2025 Vol. 58, No. 2
Article Contents

MA Lu, CHEN Ying, LIN Nan. 2025. Research on Mine Ecological Environment Monitoring Technology Based on Multi-source Remote Sensing Data: A Case Study in Northern Shaanxi Coal Base. Northwestern Geology, 58(2): 91-101. doi: 10.12401/j.nwg.2024110
Citation: MA Lu, CHEN Ying, LIN Nan. 2025. Research on Mine Ecological Environment Monitoring Technology Based on Multi-source Remote Sensing Data: A Case Study in Northern Shaanxi Coal Base. Northwestern Geology, 58(2): 91-101. doi: 10.12401/j.nwg.2024110

Research on Mine Ecological Environment Monitoring Technology Based on Multi-source Remote Sensing Data: A Case Study in Northern Shaanxi Coal Base

  • The exploitation of mineral resources can have negative effects on the local ecological environment and the livelihoods of nearby residents. Remote sensing technology provides a more cost-effective and comprehensive approach to monitoring mine ecology compared to traditional ground-based methods. Its high spectral, spatial, and temporal resolution enables a comprehensive and dynamic reflection of the status and development trends of ecological issues in mines. The northern Shaanxi coal base is a significant coal energy base in China. This paper focused on a production mine, comprehensively utilized Optical Remote Sensing and Radar Remote Sensing technologies, we can accurately capture the characteristics of regional elements such as ground subsidence, land damage, as well as surface water and vegetation conditions induced by coal mining activities. For key monitoring areas, the Unmanned Aerial Vehicle (UAV) remote sensing technology further enables refined monitoring and identification of local elements such as ground fissures and unstable slopes. This has systematically established a comprehensive remote sensing monitoring technology system for mine ecological environment, encompassing data acquisition, data processing, remote sensing interpretation, and data analysis. Research results indicate that multi-source remote sensing technology, with its outstanding global perspective, macro-analysis capabilities, and robust data traceability, has demonstrated an irreplaceable advantage in the field of mine ecological environment monitoring, achieving remarkable application effects. According to the proposal, the future intelligent mine environmental monitoring and early warning system should be developed with a focus on “multi-network integration + real-time monitoring + intelligent operation + task collaboration + comprehensive perception + autonomous decision-making”.

  • 加载中
  • [1] 陈国良, 时洪涛, 汪云甲, 等. 矿山地质环境“天—空—地—人”协同监测与多要素智能感知[J]. 金属矿山, 2023(1): 9−16.

    Google Scholar

    CHEN Guoliang, SHI Hongtao, WANG Yunjia, et al. Integrated Space-Air-Ground-Human Monitoring and Multiple Parameters Intelligence Sensing of Mine Geological Environment[J]. Metal Mine,2023(1):9−16.

    Google Scholar

    [2] 范立民. 论矿山地质环境监测体系[J]. 陕西地质, 2017, 35(1): 61−64. doi: 10.3969/j.issn.1001-6996.2017.01.012

    CrossRef Google Scholar

    FAN Limin. Monitoring System of Mining Geo-Environment[J]. Geology of Shaanxi,2017,35(1):61−64. doi: 10.3969/j.issn.1001-6996.2017.01.012

    CrossRef Google Scholar

    [3] 高俊华, 邹联学, 龙欢, 等. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3): 240−248.

    Google Scholar

    GAO Junhua, ZOU Lianxue, LONG Huan, et al. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources,2022,34(3):240−248.

    Google Scholar

    [4] 黄登冕, 张聪, 姚晓军, 等. 矿山环境遥感监测研究进展[J]. 遥感技术与应用, 2022, 37(5): 1043−1055.

    Google Scholar

    HUANG Dengmian, ZHANG Cong, YAO Xiaojun, et al. Research Progress of Mine Environment Remote Sensing Monitoring[J]. Remote Sensing Technology and Application,2022,37(5):1043−1055.

    Google Scholar

    [5] 韩海辉, 王艺霖, 任广利, 等. 几种高光谱分析法在蚀变矿物信息提取中的对比分析——以北山老金厂为例[J]. 西北地质, 2020, 53(4): 223−234.

    Google Scholar

    HAN Haihui, WANG Yilin, REN Guangli, et al. A Comparative Analysis of Several Hyperspectral Methods in the Extraction of Altered Minerals: A Case Study of Laojinchang in Beishan Area[J]. Northwestern Geology,2020,53(4):223−234.

    Google Scholar

    [6] 韩海辉, 李健强, 易欢, 等. 遥感技术在西北地质调查中的应用及展望[J]. 西北地质, 2022a, 55(3): 155−169.

    Google Scholar

    HAN Haihui, LI Jianqiang, YI Huan, et al. Application and Prospect of Remote Sensing Technology in Geological Survey of Northwest China[J]. Northwestern Geology,2022a,55(3):155−169.

    Google Scholar

    [7] 韩海辉, 张转, 任广利, 等. 一种快速识别基性—超基性岩的新方法——基性度遥感指数法[J]. 西北地质, 2022b, 55(2): 71−81.

    Google Scholar

    HAN Haihui, ZHANG Zhuan, REN Guangli, et al. A New Method for Fast Identification of Basic—ultrabasic Rocks—Basic Degree Index from Remote Sensing Image[J]. Northwestern Geology,2022b,55(2):71−81.

    Google Scholar

    [8] 韩亚超, 高子弘, 杨达昌, 等. 我国城市水体数量与质量遥感调查应用现状与建议[J]. 城市地质, 2022, 17(4): 485−492. doi: 10.3969/j.issn.1007-1903.2022.04.013

    CrossRef Google Scholar

    HAN Yachao, GAO Zihong, YANG Dachang, et al. Review and suggestions of remote sensing survey of urban water bodies quantity and quality in our country[J]. Urban Geology,2022,17(4):485−492. doi: 10.3969/j.issn.1007-1903.2022.04.013

    CrossRef Google Scholar

    [9] 廉旭刚, 韩雨, 刘晓宇, 等. 无人机低空遥感矿山地质灾害监测研究进展及发展趋势[J]. 金属矿山, 2023(1): 17−29.

    Google Scholar

    LIAN Xugang, HAN Yu, LIU Xiaoyu, et al. Study Progress and Development Trend of Mine Geological Disaster Monitoring by UAV Low-altitude Remote Sensing[J]. Metal Mine,2023(1):17−29.

    Google Scholar

    [10] 蔺楠, 陈莹, 马露, 等. 陕北煤炭基地矿山生态修复成效评估体系构建与实现[J]. 西北地质, 2023, 56(3): 89−97. doi: 10.12401/j.nwg.2023085

    CrossRef Google Scholar

    LIN Nan, CHEN Ying, MA Lu, et al. Construction and Implementation of Evaluation System for Ecological Restoration Effectiveness of Mines in Northern Shaanxi Coal Base[J]. Northwestern Geology,2023,56(3):89−97. doi: 10.12401/j.nwg.2023085

    CrossRef Google Scholar

    [11] 李诗雨. 基于长时序InSAR的金属矿山地表形变监测技术研究[D]. 重庆: 重庆大学, 2022.

    Google Scholar

    LI Shiyu. Research on Surface Deformation Monitoring Technology of Metal Mines based on Long-Time-Series InSAR[D]. Chongqing:Chongqing University, 2022.

    Google Scholar

    [12] 苗旭, 李九一, 宋小燕等. 2000-2020年鄂尔多斯市植被NDVI变化格局及归因分析[J]. 水土保持研究, 2022, 29(3): 300−305. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203040

    CrossRef Google Scholar

    MIAO Xu, LI Jiuyi, SONG Xiaoyan, et al. Analysi on Change Pattern and Attribution of Vegetation NDVI in Ordos City from 2000 to 2020[J]. Research of Soil and Water Conservation,2022,29(3):300−305. doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203040

    CrossRef Google Scholar

    [13] 王凤娟. 论遥感影像在矿山地质环境监测治理方面的应用[J]. 世界有色金属, 2020(12): 264−265. doi: 10.3969/j.issn.1002-5065.2020.12.121

    CrossRef Google Scholar

    WANG Fengjuan. Discussion on the application of remote sensing image in mine geological environment monitoring and treatment[J]. World Nonferrous Metals,2020(12):264−265. doi: 10.3969/j.issn.1002-5065.2020.12.121

    CrossRef Google Scholar

    [14] 吴松. 无人机航空摄影测量在矿山动态监测中的应用[J]. 能源与节能, 2023(2): 173−176. doi: 10.3969/j.issn.2095-0802.2023.02.047

    CrossRef Google Scholar

    WU Song. Application of UAV Aerial Photogrammetry in Mine Dynamic Monitoring[J]. Energy and Energy Conservation,2023(2):173−176. doi: 10.3969/j.issn.2095-0802.2023.02.047

    CrossRef Google Scholar

    [15] 徐友宁, 武征, 赵子长. 西北地区矿产资源开发的环境地质问题及其类型[J]. 西北地质, 2001, 34(2): 28−33. doi: 10.3969/j.issn.1009-6248.2001.02.005

    CrossRef Google Scholar

    XU Youning, WU Zheng, ZHAO Zichang. The Problems of Environmental Geology and Database for Mining in Northwestern China[J]. Northwestern Geology,2001,34(2):28−33. doi: 10.3969/j.issn.1009-6248.2001.02.005

    CrossRef Google Scholar

    [16] 徐友宁. 矿山环境地质与地质环境[J]. 西北地质, 2005, 38(4): 108−112. doi: 10.3969/j.issn.1009-6248.2005.04.016

    CrossRef Google Scholar

    XU Youning. Mine Environmental geology and geological environment[J]. Northwestern Geology,2005,38(4):108−112. doi: 10.3969/j.issn.1009-6248.2005.04.016

    CrossRef Google Scholar

    [17] 徐友宁, 李玉武, 张江华, 等. 宁夏石嘴山采煤塌陷区地质环境治理模式研究[J]. 西北地质, 2015, 48(4): 183−189. doi: 10.3969/j.issn.1009-6248.2015.04.018

    CrossRef Google Scholar

    XU Youning, LI Yuwu, ZHANG Jianghua, et al. Treatment Model on Geo-Environment in the Coal Mine Collapse Area of Shizuishan City, Ningxia[J]. Northwestern Geology,2015,48(4):183−189. doi: 10.3969/j.issn.1009-6248.2015.04.018

    CrossRef Google Scholar

    [18] 徐友宁, 张江华, 何芳, 等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129−139.

    Google Scholar

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology,2022,55(3):129−139.

    Google Scholar

    [19] 杨金中, 聂洪峰, 荆青青. 初论全国矿山地质环境现状与存在问题[J]. 国土资源遥感, 2017, 29(2): 1−7.

    Google Scholar

    YANG Jinzhong, NIE Hongfeng, JING Qingqing. Preliminary analysis of mine geo-environment status and existing problems in China[J]. Remote Sensing for Land and Resources,2017,29(2):1−7.

    Google Scholar

    [20] 郑志琴. 基于D-InSAR技术的矿区地表沉陷监测及其数据处理研究[D]. 西安: 西安科技大学, 2015.

    Google Scholar

    ZHENG Zhiqin. Surface Subsidence Monitoring and Data Processing Research of Mining Area Based on D-InSAR Technology[D]. Xi’an: Xi’an University of Science and Technology, 2015.

    Google Scholar

    [21] Chen W, Li X, He H. A review of fine-scale land use and land cover classification in open-pit mining areas by re-mote sensing techniques[J]. Remote Sensing,2017,10(2):10010015−10010033.

    Google Scholar

    [22] Gallwey J, Robiati C, Coggan J, et al. A Sentinel-2 based multispectral convolutional neural network for detecting arti-sanal small-scale mining in Ghana: Applying deep learning toshallow mining[J]. Remote Sensing of Environment,2020,248:111970−111984. doi: 10.1016/j.rse.2020.111970

    CrossRef Google Scholar

    [23] Johansen K, Erskine P, Mccabe M. Using unmanned aerial vehicles to assess the rehabilitation performance of open cut coal mines[J]. Journal of Cleaner Production,2019,209:819−833. doi: 10.1016/j.jclepro.2018.10.287

    CrossRef Google Scholar

    [24] Li L, Zhang R, Sun J, et al. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm[J]. Journal of Environmental Health Science and Engineering,2021,19(1):401−414. doi: 10.1007/s40201-021-00613-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(191) PDF downloads(31) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint