revista Brasileira de Ciência do Solo, 2016, 40.
Google Scholar
|
|
[102]
|
Phillips C J, Davies T R H. Determining rheological parameters of debris flow material[J]. Geomorphology, 1991, 4(2): 101−110. doi: 10.1016/0169-555X(91)90022-3
CrossRef Google Scholar
|
|
[103]
|
Picarelli L, Olivares L, Comegna L, et al. Mechanical aspects of flow-like movements in granular and fine grained soils[J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 179−197. doi: 10.1007/s00603-007-0135-x
CrossRef Google Scholar
|
|
[104]
|
Picarelli L, Urciuoli G, Ramondini M, et al. Main features of mudslides in tectonised highly fissured clay shales[J]. Landslides, 2005, 2(1): 15−30. doi: 10.1007/s10346-004-0040-2
CrossRef Google Scholar
|
|
[105]
|
Raymond C A, McGuire L A, Youberg A M, et al. Thresholds for post-wildfire debris flows: Insights from the Pinal Fire, Arizona, USA[J]. Earth Surface Processes and Landforms, 2020, 45(6): 1349−1360. doi: 10.1002/esp.4805
CrossRef Google Scholar
|
|
[106]
|
Schippa L, Doghieri F, Pellegrino A M, et al. Thixotropic Behavior of Reconstituted Debris-Flow Mixture[J]. Water, 2021, 13(2): 153. doi: 10.3390/w13020153
CrossRef Google Scholar
|
|
[107]
|
Sosio R, Crosta G B, Frattini P. Field observations, rheological testing and numerical modelling of a debris-flow event[J]. Earth Surface Processes and Landforms, 2007, 32(2): 290−306. doi: 10.1002/esp.1391
CrossRef Google Scholar
|
|
[108]
|
Staley D M, Kean J W, Cannon S H, et al. Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California[J]. Landslides, 2013, 10(5): 547−562. doi: 10.1007/s10346-012-0341-9
CrossRef Google Scholar
|
|
[109]
|
Stoppe N, Horn R. Microstructural strength of tidal soils-a rheometric approach to develop pedotransfer functions[J]. Journal of Hydrology and Hydromechanics, 2018, 66(1): 87. doi: 10.1515/johh-2017-0031
CrossRef Google Scholar
|
|
[110]
|
Thomas M A, Mirus B B, Collins B D. Identifying physics-based thresholds for rainfall-induced landsliding[J]. Geophysical Research Letters, 2018, 45(18): 9651−9661. doi: 10.1029/2018GL079662
CrossRef Google Scholar
|
|
[111]
|
Tang H, McGuire L A, Rengers F K, et al. Developing and testing physically based triggering thresholds for runoff‐generated debris flows[J]. Geophysical Research Letters, 2019, 46(15): 8830−8839.
Google Scholar
|
|
[112]
|
Van Asch T W J, Malet J P. Flow-type failures in fine-grained soils: an important aspect in landslide hazard analysis[J]. Natural Hazards and Earth System Sciences, 2009, 9(5): 1703−1711. doi: 10.5194/nhess-9-1703-2009
CrossRef Google Scholar
|
|
[113]
|
Wang D Z, Wang X G, Chen X Q, et al. Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment[J]. Geomorphology, 2022, 398: 108054. doi: 10.1016/j.geomorph.2021.108054
CrossRef Google Scholar
|
|
[114]
|
Wang D, Wang X, Chen X, et al. Solid–fluid phase transition characteristics of loess and its drag reduction mechanism[J]. Landslides, 2024a, 8(6): 1−9.
Google Scholar
|
|
[115]
|
Wang D Z, Wang X G, Chen X Q, et al. Influence of micromorphology and water content on the rheological properties and performance evaluation model of loess mudflow[J]. Physics of Fluids, 2024b, 36(11): 2135−2148.
Google Scholar
|
|
[116]
|
Wang X, Wang J, Zhan H, et al. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide[J]. Catena, 2019, 187: 104371.
Google Scholar
|
|
[117]
|
Wang X G, Sheng H, Lian B Q, et al. Formation mechanism of a disaster chain in Loess Plateau: A case study of the Pucheng County disaster chain on August 10, 2023, in Shaanxi Province, China[J]. Engineering Geology, 2024c, 331: 107463. doi: 10.1016/j.enggeo.2024.107463
CrossRef Google Scholar
|
|
[118]
|
Xu L, Dai F C, Tu X B, et al. Occurrence of landsliding on slopes where flowsliding had previously occurred: an investigation in a loess platform, North-west China[J]. Catena, 2013, 104: 195−209. doi: 10.1016/j.catena.2012.11.010
CrossRef Google Scholar
|
|
[119]
|
Xu Q, Peng D L, Zhang S, et al. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China[J]. Engineering Geology, 2020, 278: 105817. doi: 10.1016/j.enggeo.2020.105817
CrossRef Google Scholar
|
|
[120]
|
Yuan B, Chen W W, Tang Y Q, et al. Experimental study on gully-shaped mud flow in the loess area[J]. Environmental Earth Sciences, 2015, 74(1): 759−769. doi: 10.1007/s12665-015-4080-9
CrossRef Google Scholar
|
|
[121]
|
Zhang F Y, Wang G H, Peng J B. Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria[J]. Engineering Geology, 2022, 302: 106619. doi: 10.1016/j.enggeo.2022.106619
CrossRef Google Scholar
|
|
[122]
|
Zhang F Y, Wang G H. Effect of irrigation-induced densification on the post-failure behavior of loess flowslides occurring on the Heifangtai area, Gansu, China[J]. Engineering Geology, 2018, 236: 111−118. doi: 10.1016/j.enggeo.2017.07.010
CrossRef Google Scholar
|
|
[123]
|
Zhou W, Tang C. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides, 2014, 11: 877−887. doi: 10.1007/s10346-013-0421-5
CrossRef Google Scholar
|