Citation: | LIU Long, DU Hui, TANG Xiaoping, LIU Shengrong, WANG Yalei, JING Delong, LI Qianyu. 2025. Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China. Northwestern Geology, 58(3): 97-107. doi: 10.12401/j.nwg.2024101 |
In recent years, the emphasis of metal mineral exploration has gradually shifted to the hidden deposits in the covered areas where the rock mass is not exposed. However, it is difficult to obtain the information of underground abnormal bodies in the early investigation work because of the thick overlying layer. The Mafic and ultramafic rock mass outlying in the Hongshigang area of the Eastern Tianshan Cu-Ni metallogenic belt shows good prospecting potential. The 1∶50 000 aeromagnetic data and gravity data show that there is a high magnetic and high gravity coupling anomaly in the southern Quaternary covered area, which has not been investigated yet. Therefore, this study conducted high-precision ground magnetic survey work in the southern Hongshigang area and used magnetic anomaly reduced to the pole, vertical first derivative, normalized total gradient method, two-dimensional profile simulation, and three-dimensional magnetic anomaly inversion methods to conduct preliminary exploration and research on the underground anomalous bodies in the area. It was found that there are five significant magnetic anomalies in the investigation area, and the average magnetic susceptibility of the hidden anomalous bodies is about
[1] | 宫辰. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 中国金属通报, 2020(21): 49−50. doi: 10.3969/j.issn.1672-1667.2020.21.023 GONG Chen. Geological characteristics and prospecting potential of the Hongshigang copper-nickel deposit in Hami, Xinjiang[J]. China Metal Bulletin,2020(21):49−50. doi: 10.3969/j.issn.1672-1667.2020.21.023 |
[2] | 韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 49(22): 2324−2328. doi: 10.3321/j.issn:0023-074X.2004.22.012 HAN Baofu, JI Jianqing, SONG Biao, et al. SHRIMP zircon U-Pb ages and geological significance of the Kalatongke and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes in Xinjiang[J]. Chinese Science Bulletin,2004,49(22):2324−2328. doi: 10.3321/j.issn:0023-074X.2004.22.012 |
[3] | 侯朝勇, 蔡厚安, 裴森龙. 综合物化探方法在新疆哈密月牙湾铜镍矿勘查中的应用[J]. 矿产与地质, 2021, 35(6): 1116−1123. HOU Chaoyong, CAI Houan, PEI Senlong. Application of comprehensive geophysical and geochemical methods in the exploration of Yueyawan copper nickel deposit in Hami, Xinjiang[J]. Mineral Resources and Geology,2021,35(6):1116−1123. |
[4] | 惠卫东, 赵鹏大, 秦克章, 等. 东天山图拉尔根铜镍硫化物矿床综合信息找矿模型的应用[J]. 地质与勘探, 2011, 47(3): 388−399. HUI Weidong, ZHAO Pengda, QIN Kezhang, et al. Application of comprehensive information to exploration of the Tulargen Cu-Ni sulfide deposit in Eastern Tianshan, Xinjiang[J]. Geology and Exploration,2011,47(3):388−399. |
[5] | 李彤泰. 新疆哈密市黄山基性-超基性岩带铜镍矿床地质特征及矿床成因[J]. 西北地质, 2011, 44(1): 54−60. doi: 10.3969/j.issn.1009-6248.2011.01.007 LI Tongtai. Geological Features and Metallogenesis of Cu-Ni Deposit in Basic-to-Ultrabasic Zone of Huangshan, Hami Area[J]. Northwestern Geology,2011,44(1):54−60. doi: 10.3969/j.issn.1009-6248.2011.01.007 |
[6] | 刘璎, 孟贵祥, 严加永, 等. 重磁3D物性反演技术在金属矿勘探中的应用[J]. 地质与勘探, 2011, 47(3): 448−455. LIU Ying, MENG Guixiang, YAN Jiayong, et al. Application of 3D property inversion for gravity and magnetic data to metal mineral exploration[J]. Geology and Exploration,2011,47(3):448−455. |
[7] | 刘隆, 周建平, 吴涛, 等. 大洋中脊玄武岩磁性特征[J]. 地球物理学进展, 2021, 36(5): 1880−1890. doi: 10.6038/pg2021EE0403 LIU Long, ZHOU Jianping, WU Tao, et al. Magnetic characteristics of basalt on mid-ocean ridge[J]. Progress in Geophysics,2021,36(5):1880−1890. doi: 10.6038/pg2021EE0403 |
[8] | 骆遥. Hartley变换化极[J]. 地球物理学报, 2013, 56(9): 3163−3172. doi: 10.6038/cjg20130929 LUO Yao. Hartley transform for reduction to the pole[J]. Chinese Journal of Geophysics,2013,56(9):3163−3172. doi: 10.6038/cjg20130929 |
[9] | 乔天成. 高精度磁法在铜镍多金属矿普查工作中的应用[J]. 新疆有色金属, 2016, 39(1): 36−39. QIAO Tiancheng. Application of high-precision magnetic method in the prospecting of Cu-Ni polymetallic deposits[J]. Xinjiang Youse Jinshu,2016,39(1):36−39. |
[10] | 邵行来. 东天山黄山—镜儿泉超镁铁岩带地球物理特征研究及找矿应用[D]. 北京: 中国地质大学(北京), 2012. SHAO Xinglai. Study on geophysical characteristics and prospecting application of the Huangshan-Jingerquan ultramafic rock belt in East Tianshan[D]. Beijing: China University of Geosciences (Beijing), 2012. |
[11] | 邵行来, 薛春纪, 戴德文, 等. 新疆哈密葫芦岩浆Cu-Ni矿勘查地球物理异常特征[J]. 现代地质, 2010, 24(2): 383−391. doi: 10.3969/j.issn.1000-8527.2010.02.025 SHAO Xinglai, XUE Chunji, DAI Dewen, et al. Characteristics of Geophysical Anomalies of the Prospecting for Hulu Magmatic Cu-Ni Deposit in Hami of Xinjiang[J]. Geoscience,2010,24(2):383−391. doi: 10.3969/j.issn.1000-8527.2010.02.025 |
[12] | 邵行来, 薛春纪, 周耀明. 哈密图拉尔根镁铁-超镁铁岩磁法异常解释[J]. 新疆地质, 2012a, 30(4): 425−429. doi: 10.3969/j.issn.1000-8845.2012.04.009 SHAO Xinglai, XUE Chunji, ZHOU Yaoming. The Interpretation of Ground Magnetic on the Tulargen Mafic-ultramafic Complex in Hami, Xinjiang[J]. Xinjiang Geology,2012a,30(4):425−429. doi: 10.3969/j.issn.1000-8845.2012.04.009 |
[13] | 石煜, 王玉往, 王京彬, 等. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制: 来自斜长石成分的约束[J]. 地球科学, 2022, 47(9): 3244−3257. SHI Yu, WANG Yuwang, WANG Jingbin, et al. Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions[J]. Earth Science,2022,47(9):3244−3257. |
[14] | 师震, 陈宏骏, 钱壮志, 等. 东天山红石岗镁铁—超镁铁质岩体成因及铜镍成矿潜力[J]. 地球科学与环境学报, 2019, 41(2): 156−169. doi: 10.3969/j.issn.1672-6561.2019.02.003 SHI Zhen, CHEN Hongjun, QIAN Zhuangzhi, et al. Genesis and Cu-Ni Metallogenetic Potential of Hongshigang Mafic-ultramafic Intrusion in East Tianshan, China[J]. Journal of Earth Sciences and Environment,2019,41(2):156−169. doi: 10.3969/j.issn.1672-6561.2019.02.003 |
[15] | 宋谢炎, 邓宇峰, 颉炜, 等. 新疆黄山-镜儿泉铜镍硫化物成矿带岩浆通道成矿特征及其找矿意义[J]. 矿床地质, 2022, 41(6): 1108−1123. SONG Xieyan, DENG Yufeng, XIE Wei, et al. Ore-forming processes in magma plumbing systems and significances for prospecting of Huangshan-Jingerquan Ni-Cu sulfide metallogenetic belt, Xinjiang, NW China[J]. Mineral Deposits,2022,41(6):1108−1123. |
[16] | 王成. 重、磁、电综合勘探方法在寻找铜镍矿中的应用[J]. 新疆有色金属, 2018, 41(4): 13−17. WANG Cheng. Application of integrated gravity, magnetic, and electrical exploration methods in Cu-Ni deposit prospecting[J]. Xinjiang Youse Jinshu,2018,41(4):13−17. |
[17] | 王庆功. 综合物探方法在新疆某铜镍矿勘探中的应用[J]. 甘肃冶金, 2021, 43(2): 96−98+104. doi: 10.3969/j.issn.1672-4461.2021.02.028 WANG Qinggong. Application of Comprehensive Geophysical Exploration Method in the Exploration of Cu-Ni Deposit in Xinjiang[J]. Gansu Metallurgy,2021,43(2):96−98+104. doi: 10.3969/j.issn.1672-4461.2021.02.028 |
[18] | 王志福, 吴飞, 谭克彬, 等. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 新疆地质, 2012, 30(3): 307−311. doi: 10.3969/j.issn.1000-8845.2012.03.013 WANG Zhifu, WU Fei, TAN Kebin, et al. Geological Characteristics and Prospecting Potential of the Hongshigang Cu-Ni Sulfide Deposit in Hami, Xinjiang[J]. Xinjiang Geology,2012,30(3):307−311. doi: 10.3969/j.issn.1000-8845.2012.03.013 |
[19] | 王亚磊, 张照伟, 陈寿波, 等. 新疆东天山红石岗北铜镍矿化镁铁质岩体岩石成因及成矿潜力分析[J]. 地质学报, 2017, 91(4): 776−791. doi: 10.3969/j.issn.0001-5717.2017.04.006 WANG Yalei, ZHANG Zhaowei, CHEN Shoubo, et al. Petrogenesis and Metallogenic Potential Analysis of Mafic Intrusion in the Hongshigangbei Ni Cu Sulfide Mineralization in East Tianshan, Xinjiang[J]. Acta Geologica Sinica,2017,91(4):776−791. doi: 10.3969/j.issn.0001-5717.2017.04.006 |
[20] | 吴功成. 新疆白石泉铜镍矿矿床地质与找矿预测[D]. 北京: 中国地质大学(北京), 2018. WU Gongcheng. Geology and prospecting prediction of the Baishiquan Cu-Ni deposit in Xinjiang[D].Beijing: China University of Geosciences (Beijing), 2018. |
[21] | 肖丹, 宋泽友, 宋维国. 我国岩浆硫化物型镍矿床伴生矿产综合勘查评价指标探讨[J]. 国土资源导刊, 2022, 19(1): 48−53. doi: 10.3969/j.issn.1672-5603.2022.01.011 XIAO Dan, SONG Zeyou, SONG Weiguo. Comprehensive Exploration and Assessment of Magmatic Type of Nickel Sulfide Deposits in China[J]. Land & Resources Herald,2022,19(1):48−53. doi: 10.3969/j.issn.1672-5603.2022.01.011 |
[22] | 杨大欢, 古志宏. 广东与燕山期岩浆作用有关矿产资源的区域成矿分带特征及成因[J]. 矿产与地质, 2021, 35(4): 603−609. YANG Dahuan, GU Zhihong. Regional metallogenic zonation and genesis of mineral resources related to Yanshanian magmatism in Guangdong[J]. Mineral Resources and Geology,2021,35(4):603−609. |
[23] | 尹希文. 新疆香山铜镍硫化物矿床岩浆深部过程与找矿方向探讨[J]. 西北地质, 2015, 48(3): 22−30. doi: 10.3969/j.issn.1009-6248.2015.03.003 YIN Xiwen. Magma Deep Process and Prospecting Direction of Xiangshan Ni-Cu deposit, Eastern Tianshan, Xinjiang[J]. Northwestern Geology,2015,48(3):22−30. doi: 10.3969/j.issn.1009-6248.2015.03.003 |
[24] | Baranov V. A new method for interpretation of aeromagnetic maps; pseudo-gravimetric anomalies[J]. Geophysics,1957,22(2):359−382. doi: 10.1190/1.1438369 |
[25] | Cockett R, Kang S, Heagy L J, et al. SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications[J]. Computers & Geosciences,2015,85:142−154. |
[26] | Ekwok S E, Achadu O-I M, Akpan A E, et al. Depth Estimation of Sedimentary Sections and Basement Rocks in the Bornu Basin, Northeast Nigeria Using High-Resolution Airborne Magnetic Data[J]. Minerals,2022,12(3):285. doi: 10.3390/min12030285 |
[27] | Ekwok S E, Akpan A E, Ebong E D. Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria[J]. Journal of African Earth Sciences,2019,155:43−53. doi: 10.1016/j.jafrearsci.2019.02.030 |
[28] | Elysseieva I s, Pašteka R. Review Paper: Historical development of the total normalized gradient method in profile gravity field interpretation[J]. Geophysical Prospecting,2019,67(1):188−209. doi: 10.1111/1365-2478.12704 |
[29] | Feng Y, Qian Z, Duan J, et al. Geochronological and geochemical study of the Baixintan magmatic Ni-Cu sulphide deposit: New implications for the exploration potential in the western part of the East Tianshan nickel belt (NW China)[J]. Ore Geology Reviews,2018,95:366−381. doi: 10.1016/j.oregeorev.2018.02.023 |
[30] | He J, Fan Z, Xiong S, et al. Geophysical prospecting of copper-nickel deposits in Beishan rift zone, Xinjiang[J]. China Geology,2021,4(1):126−146. doi: 10.31035/cg2021015 |
[31] | Jahren C E. Magnetization of keweenawan rocks near duluth, minnesota[J]. Geophysics,1965,30(5):858. doi: 10.1190/1.1439660 |
[32] | Koenigsberger J G. Natural residual magnetism of eruptive rocks[J]. Terrestrial Magnetism and Atmospheric Electricity,1938,43(3):299−320. doi: 10.1029/TE043i003p00299 |
[33] | Mao Y J, Qin K Z, Li C, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, 200–201: 111–125. |
[34] | Mao Y J, Qin K Z, Tang D M, et al. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China[J]. Journal of Asian Earth Sciences,2016,129:22−37. doi: 10.1016/j.jseaes.2016.07.028 |
[35] | Meng Z. Three-dimensional potential field data inversion with L0 quasinorm sparse constraints[J]. Geophysical Prospecting,2018,66(3):626−646. doi: 10.1111/1365-2478.12591 |
[36] | Parkinson W D, Barnes C D. In situ determination of Koenigsberger ratio[J]. Australian Journal of Earth Sciences,1985,32(1):1−5. doi: 10.1080/08120098508729308 |
[37] | Ran X J, Xue L F ,Zhang Y Y , et al. The 3D Visualization of 2D GM-SYS Gravity-Magnetic Inversion Sections Based on GoCAD[C]//2017 International Conference on Robots & Intelligent System (ICRIS). Huai An City, China: IEEE, 2017. 325–328. |
[38] | Sun J, Li Y. Adaptive Lp inversion for simultaneous recovery of both blocky and smooth features in a geophysical model[J]. Geophysical Journal International,2014,197(2):882−899. doi: 10.1093/gji/ggu067 |
[39] | Sun J, Li Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering[J]. Geophysics,2015,80(4):ID1−ID18. doi: 10.1190/geo2014-0049.1 |
[40] | Utsugi M. 3-D inversion of magnetic data based on the L1–L2 norm regularization[J]. Earth, Planets and Space,2019,71(1):73. doi: 10.1186/s40623-019-1052-4 |
[41] | Vanzon T, Roy-Chowdhury K. Structural inversion of gravity data using linear programming[J]. Geophysics,2006,71(3):J41−J50. doi: 10.1190/1.2197491 |
[42] | Wardinski I, Saturnino D, Amit H, et al. Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13)[J]. Earth Planets and Space,2020,72(1):155. doi: 10.1186/s40623-020-01254-7 |
[43] | Xiao F, Wang Z. Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: Implications for porphyry Cu-Mo polymetallic deposits exploration[J]. Ore Geology Reviews,2017,80:1042−1055. doi: 10.1016/j.oregeorev.2016.08.034 |
[44] | Yurichev A N, Chernyshov A I. New Ore Minerals from the Kingash Ultramafic Massif, Northwestern Eastern Sayan[J]. Geology of Ore Deposits,2017,59(7):626−631. doi: 10.1134/S107570151707011X |
(a) The distribution map of important copper-nickel deposits and mafic-ultramafic intrusion in the Eastern Tianshan Mountains; (b) Aeromagnetic anomaly map of the Eastern Tianshan Mountains; (c) Aeromagnetic anomaly map of the southern Hongshigang area; (d) Bouguer gravity anomaly map of the southern Hongshigang area
Magnetic properties of rock and ore
Data processing process and research ideas
(a) Contour map of the RTP magnetic anomaly in the survey area、 (b) Contour map of the RTP magnetic anomaly in the survey area、 (c) The first vertical derivative of the RTP magnetic anomaly in the survey area and (d) Normalized total gradient of magnetic anomalies for profiles A’-A and B’-B
The two-dimensional total magnetic intensity model of profiles A-A' and B'-B
(a) Prediction of magnetic anomalies、 (b) 200 m depth (Altitude