2025 Vol. 58, No. 2
Article Contents

WANG Xingang, WANG Daozheng, WANG Jiading, HUANG Qiangbing, HU Sheng, LIAN Baoqin, GU Chaoying. 2025. Research Status and Development Trend on the Mechanism of Mudflow Disasters in the Loess Plateau. Northwestern Geology, 58(2): 1-15. doi: 10.12401/j.nwg.2024113
Citation: WANG Xingang, WANG Daozheng, WANG Jiading, HUANG Qiangbing, HU Sheng, LIAN Baoqin, GU Chaoying. 2025. Research Status and Development Trend on the Mechanism of Mudflow Disasters in the Loess Plateau. Northwestern Geology, 58(2): 1-15. doi: 10.12401/j.nwg.2024113

Research Status and Development Trend on the Mechanism of Mudflow Disasters in the Loess Plateau

    Fund Project: This research was supported by the National Key R&D Program of China (No.2023YFC3008401) and the National Natural Science Foundation of China (No. 42207184).
More Information
  • Loess mudflow is a frequent geological hazard in the Loess Plateau region, characterized by strong mobility, long-distance movement, and massive impact and destructive force, often causing major disasters. A scientific understanding of the mechanism of mudflow disasters on the Loess Plateau is of great significance for reducing disaster risks and adopting scientifically effective disaster reduction measures. This article first reviews the latest progress in research on the environmental characteristics, fluid properties, disaster mechanisms, and monitoring and early warning of loess mudflow disasters. Then, it analyzes the key scientific issues in the research of loess mudflow disasters. Finally, it is proposed that the future research on mudflow disasters on the Loess Plateau should still take "field investigation - experimental research - theoretical analysis - practical application" as the research paradigm, and adopt new theories, new methods, new technologies and new equipment, and focus on the following research directions considering the multi-scale, multi-time series and multi-stage perspectives of mudflow on the loess Plateau: Study the temporal and spatial development characteristics of loess mudflow and its advanced identification technology under complex disaster-prone environment, build a dynamic model of loess mudflow evolution mechanism and disaster mechanism, establish a real-time monitoring and early warning model of loess mudflow disaster and a comprehensive evaluation method, and form a comprehensive technical system of loess mudflow toughness prevention and control and emergency rescue.

  • 加载中
  • [1] 陈海霞, 王家鼎. 延安地区降雨引发黄土泥流的试验研究[J]. 水土保持通报, 2013, 332): 3942.

    Google Scholar

    CHEN Haixia, WANG Jiading. Experimental study on loess mudflow induced by rainfall in Yan'an area[J]. Bulletin of Soil and Water Conservation, 2013, 332): 3942.

    Google Scholar

    [2] 费祥俊. 高浓度浑水的宾汉极限剪应力[J]. 泥沙研究, 1981, (3): 2130.

    Google Scholar

    FEI Xiangjun. Bingham limit shear stress in high concentration muddy water[J]. Journal of Sediment Research, 1981, (3): 2130.

    Google Scholar

    [3] 傅伯杰, 刘彦随, 曹智, 等. 黄土高原生态保护和高质量发展现状、问题与建议[J]. 中国科学院院刊, 2023, 388): 11101117.

    Google Scholar

    FU Bojie, LIU Yansui, CAO Zhi, et al. Status quo, problems and suggestions of ecological protection and high-quality development in the Loess Plateau[J]. Proceedings of the Chinese Academy of Sciences, 2023, 388): 11101117.

    Google Scholar

    [4] 付泉, 党光普, 李致博, 等. 基于分形维数耦合支持向量机和熵权模型的滑坡易发性研究[J]. 西北地质, 2024, 576): 255267.

    Google Scholar

    FU Quan, DANG Guangpu, LI Zhibo, et al. Study of Landslide Susceptibility Mapping Based on Fractal Dimension Integrating Support Vector Machine with Index of Entropy Model[J]. Northwestern Geology, 2024, 576): 255267.

    Google Scholar

    [5] 辜超颖, 王新刚. 基于CiteSpace可视化分析的滑坡滑带土研究现状与发展趋势[J/OL]. 中国地质灾害与防治学报, 2024: 1−18.

    Google Scholar

    GU Chaoying, WANG Xinguang. Research status and development trend of landslide slip zone soil based on CiteSpace visual analysis [J/OL]. Chinese Journal of Geological Hazards and Prevention, 2024: 1−18.

    Google Scholar

    [6] 郭正堂, 丁仲礼, 刘东生. 黄土中的沉积-成壤事件与第四纪气候旋回[J]. 科学通报, 1996, 411): 5659.

    Google Scholar

    GUO Zhengtang, DING Zhongli, LIU Dongsheng. Sedimentary pedogenesis events and Quaternary climatic cycles in loess[J]. Chinese Science Bulletin, 1996, 411): 5659.

    Google Scholar

    [7] 韩金良, 吴树仁, 汪华斌. 地质灾害链[J]. 地学前缘, 2007, 146): 1123. doi: 10.1016/S1872-5791(08)60001-9

    CrossRef Google Scholar

    HAN Jinliang, WU Shuren, WANG Huabin. Geological hazard chain[J]. Earth Science Frontiers, 2007, 146): 1123. doi: 10.1016/S1872-5791(08)60001-9

    CrossRef Google Scholar

    [8] 胡华, 顾恒星, 俞登荣. 淤泥质软土动态流变特性与流变参数研究[J]. 岩土力学, 2008, 293): 696700.

    Google Scholar

    HU Hua, GU Xingxing, YU Dengrong. Study on dynamic rheological properties and parameters of silty soft soil[J]. Rock and Soil Mechanics, 2008, 293): 696700.

    Google Scholar

    [9] 华山, 贾晓丹, 张霞. 拦挡作用对黄土坡面泥流动力过程影响机制[J]. 西北地质, 2024, 573): 285292.

    Google Scholar

    HUA Shan, JIA Xiaodan, ZHANG Xia. Mechanism of barrier effect on mudflow dynamic process on loess slope[J]. Northwestern Geology, 2024, 573): 285292.

    Google Scholar

    [10] 黄玉华, 武文英, 冯卫, 等. 陕北延安“7.3暴雨”诱发地质灾害主要类型与特征[J]. 西北地质, 2014, 473): 140146.

    Google Scholar

    HUANG Yuhua, WU Wenying, FENG Wei, et al. Main types and characteristics of geological disasters induced by "7.3 rainstorm" in Yan'an, northern Shaanxi[J]. Northwestern Geology, 2014, 473): 140146.

    Google Scholar

    [11] 姜程, 霍艾迪, 朱兴华, 等. 黄土水力侵蚀-滑坡-泥流灾害链的研究现状[J]. 自然灾害学报, 2019, 281): 3843.

    Google Scholar

    JIANG Cheng, HUO Aidi, ZHU Xinghua, et al. Research status of disaster chain of hydraulic erosion-landslide-mudflow in loess[J]. Journal of Natural Disasters, 2019, 281): 3843.

    Google Scholar

    [12] 兰恒星, 彭建兵, 祝艳波, 等. 黄河流域地质地表过程与重大灾害效应研究与展望[J]. 中国科学: 地球科学, 2022, 522): 199221.

    Google Scholar

    LAN Xing, PENG Jianbing, ZHU Yanbo, et al. Geological surface processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 2022, 522): 199221.

    Google Scholar

    [13] 郎煜华, 曾思伟, 张又安. 天水市柿沟泥流及其防治[J]. 环境研究与监测, 1989, (1): 4042.

    Google Scholar

    LANG Yuhua, ZENG Siwei, ZHANG Youan. Mudflow and its control in Shizigou, Tianshui City[J]. Environmental Research and Monitoring, 1989, (1): 4042.

    Google Scholar

    [14] 雷祥义, 黄玉华, 王卫. 黄土高原的泥流灾害与人类活动[J]. 陕西地质, 2000, 181): 2839. doi: 10.3969/j.issn.1001-6996.2000.01.006

    CrossRef Google Scholar

    LEI Xiangyi, HUANG Yuhua, WANG Wei. Mudflow hazards and human activities in the Loess Plateau[J]. Shaanxi Geology, 2000, 181): 2839. doi: 10.3969/j.issn.1001-6996.2000.01.006

    CrossRef Google Scholar

    [15] 李昭淑. 陕西省泥石流灾害与防治[M]. 西安: 西安地图出版社, 2002.

    Google Scholar

    [16] 李学曾. 黄土高原是中华民族的摇篮和古文化的发祥地[J]. 西北大学学报(自然科学版), 1985, 472): 9296.

    Google Scholar

    LI Xueceng. The Loess Plateau is the cradle of the Chinese nation and the birthplace of ancient culture[J]. Journal of Northwest University (Natural Science Edition), 1985, 472): 9296.

    Google Scholar

    [17] 蔺晓燕. 甘肃黑方台灌区黄土滑坡一泥流形成机理研究[D]. 西安: 长安大学, 2013.

    Google Scholar

    LIN Xiaoyan. Study on formation mechanism of mud flow in loess landslide in Heifangtai Irrigation District, Gansu Province [D]. Xi'an: Chang'an University, 2013.

    Google Scholar

    [18] 刘东生, 孙继敏, 吴文祥. 中国黄土研究的历史、现状和未来──一次事实与故事相结合的讨论[J]. 第四纪研究, 2001, 213): 185207.

    Google Scholar

    LIU Dongsheng, SUN Jimin, WU Wenxiang. The history, present situation and Future of Loess Research in China: a discussion combining facts and stories[J]. Quaternary Sciences, 2001, 213): 185207.

    Google Scholar

    [19] 刘锋, 张茂省, 董英, 等. 基于1984~2022年榆林市地质灾害记录对其时空分布规律分析[J]. 西北地质, 2023, 563): 204213.

    Google Scholar

    LIU Feng, ZHANG Maosheng, DONG Ying, et al. Analysis of Spatial and Temporal Distribution of Geological Disasters in Yulin City Based on the Records from 1984 to 2022[J]. Northwestern Geology, 2023, 563): 204213.

    Google Scholar

    [20] 刘传正, 陈春利. 中国地质灾害防治成效与问题对策[J]. 工程地质学报, 2020, 282): 375383.

    Google Scholar

    LIU Chuanzheng, CHEN Chunli. Effects and countermeasures of geological disaster prevention in China[J]. Journal of Engineering Geology, 2020, 282): 375383.

    Google Scholar

    [21] 刘青泉, 陈力, 李家春. 坡度对坡面土壤侵蚀的影响分析[J]. 应用数学和力学, 2001, 225): 449457.

    Google Scholar

    LIU Qingquan, CHEN Li, LI Jiachun. Effect of slope on soil erosion on slope[J]. Applied Mathematics and Mechanics, 2001, 225): 449457.

    Google Scholar

    [22] 刘忠义. 咸阳地区黄土高原泥流形成的主要因素及规律[J]. 中国水土保持, 1987, (3): 1921+65.

    Google Scholar

    LIU Zhongyi. Main factors and rules of mudflow formation in Loess Plateau of Xianyang area[J]. Soil and Water Conservation in China, 1987, (3): 1921+65.

    Google Scholar

    [23] 马超. 基于土体含水量和实时降雨的泥石流预警指标研究[D]. 北京: 中国科学院大学, 2014.

    Google Scholar

    MA Chao. Research on debris flow warning index based on soil moisture content and real-time rainfall [D]. Beijing: University of Chinese Academy of Sciences, 2014.

    Google Scholar

    [24] 马东涛, 崔鹏, 张金山, 等. 黄土高原泥流灾害成因及特征[J]. 干旱区地理, 2005, 284): 1924.

    Google Scholar

    MA Dongtao, CUI Peng, ZHANG Jinshan, et al. Causes and characteristics of mudflow disasters in the Loess Plateau[J]. Arid Land Geography, 2005, 284): 1924.

    Google Scholar

    [25] 马东涛, 祁龙, 邓晓峰. 甘肃环县东山黄土泥流综合治理[J]. 山地学报, 2000, 183): 217220.

    Google Scholar

    MA Dongtao, QI Long, DENG Xiaofeng. Comprehensive mudflow management of Dongshan loess in Huan County, Gansu Province[J]. Journal of Mountain Science, 2000, 183): 217220.

    Google Scholar

    [26] 马鹏辉, 彭建兵. 论黄土地质灾害链(二)[J]. 自然灾害学报, 2022, 313): 1524.

    Google Scholar

    MA Penghui, PENG Jianbing. On loess geological hazard chain (II)[J]. Journal of Natural Hazards, 2022, 313): 1524.

    Google Scholar

    [27] 彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 265): 714730.

    Google Scholar

    PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, et al. Dynamic mechanism of landslide hazard formation in Loess Plateau[J]. Chinese Journal of Geomechanics, 2020, 265): 714730.

    Google Scholar

    [28] 史泽华. 黄土流变特性试验研究[D]. 兰州: 兰州大学, 2020.

    Google Scholar

    SHI Zehua. Experimental study on rheological properties of loess [D]. Lanzhou: Lanzhou University, 2020.

    Google Scholar

    [29] 孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 553): 96107.

    Google Scholar

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Progress of geological hazard investigation in loess areas of western China[J]. Northwestern Geology, 2022, 553): 96107.

    Google Scholar

    [30] 唐邦兴, 周必凡, 吴积善, 等. 中国泥石流[M]. 北京: 商务印书馆, 2000.

    Google Scholar

    [31] 唐益群, 袁斌, 李军鹏. 基于正交试验的黄土泥流运动分析[J]. 水利学报, 2015, 462): 183189.

    Google Scholar

    TANG Yiqun, YUAN Bin, LI Junpeng. Analysis of mud flow in loess based on orthogonal test[J]. Journal of Hydraulic Engineering, 2015, 462): 183189.

    Google Scholar

    [32] 王家鼎, 王靖泰, 黄海国. 饱和土蠕(滑)动液化的研究[J]. 现代地质, 1993, 71): 102108.

    Google Scholar

    WANG Jiading, WANG Jingtai, HUANG Haiguo. Study on creep (slip) dynamic liquefaction of saturated soil[J]. Geoscience, 1993, 71): 102108.

    Google Scholar

    [33] 王家鼎. 高速黄土滑坡的一种机理-饱和黄土蠕动液化[J]. 地质论评, 1992, 386): 532539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    CrossRef Google Scholar

    WANG Jiading. A mechanism of high-speed loess landslide - creep liquefaction of saturated loess[J]. Geological Review, 1992, 386): 532539. doi: 10.3321/j.issn:0371-5736.1992.06.011

    CrossRef Google Scholar

    [34] 王家鼎. 中国黄土山城“依山造居”的几个灾害问题讨论(Ⅳ)-黄土泥流分析[J]. 西北大学学报(自然科学版), 1997, 275): 7882.

    Google Scholar

    WANG Jiading. Discussion on several disaster problems of "settlement by mountain" in loess Mountain City in China (Ⅳ) -Analysis of mud flow in loess[J]. Journal of Northwest University (Natural Science Edition), 1997, 275): 7882.

    Google Scholar

    [35] 王兰民, 柴少峰, 薄景山, 等. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 2023, 458): 15431554. doi: 10.11779/CJGE20220531

    CrossRef Google Scholar

    WANG Lanmin, CHAI Shaofeng, BO Jingshan, et al. Triggering types, characteristics and disaster mechanism of loess earthquake landslide[J]. Journal of Rock and Soil Engineering, 2023, 458): 15431554. doi: 10.11779/CJGE20220531

    CrossRef Google Scholar

    [36] 王万忠. 黄土沟道小流域的泥流特征和防治[J]. 水土保持通报, 1984, (1): 1923.

    Google Scholar

    WANG Wanzhong. Mudflow characteristics and control of loess gully watershed[J]. Bulletin of Soil and Water Conservation, 1984, (1): 1923.

    Google Scholar

    [37] 王新刚, 谷天峰, 王家鼎. 基质吸力控制下的非饱和黄土三轴蠕变试验研究[J]. 水文地质工程地质, 2017, 444): 5761+70.

    Google Scholar

    WANG Xingang, GU Tianfeng, WANG Jiading. Experimental study on triaxial creep of unsaturated loess under matric suction control[J]. Hydrogeology and Engineering Geology, 2017, 444): 5761+70.

    Google Scholar

    [38] 王新刚, 刘凯, 连宝琴, 等. 黄土卸荷蠕变特性与典型开挖型黄土滑坡机理研究[J]. 工程地质学报, 2024, 322): 513521.

    Google Scholar

    WANG Xingang, LIU Kai, LIAN Baoqin, et al. Study on unloading creep characteristics of loess and mechanism of typical excavated loess landslide[J]. Chinese Journal of Engineering Geology, 2024, 322): 513521.

    Google Scholar

    [39] 王新刚, 刘凯, 王友林, 等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质, 2022, 495): 137143.

    Google Scholar

    WANG Xingang, LIU Kai, WANG Youlin, et al. Experimental study on creep characteristics of soil in typical loess landslide slip zone with different water content[J]. Hydrogeology and Engineering Geology, 2022, 495): 137143.

    Google Scholar

    [40] 王新刚, 余宏明, 胡斌, 等. 节理控制的降雨入渗通道对黄土开挖边坡稳定性的影响[J]. 山地学报, 2013, 314): 413417. doi: 10.3969/j.issn.1008-2786.2013.04.005

    CrossRef Google Scholar

    WANG Xingang, YU Hongming, HU Bin, et al. Effect of joint-controlled rainfall infiltration channel on stability of excavated loess slope[J]. Journal of Mountain Science, 2013, 314): 413417. doi: 10.3969/j.issn.1008-2786.2013.04.005

    CrossRef Google Scholar

    [41] 王裕宜, 詹钱登, 李昌志, 等. 粘性泥石流应力应变特征的初步试验研究[J]. 山地学报, 2002, 201): 4246. doi: 10.3969/j.issn.1008-2786.2002.01.007

    CrossRef Google Scholar

    WANG Yuyi, ZHAN Qiandeng, LI Changzhi, et al. Preliminary experimental study on stress-strain characteristics of viscous debris flow[J]. Acta Geographica Sinica, 2002, 201): 4246. doi: 10.3969/j.issn.1008-2786.2002.01.007

    CrossRef Google Scholar

    [42] 王占礼, 常庆瑞. 黄土高原降雨因素对土壤侵蚀的影响[J]. 西北农业大学学报, 1998, 264): 106110.

    Google Scholar

    WANG Zhanli, CHANG Qingrui. Effects of rainfall factors on soil erosion in Loess Plateau[J]. Journal of Northwest Agricultural University, 1998, 264): 106110.

    Google Scholar

    [43] 王兆印. 高含沙水流运动力学及其应用[M]. 北京: 清华大学, 2002.

    Google Scholar

    WANG Zhaoyin. High sediment content flow dynamics and its application [M]. Beijing: Tsinghua University, 2002.

    Google Scholar

    [44] 王学礼, 刘世德, 赵良成. 吕二沟泥石流的形成及特性[J]. 水土保持, 1981, (2): 3035.

    Google Scholar

    WANG Xueli, LIU Shide, ZHAO Liangcheng. Formation and characteristics of debris flow in Luergou[J]. Soil and Water Conservation in China, 1981, (2): 3035.

    Google Scholar

    [45] 吴玮江, 王国亚, 任路滨, 等. 泥流型黄土滑坡的特征与成因[J]. 冰川冻土, 2015, 371): 138146.

    Google Scholar

    WU Weijiang, WANG Guoya, REN Lubin, et al. Characteristics and genesis of mudflow type loess landslide[J]. Journal of Glaciology and Geocryology, 2015, 371): 138146.

    Google Scholar

    [46] 辛鹏, 吴树仁, 石菊松, 等. 降雨诱发浅层黄土泥流的研究进展, 存在问题与对策思考[J]. 地质论评, 2015, 613): 485493.

    Google Scholar

    XIN Peng, WU Shuren, SHI Jusong, et al. Research progress, existing problems and countermeasures of rain-induced mud flow in shallow loess[J]. Geological Review, 2015, 613): 485493.

    Google Scholar

    [47] 许强, 彭大雷, 范宣梅, 等. 甘肃积石山6.2级地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J/OL]. 武汉大学学报(信息科学版), 2024: 1−18.

    Google Scholar

    XU Qiang, PENG Dalei, FAN Xuanmei, et al. Characteristics and mechanism of liquefaction landslide-mudflow in Zhongchuan Township, Qinghai Province triggered by the Jishishan M6.2 earthquake [J/OL]. Journal of Wuhan University (Information Science Edition), 2024: 1−18.

    Google Scholar

    [48] 闫蕊鑫. 饱和黄土静态液化力学行为及启滑机制[D]. 西安: 长安大学, 2020.

    Google Scholar

    YAN Ruixin. Static liquefaction mechanical behavior and sliding mechanism of saturated loess [D]. Xi'an: Chang'an University, 2020.

    Google Scholar

    [49] 殷跃平, 高少华. 高位远程地质灾害研究: 回顾与展望[J]. 中国地质灾害与防治学报, 2024, 351): 121.

    Google Scholar

    YIN Yueping, GAO Shaohua. Research on high altitude remote geological hazards: Review and prospect[J]. Chinese Journal of Geological Hazards and Prevention, 2024, 351): 121.

    Google Scholar

    [50] 张林梵. 基于时序InSAR的黄土滑坡隐患早期识别—以白鹿塬西南区为例[J]. 西北地质, 2023, 563): 250257.

    Google Scholar

    ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR: A Case Study of Southwest Bailuyuan[J]. Northwestern Geology, 2023, 563): 250257.

    Google Scholar

    [51] 张宗祜. 我国黄土类土显微结构的研究[J]. 地质学报, 1964, (3): 357369+375.

    Google Scholar

    ZHANG Zonghu. Study on microstructure of loess soil in China[J]. Acta Geologica Sinica, 1964, (3): 357369+375.

    Google Scholar

    [52] 张仲福. 陇东黄土高原泥流灾害临界雨量研究[J]. 地质灾害与环境保护, 2020, 313): 1824.

    Google Scholar

    ZHANG Zhongfu. The research on the critical rainfall ofmudflow disaster in the loess plateau of east gansu[J]. Journal of Geological Hazards and Environment Preservation, 2020, 313): 1824.

    Google Scholar

    [53] 张茂省, 胡炜, 孙萍萍, 等. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报, 2016, 74): 323334. doi: 10.7515/JEE201604001

    CrossRef Google Scholar

    ZHANG Maosheng, HU Wei, SUN Pingping, et al. Research status and prospect of water sensitivity and water-induced landslide in loess[J]. Journal of Earth Environment, 2016, 74): 323334. doi: 10.7515/JEE201604001

    CrossRef Google Scholar

    [54] 赵之旭, 聂福彪, 张万福. 黄土塬区沟道流域泥流的形成因素与防治对策[J]. 防护林科技, 2005, 674): 3335. doi: 10.3969/j.issn.1005-5215.2005.04.013

    CrossRef Google Scholar

    ZHAO Zhixu, NIE Fubiao, ZHANG Wanfu. Formation factors and control measures of mudflow in gully watershed of Loess Tableland[J]. Shelterbelt Science and Technology, 2005, 674): 3335. doi: 10.3969/j.issn.1005-5215.2005.04.013

    CrossRef Google Scholar

    [55] 周明. 咸阳黄土高原泥流的形成因素及土壤侵蚀类型[J]. 人民黄河, 1996, (2): 3133.

    Google Scholar

    ZHOU Ming. Formation factors and soil erosion types of mudflow in Xianyang Loess Plateau[J]. Yellow River, 1996, (2): 3133.

    Google Scholar

    [56] 朱兴华, 彭建兵, 同霄, 等. 黄土地区地质灾害链研究初探[J]. 工程地质学报, 2017, 251): 117122.

    Google Scholar

    ZHU Xinghua, PENG Jianbing, TONG Xiao, et al. Study on geological hazard chain in loess area[J]. Journal of Engineering Geology, 2017, 251): 117122.

    Google Scholar

    [57] Baum R L, Godt J W. Early warning of rainfall-induced shallow landslides and debris flows in the USA[J]. Landslides, 2010, 73): 259272. doi: 10.1007/s10346-009-0177-0

    CrossRef Google Scholar

    [58] Berti M, Bernard M, Gregoretti C, et al. Physical interpretation of rainfall thresholds for runoff-generated debris flows[J]. Journal of Geophysical Research: Earth Surface, 2020, 1256): e2019JF005513. doi: 10.1029/2019JF005513

    CrossRef Google Scholar

    [59] Bogaard T, Greco R. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds[J]. Natural Hazards and Earth System Sciences, 2018, 181): 3139. doi: 10.5194/nhess-18-31-2018

    CrossRef Google Scholar

    [60] Boniello M A, Calligaris C, Lapasin R, et al. Rheological investigation and simulation of a debris-flow event in the Fella watershed[J]. Natural Hazards and Earth System Sciences, 2010, 105): 989997. doi: 10.5194/nhess-10-989-2010

    CrossRef Google Scholar

    [61] Caine N. The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler: Series A, Physical Geography, 1980, 621−2): 2327. doi: 10.1080/04353676.1980.11879996

    CrossRef Google Scholar

    [62] Carrière S R, Jongmans D, Chambon G, et al. Rheological properties of clayey soils originating from flow-like landslides[J]. Landslides, 2018, 158): 16151630. doi: 10.1007/s10346-018-0972-6

    CrossRef Google Scholar

    [63] Chanson H, Coussot P, Jarny S, et al. A study of dam break wave of thixotropic fluid: Bentonite surges down an inclined plane [R]. Department of Civil Engineering, The University of Queensland, 2004, Report CH54/04.

    Google Scholar

    [64] Chen C Y, Chen T C, Yu F C, et al. Rainfall duration and debris-flow initiated studies for real-time monitoring[J]. Environmental Geology, 2005, 475): 715724.

    Google Scholar

    [65] Chen H X, Wang J D. Regression analyses for the minimum intensity-duration conditions of continuous rainfall for mudflows triggering in Yan’an, northern Shaanxi (China)[J]. Bulletin of Engineering Geology and the Environment, 2013, 73: 917928.

    Google Scholar

    [66] Ciccarese G, Mulas M, Corsini A. Combining spatial modelling and regionalization of rainfall thresholds for debris flows hazard mapping in the Emilia-Romagna Apennines (Italy)[J]. Landslides, 2021, 1811): 35133529. doi: 10.1007/s10346-021-01739-w

    CrossRef Google Scholar

    [67] Coussot P, Nguyen Q D, Huynh H T, et al. Viscosity bifurcation in thixotropic, yielding fluids[J]. Journal of Rheology, 2002, 463): 573589. doi: 10.1122/1.1459447

    CrossRef Google Scholar

    [68] Coussot P, Piau J M. A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions[J]. Journal of Rheology, 1995, 391): 105124. doi: 10.1122/1.550693

    CrossRef Google Scholar

    [69] Coussot P, Piau J M. On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 333): 175184. doi: 10.1007/BF00437302

    CrossRef Google Scholar

    [70] Coussot P, Roussel N, Jarny S, et al. Continuous or catastrophic solid–liquid transition in jammed systems[J]. Physics of Fluids, 2005, 171): 011704. doi: 10.1063/1.1823531

    CrossRef Google Scholar

    [71] Coussot P. Mudflow rheology and dynamics [M]. Routledge, 2017.

    Google Scholar

    [72] Cui P, Zhou G G D, Zhu X H, et al. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 2013, 182: 173189. doi: 10.1016/j.geomorph.2012.11.009

    CrossRef Google Scholar

    [73] Eilertsen R S, Hansen L, Bargel T H, et al. Clay slides in the Målselv valley, northern Norway: Characteristics, occurrence, and triggering mechanisms[J]. Geomorphology, 2008, 933−4): 548562. doi: 10.1016/j.geomorph.2007.03.013

    CrossRef Google Scholar

    [74] Gens Solé A. Fundamentals of soil behaviour [J]. XXII Conferenza di Geotecnica di Torino, 2009.

    Google Scholar

    [75] Guzzetti F, Peruccacci S, Rossi M, et al. The rainfall intensity–duration control of shallow landslides and debris flows: an update[J]. Landslides, 2008, 51): 317. doi: 10.1007/s10346-007-0112-1

    CrossRef Google Scholar

    [76] Hoch O J, McGuire L A, Youberg A M, et al. Hydrogeomorphic recovery and temporal changes in rainfall thresholds for debris flows following wildfire[J]. Journal of Geophysical Research: Earth Surface, 2021, 12612): e2021JF006374. doi: 10.1029/2021JF006374

    CrossRef Google Scholar

    [77] Holthusen D, Pertile P, Awe G O, et al. Soil density and oscillation frequency effects on viscoelasticity and shear resistance of subtropical Oxisols with varying clay content[J]. Soil and Tillage Research, 2020, 203: 104677. doi: 10.1016/j.still.2020.104677

    CrossRef Google Scholar

    [78] Hu W, Li Y, Xu Q, et al. Flowslide high fluidity induced by shear thinning[J]. Journal of Geophysical Research: Solid Earth, 2022: e2022JB024615.

    Google Scholar

    [79] Huang Z, Aode H. A laboratory study of rheological properties of mudflows in Hangzhou Bay, China[J]. International Journal of Sediment Research, 2009, 244): 410424. doi: 10.1016/S1001-6279(10)60014-5

    CrossRef Google Scholar

    [80] Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 112): 167194. doi: 10.1007/s10346-013-0436-y

    CrossRef Google Scholar

    [81] Ilstad T, Elverhøi A, Issler D, et al. Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking[J]. Marine Geology, 2004, 2131−4): 415438. doi: 10.1016/j.margeo.2004.10.017

    CrossRef Google Scholar

    [82] Iverson R M. Regulation of landslide motion by dilatancy and pore pressure feedback [J]. Journal of Geophysical Research: Earth Surface, 2005, 110(F2).

    Google Scholar

    [83] Iverson R M. Scaling and design of landslide and debris-flow experiments[J]. Geomorphology, 2015, 244: 920. doi: 10.1016/j.geomorph.2015.02.033

    CrossRef Google Scholar

    [84] Jeong S W, Locat J, Leroueil S, et al. Rheological properties of fine-grained sediment: the roles of texture and mineralogy[J]. Canadian Geotechnical Journal, 2010, 4710): 10851100. doi: 10.1139/T10-012

    CrossRef Google Scholar

    [85] Jeong S W. Influence of physico-chemical characteristics of fine-grained sediments on their rheological behavior [D]. Université Laval, 2006.

    Google Scholar

    [86] Jibson R W. Debris flows in southern Puerto Rico: Landslide processes of the eastern United States and Puerto Rico[J]. Geological Society of America Special Paper, 1989, 236: 2955.

    Google Scholar

    [87] Jongmans D, Bièvre G, Renalier F, et al. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps)[J]. Engineering Geology, 2009, 1091−2): 4556. doi: 10.1016/j.enggeo.2008.10.005

    CrossRef Google Scholar

    [88] Kaitna R, Rickenmann D, Schatzmann M. Experimental study on rheologic behaviour of debris flow material[J]. Acta Geotechnica, 2007, 22): 7185. doi: 10.1007/s11440-007-0026-z

    CrossRef Google Scholar

    [89] Kirschbaum D B, Stanley T, Simmons J. A dynamic landslide hazard assessment system for Central America and Hispaniola[J]. Natural Hazards and Earth System Sciences, 2015, 1510): 22572272. doi: 10.5194/nhess-15-2257-2015

    CrossRef Google Scholar

    [90] Lian B Q, Wang X G, Zhan H B, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589. doi: 10.1016/j.enggeo.2022.106589

    CrossRef Google Scholar

    [91] Mainsant G, Jongmans D, Chambon G, et al. S-wave velocity as an indicator of solid-liquid transition in clay[C]. EGU General Assembly Conference Abstracts, 2013: EGU2013−4380.

    Google Scholar

    [92] Mainsant G, Jongmans D, Larose E, et al. The solid-to-liquid transition in the Trièves clay: the lessons from rheometric and seismic tests[C]. Mountain Risks: Bringing Science to Society, 2010: 6.

    Google Scholar

    [93] Major J J, Pierson T C. Debris flow rheology: Experimental analysis of fine-grained slurries[J]. Water Resources Research, 1992, 283): 841857. doi: 10.1029/91WR02834

    CrossRef Google Scholar

    [94] Malet J P, Laigle D, Remaitre A, et al. Triggering conditions and mobility of debris flows associated to complex earthflows[J]. Geomorphology, 2005, 661−4): 215235.

    Google Scholar

    [95] McGuire L A, Youberg A M. What drives spatial variability in rainfall intensity-duration thresholds for post-wildfire debris flows? Insights from the 2018 Buzzard Fire, NM, USA[J]. Landslides, 2020, 1710): 23852399. doi: 10.1007/s10346-020-01470-y

    CrossRef Google Scholar

    [96] Mewis J, Wagner N J. Thixotropy[J]. Advances in Colloid and Interface Science, 2009, 147: 214227.

    Google Scholar

    [97] O'Brien J S, Julien P Y. Laboratory analysis of mudflow properties[J]. Journal of Hydraulic Engineering, 1988, 1148): 877887. doi: 10.1061/(ASCE)0733-9429(1988)114:8(877)

    CrossRef Google Scholar

    [98] Papa M N, Medina V, Ciervo F, et al. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems[J]. Hydrology and Earth System Sciences, 2013, 1710): 40954107. doi: 10.5194/hess-17-4095-2013

    CrossRef Google Scholar

    [99] Parsons J D, Whipple K X, Simoni A. Experimental study of the grain-flow, fluid-mud transition in debris flows[J]. The Journal of Geology, 2001, 1094): 427447. doi: 10.1086/320798

    CrossRef Google Scholar

    [100] Peng J B, Wang S K, Wang Q Y, et al. Distribution and genetic types of loess landslides in China[J]. Journal of Asian Earth Sciences, 2019, 170: 329350. doi: 10.1016/j.jseaes.2018.11.015

    CrossRef Google Scholar

    [101] Pértile P, Reichert J M, Gubiani P I, et al. Rheological parameters as affected by water tension in subtropical soils [J]. Revista Brasileira de Ciência do Solo, 2016, 40.

    Google Scholar

    [102] Phillips C J, Davies T R H. Determining rheological parameters of debris flow material[J]. Geomorphology, 1991, 42): 101110. doi: 10.1016/0169-555X(91)90022-3

    CrossRef Google Scholar

    [103] Picarelli L, Olivares L, Comegna L, et al. Mechanical aspects of flow-like movements in granular and fine grained soils[J]. Rock Mechanics and Rock Engineering, 2008, 411): 179197. doi: 10.1007/s00603-007-0135-x

    CrossRef Google Scholar

    [104] Picarelli L, Urciuoli G, Ramondini M, et al. Main features of mudslides in tectonised highly fissured clay shales[J]. Landslides, 2005, 21): 1530. doi: 10.1007/s10346-004-0040-2

    CrossRef Google Scholar

    [105] Raymond C A, McGuire L A, Youberg A M, et al. Thresholds for post-wildfire debris flows: Insights from the Pinal Fire, Arizona, USA[J]. Earth Surface Processes and Landforms, 2020, 456): 13491360. doi: 10.1002/esp.4805

    CrossRef Google Scholar

    [106] Schippa L, Doghieri F, Pellegrino A M, et al. Thixotropic Behavior of Reconstituted Debris-Flow Mixture[J]. Water, 2021, 132): 153. doi: 10.3390/w13020153

    CrossRef Google Scholar

    [107] Sosio R, Crosta G B, Frattini P. Field observations, rheological testing and numerical modelling of a debris-flow event[J]. Earth Surface Processes and Landforms, 2007, 322): 290306. doi: 10.1002/esp.1391

    CrossRef Google Scholar

    [108] Staley D M, Kean J W, Cannon S H, et al. Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California[J]. Landslides, 2013, 105): 547562. doi: 10.1007/s10346-012-0341-9

    CrossRef Google Scholar

    [109] Stoppe N, Horn R. Microstructural strength of tidal soils-a rheometric approach to develop pedotransfer functions[J]. Journal of Hydrology and Hydromechanics, 2018, 661): 87. doi: 10.1515/johh-2017-0031

    CrossRef Google Scholar

    [110] Thomas M A, Mirus B B, Collins B D. Identifying physics-based thresholds for rainfall-induced landsliding[J]. Geophysical Research Letters, 2018, 4518): 96519661. doi: 10.1029/2018GL079662

    CrossRef Google Scholar

    [111] Tang H, McGuire L A, Rengers F K, et al. Developing and testing physically based triggering thresholds for runoff‐generated debris flows[J]. Geophysical Research Letters, 2019, 4615): 88308839.

    Google Scholar

    [112] Van Asch T W J, Malet J P. Flow-type failures in fine-grained soils: an important aspect in landslide hazard analysis[J]. Natural Hazards and Earth System Sciences, 2009, 95): 17031711. doi: 10.5194/nhess-9-1703-2009

    CrossRef Google Scholar

    [113] Wang D Z, Wang X G, Chen X Q, et al. Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment[J]. Geomorphology, 2022, 398: 108054. doi: 10.1016/j.geomorph.2021.108054

    CrossRef Google Scholar

    [114] Wang D, Wang X, Chen X, et al. Solid–fluid phase transition characteristics of loess and its drag reduction mechanism[J]. Landslides, 2024a, 86): 19.

    Google Scholar

    [115] Wang D Z, Wang X G, Chen X Q, et al. Influence of micromorphology and water content on the rheological properties and performance evaluation model of loess mudflow[J]. Physics of Fluids, 2024b, 3611): 21352148.

    Google Scholar

    [116] Wang X, Wang J, Zhan H, et al. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide[J]. Catena, 2019, 187: 104371.

    Google Scholar

    [117] Wang X G, Sheng H, Lian B Q, et al. Formation mechanism of a disaster chain in Loess Plateau: A case study of the Pucheng County disaster chain on August 10, 2023, in Shaanxi Province, China[J]. Engineering Geology, 2024c, 331: 107463. doi: 10.1016/j.enggeo.2024.107463

    CrossRef Google Scholar

    [118] Xu L, Dai F C, Tu X B, et al. Occurrence of landsliding on slopes where flowsliding had previously occurred: an investigation in a loess platform, North-west China[J]. Catena, 2013, 104: 195209. doi: 10.1016/j.catena.2012.11.010

    CrossRef Google Scholar

    [119] Xu Q, Peng D L, Zhang S, et al. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China[J]. Engineering Geology, 2020, 278: 105817. doi: 10.1016/j.enggeo.2020.105817

    CrossRef Google Scholar

    [120] Yuan B, Chen W W, Tang Y Q, et al. Experimental study on gully-shaped mud flow in the loess area[J]. Environmental Earth Sciences, 2015, 741): 759769. doi: 10.1007/s12665-015-4080-9

    CrossRef Google Scholar

    [121] Zhang F Y, Wang G H, Peng J B. Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria[J]. Engineering Geology, 2022, 302: 106619. doi: 10.1016/j.enggeo.2022.106619

    CrossRef Google Scholar

    [122] Zhang F Y, Wang G H. Effect of irrigation-induced densification on the post-failure behavior of loess flowslides occurring on the Heifangtai area, Gansu, China[J]. Engineering Geology, 2018, 236: 111118. doi: 10.1016/j.enggeo.2017.07.010

    CrossRef Google Scholar

    [123] Zhou W, Tang C. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides, 2014, 11: 877887. doi: 10.1007/s10346-013-0421-5

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(747) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint