2025 Vol. 58, No. 3
Article Contents

LIU Long, DU Hui, TANG Xiaoping, LIU Shengrong, WANG Yalei, JING Delong, LI Qianyu. 2025. Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China. Northwestern Geology, 58(3): 97-107. doi: 10.12401/j.nwg.2024101
Citation: LIU Long, DU Hui, TANG Xiaoping, LIU Shengrong, WANG Yalei, JING Delong, LI Qianyu. 2025. Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China. Northwestern Geology, 58(3): 97-107. doi: 10.12401/j.nwg.2024101

Characteristics of Magnetic Anomalies and Geological Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China

More Information
  • In recent years, the emphasis of metal mineral exploration has gradually shifted to the hidden deposits in the covered areas where the rock mass is not exposed. However, it is difficult to obtain the information of underground abnormal bodies in the early investigation work because of the thick overlying layer. The Mafic and ultramafic rock mass outlying in the Hongshigang area of the Eastern Tianshan Cu-Ni metallogenic belt shows good prospecting potential. The 1∶50 000 aeromagnetic data and gravity data show that there is a high magnetic and high gravity coupling anomaly in the southern Quaternary covered area, which has not been investigated yet. Therefore, this study conducted high-precision ground magnetic survey work in the southern Hongshigang area and used magnetic anomaly reduced to the pole, vertical first derivative, normalized total gradient method, two-dimensional profile simulation, and three-dimensional magnetic anomaly inversion methods to conduct preliminary exploration and research on the underground anomalous bodies in the area. It was found that there are five significant magnetic anomalies in the investigation area, and the average magnetic susceptibility of the hidden anomalous bodies is about 6000 × 10−5 SI, with a depth of about 200-300 meters. There are five main small anomalous bodies, which strike nearly southwest-northeast and dip to the north. Combined with geological data and rock physical properties, the anomalous bodies in this area may be mafic and ultramafic rock bodies with high magnetic susceptibility. Magnetic anomalies are used to indicate the Huangshan-Jingerquan faults in the southwest-northeast direction which are consistent with the inferred position of predecessors and the secondary fault in the investigated area, which could provide a favorable metallogenic environment for copper-nickel deposits. Therefore, the underground anomalous bodies in the southern Hongshigang area have great prospecting potential for copper-nickel deposits, and this study provides reliable geophysical data for subsequent exploration work in the area.

  • 加载中
  • [1] 宫辰. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 中国金属通报, 2020(21): 49−50. doi: 10.3969/j.issn.1672-1667.2020.21.023

    CrossRef Google Scholar

    GONG Chen. Geological characteristics and prospecting potential of the Hongshigang copper-nickel deposit in Hami, Xinjiang[J]. China Metal Bulletin,2020(21):49−50. doi: 10.3969/j.issn.1672-1667.2020.21.023

    CrossRef Google Scholar

    [2] 韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 49(22): 2324−2328. doi: 10.3321/j.issn:0023-074X.2004.22.012

    CrossRef Google Scholar

    HAN Baofu, JI Jianqing, SONG Biao, et al. SHRIMP zircon U-Pb ages and geological significance of the Kalatongke and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes in Xinjiang[J]. Chinese Science Bulletin,2004,49(22):2324−2328. doi: 10.3321/j.issn:0023-074X.2004.22.012

    CrossRef Google Scholar

    [3] 侯朝勇, 蔡厚安, 裴森龙. 综合物化探方法在新疆哈密月牙湾铜镍矿勘查中的应用[J]. 矿产与地质, 2021, 35(6): 1116−1123.

    Google Scholar

    HOU Chaoyong, CAI Houan, PEI Senlong. Application of comprehensive geophysical and geochemical methods in the exploration of Yueyawan copper nickel deposit in Hami, Xinjiang[J]. Mineral Resources and Geology,2021,35(6):1116−1123.

    Google Scholar

    [4] 惠卫东, 赵鹏大, 秦克章, 等. 东天山图拉尔根铜镍硫化物矿床综合信息找矿模型的应用[J]. 地质与勘探, 2011, 47(3): 388−399.

    Google Scholar

    HUI Weidong, ZHAO Pengda, QIN Kezhang, et al. Application of comprehensive information to exploration of the Tulargen Cu-Ni sulfide deposit in Eastern Tianshan, Xinjiang[J]. Geology and Exploration,2011,47(3):388−399.

    Google Scholar

    [5] 李彤泰. 新疆哈密市黄山基性-超基性岩带铜镍矿床地质特征及矿床成因[J]. 西北地质, 2011, 44(1): 54−60. doi: 10.3969/j.issn.1009-6248.2011.01.007

    CrossRef Google Scholar

    LI Tongtai. Geological Features and Metallogenesis of Cu-Ni Deposit in Basic-to-Ultrabasic Zone of Huangshan, Hami Area[J]. Northwestern Geology,2011,44(1):54−60. doi: 10.3969/j.issn.1009-6248.2011.01.007

    CrossRef Google Scholar

    [6] 刘璎, 孟贵祥, 严加永, 等. 重磁3D物性反演技术在金属矿勘探中的应用[J]. 地质与勘探, 2011, 47(3): 448−455.

    Google Scholar

    LIU Ying, MENG Guixiang, YAN Jiayong, et al. Application of 3D property inversion for gravity and magnetic data to metal mineral exploration[J]. Geology and Exploration,2011,47(3):448−455.

    Google Scholar

    [7] 刘隆, 周建平, 吴涛, 等. 大洋中脊玄武岩磁性特征[J]. 地球物理学进展, 2021, 36(5): 1880−1890. doi: 10.6038/pg2021EE0403

    CrossRef Google Scholar

    LIU Long, ZHOU Jianping, WU Tao, et al. Magnetic characteristics of basalt on mid-ocean ridge[J]. Progress in Geophysics,2021,36(5):1880−1890. doi: 10.6038/pg2021EE0403

    CrossRef Google Scholar

    [8] 骆遥. Hartley变换化极[J]. 地球物理学报, 2013, 56(9): 3163−3172. doi: 10.6038/cjg20130929

    CrossRef Google Scholar

    LUO Yao. Hartley transform for reduction to the pole[J]. Chinese Journal of Geophysics,2013,56(9):3163−3172. doi: 10.6038/cjg20130929

    CrossRef Google Scholar

    [9] 乔天成. 高精度磁法在铜镍多金属矿普查工作中的应用[J]. 新疆有色金属, 2016, 39(1): 36−39.

    Google Scholar

    QIAO Tiancheng. Application of high-precision magnetic method in the prospecting of Cu-Ni polymetallic deposits[J]. Xinjiang Youse Jinshu,2016,39(1):36−39.

    Google Scholar

    [10] 邵行来. 东天山黄山—镜儿泉超镁铁岩带地球物理特征研究及找矿应用[D]. 北京: 中国地质大学(北京), 2012.

    Google Scholar

    SHAO Xinglai. Study on geophysical characteristics and prospecting application of the Huangshan-Jingerquan ultramafic rock belt in East Tianshan[D]. Beijing: China University of Geosciences (Beijing), 2012.

    Google Scholar

    [11] 邵行来, 薛春纪, 戴德文, 等. 新疆哈密葫芦岩浆Cu-Ni矿勘查地球物理异常特征[J]. 现代地质, 2010, 24(2): 383−391. doi: 10.3969/j.issn.1000-8527.2010.02.025

    CrossRef Google Scholar

    SHAO Xinglai, XUE Chunji, DAI Dewen, et al. Characteristics of Geophysical Anomalies of the Prospecting for Hulu Magmatic Cu-Ni Deposit in Hami of Xinjiang[J]. Geoscience,2010,24(2):383−391. doi: 10.3969/j.issn.1000-8527.2010.02.025

    CrossRef Google Scholar

    [12] 邵行来, 薛春纪, 周耀明. 哈密图拉尔根镁铁-超镁铁岩磁法异常解释[J]. 新疆地质, 2012a, 30(4): 425−429. doi: 10.3969/j.issn.1000-8845.2012.04.009

    CrossRef Google Scholar

    SHAO Xinglai, XUE Chunji, ZHOU Yaoming. The Interpretation of Ground Magnetic on the Tulargen Mafic-ultramafic Complex in Hami, Xinjiang[J]. Xinjiang Geology,2012a,30(4):425−429. doi: 10.3969/j.issn.1000-8845.2012.04.009

    CrossRef Google Scholar

    [13] 石煜, 王玉往, 王京彬, 等. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制: 来自斜长石成分的约束[J]. 地球科学, 2022, 47(9): 3244−3257.

    Google Scholar

    SHI Yu, WANG Yuwang, WANG Jingbin, et al. Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions[J]. Earth Science,2022,47(9):3244−3257.

    Google Scholar

    [14] 师震, 陈宏骏, 钱壮志, 等. 东天山红石岗镁铁—超镁铁质岩体成因及铜镍成矿潜力[J]. 地球科学与环境学报, 2019, 41(2): 156−169. doi: 10.3969/j.issn.1672-6561.2019.02.003

    CrossRef Google Scholar

    SHI Zhen, CHEN Hongjun, QIAN Zhuangzhi, et al. Genesis and Cu-Ni Metallogenetic Potential of Hongshigang Mafic-ultramafic Intrusion in East Tianshan, China[J]. Journal of Earth Sciences and Environment,2019,41(2):156−169. doi: 10.3969/j.issn.1672-6561.2019.02.003

    CrossRef Google Scholar

    [15] 宋谢炎, 邓宇峰, 颉炜, 等. 新疆黄山-镜儿泉铜镍硫化物成矿带岩浆通道成矿特征及其找矿意义[J]. 矿床地质, 2022, 41(6): 1108−1123.

    Google Scholar

    SONG Xieyan, DENG Yufeng, XIE Wei, et al. Ore-forming processes in magma plumbing systems and significances for prospecting of Huangshan-Jingerquan Ni-Cu sulfide metallogenetic belt, Xinjiang, NW China[J]. Mineral Deposits,2022,41(6):1108−1123.

    Google Scholar

    [16] 王成. 重、磁、电综合勘探方法在寻找铜镍矿中的应用[J]. 新疆有色金属, 2018, 41(4): 13−17.

    Google Scholar

    WANG Cheng. Application of integrated gravity, magnetic, and electrical exploration methods in Cu-Ni deposit prospecting[J]. Xinjiang Youse Jinshu,2018,41(4):13−17.

    Google Scholar

    [17] 王庆功. 综合物探方法在新疆某铜镍矿勘探中的应用[J]. 甘肃冶金, 2021, 43(2): 96−98+104. doi: 10.3969/j.issn.1672-4461.2021.02.028

    CrossRef Google Scholar

    WANG Qinggong. Application of Comprehensive Geophysical Exploration Method in the Exploration of Cu-Ni Deposit in Xinjiang[J]. Gansu Metallurgy,2021,43(2):96−98+104. doi: 10.3969/j.issn.1672-4461.2021.02.028

    CrossRef Google Scholar

    [18] 王志福, 吴飞, 谭克彬, 等. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 新疆地质, 2012, 30(3): 307−311. doi: 10.3969/j.issn.1000-8845.2012.03.013

    CrossRef Google Scholar

    WANG Zhifu, WU Fei, TAN Kebin, et al. Geological Characteristics and Prospecting Potential of the Hongshigang Cu-Ni Sulfide Deposit in Hami, Xinjiang[J]. Xinjiang Geology,2012,30(3):307−311. doi: 10.3969/j.issn.1000-8845.2012.03.013

    CrossRef Google Scholar

    [19] 王亚磊, 张照伟, 陈寿波, 等. 新疆东天山红石岗北铜镍矿化镁铁质岩体岩石成因及成矿潜力分析[J]. 地质学报, 2017, 91(4): 776−791. doi: 10.3969/j.issn.0001-5717.2017.04.006

    CrossRef Google Scholar

    WANG Yalei, ZHANG Zhaowei, CHEN Shoubo, et al. Petrogenesis and Metallogenic Potential Analysis of Mafic Intrusion in the Hongshigangbei Ni Cu Sulfide Mineralization in East Tianshan, Xinjiang[J]. Acta Geologica Sinica,2017,91(4):776−791. doi: 10.3969/j.issn.0001-5717.2017.04.006

    CrossRef Google Scholar

    [20] 吴功成. 新疆白石泉铜镍矿矿床地质与找矿预测[D]. 北京: 中国地质大学(北京), 2018.

    Google Scholar

    WU Gongcheng. Geology and prospecting prediction of the Baishiquan Cu-Ni deposit in Xinjiang[D].Beijing: China University of Geosciences (Beijing), 2018.

    Google Scholar

    [21] 肖丹, 宋泽友, 宋维国. 我国岩浆硫化物型镍矿床伴生矿产综合勘查评价指标探讨[J]. 国土资源导刊, 2022, 19(1): 48−53. doi: 10.3969/j.issn.1672-5603.2022.01.011

    CrossRef Google Scholar

    XIAO Dan, SONG Zeyou, SONG Weiguo. Comprehensive Exploration and Assessment of Magmatic Type of Nickel Sulfide Deposits in China[J]. Land & Resources Herald,2022,19(1):48−53. doi: 10.3969/j.issn.1672-5603.2022.01.011

    CrossRef Google Scholar

    [22] 杨大欢, 古志宏. 广东与燕山期岩浆作用有关矿产资源的区域成矿分带特征及成因[J]. 矿产与地质, 2021, 35(4): 603−609.

    Google Scholar

    YANG Dahuan, GU Zhihong. Regional metallogenic zonation and genesis of mineral resources related to Yanshanian magmatism in Guangdong[J]. Mineral Resources and Geology,2021,35(4):603−609.

    Google Scholar

    [23] 尹希文. 新疆香山铜镍硫化物矿床岩浆深部过程与找矿方向探讨[J]. 西北地质, 2015, 48(3): 22−30. doi: 10.3969/j.issn.1009-6248.2015.03.003

    CrossRef Google Scholar

    YIN Xiwen. Magma Deep Process and Prospecting Direction of Xiangshan Ni-Cu deposit, Eastern Tianshan, Xinjiang[J]. Northwestern Geology,2015,48(3):22−30. doi: 10.3969/j.issn.1009-6248.2015.03.003

    CrossRef Google Scholar

    [24] Baranov V. A new method for interpretation of aeromagnetic maps; pseudo-gravimetric anomalies[J]. Geophysics,1957,22(2):359−382. doi: 10.1190/1.1438369

    CrossRef Google Scholar

    [25] Cockett R, Kang S, Heagy L J, et al. SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications[J]. Computers & Geosciences,2015,85:142−154.

    Google Scholar

    [26] Ekwok S E, Achadu O-I M, Akpan A E, et al. Depth Estimation of Sedimentary Sections and Basement Rocks in the Bornu Basin, Northeast Nigeria Using High-Resolution Airborne Magnetic Data[J]. Minerals,2022,12(3):285. doi: 10.3390/min12030285

    CrossRef Google Scholar

    [27] Ekwok S E, Akpan A E, Ebong E D. Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria[J]. Journal of African Earth Sciences,2019,155:43−53. doi: 10.1016/j.jafrearsci.2019.02.030

    CrossRef Google Scholar

    [28] Elysseieva I s, Pašteka R. Review Paper: Historical development of the total normalized gradient method in profile gravity field interpretation[J]. Geophysical Prospecting,2019,67(1):188−209. doi: 10.1111/1365-2478.12704

    CrossRef Google Scholar

    [29] Feng Y, Qian Z, Duan J, et al. Geochronological and geochemical study of the Baixintan magmatic Ni-Cu sulphide deposit: New implications for the exploration potential in the western part of the East Tianshan nickel belt (NW China)[J]. Ore Geology Reviews,2018,95:366−381. doi: 10.1016/j.oregeorev.2018.02.023

    CrossRef Google Scholar

    [30] He J, Fan Z, Xiong S, et al. Geophysical prospecting of copper-nickel deposits in Beishan rift zone, Xinjiang[J]. China Geology,2021,4(1):126−146. doi: 10.31035/cg2021015

    CrossRef Google Scholar

    [31] Jahren C E. Magnetization of keweenawan rocks near duluth, minnesota[J]. Geophysics,1965,30(5):858. doi: 10.1190/1.1439660

    CrossRef Google Scholar

    [32] Koenigsberger J G. Natural residual magnetism of eruptive rocks[J]. Terrestrial Magnetism and Atmospheric Electricity,1938,43(3):299−320. doi: 10.1029/TE043i003p00299

    CrossRef Google Scholar

    [33] Mao Y J, Qin K Z, Li C, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, 200–201: 111–125.

    Google Scholar

    [34] Mao Y J, Qin K Z, Tang D M, et al. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China[J]. Journal of Asian Earth Sciences,2016,129:22−37. doi: 10.1016/j.jseaes.2016.07.028

    CrossRef Google Scholar

    [35] Meng Z. Three-dimensional potential field data inversion with L0 quasinorm sparse constraints[J]. Geophysical Prospecting,2018,66(3):626−646. doi: 10.1111/1365-2478.12591

    CrossRef Google Scholar

    [36] Parkinson W D, Barnes C D. In situ determination of Koenigsberger ratio[J]. Australian Journal of Earth Sciences,1985,32(1):1−5. doi: 10.1080/08120098508729308

    CrossRef Google Scholar

    [37] Ran X J, Xue L F ,Zhang Y Y , et al. The 3D Visualization of 2D GM-SYS Gravity-Magnetic Inversion Sections Based on GoCAD[C]//2017 International Conference on Robots & Intelligent System (ICRIS). Huai An City, China: IEEE, 2017. 325–328.

    Google Scholar

    [38] Sun J, Li Y. Adaptive Lp inversion for simultaneous recovery of both blocky and smooth features in a geophysical model[J]. Geophysical Journal International,2014,197(2):882−899. doi: 10.1093/gji/ggu067

    CrossRef Google Scholar

    [39] Sun J, Li Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering[J]. Geophysics,2015,80(4):ID1−ID18. doi: 10.1190/geo2014-0049.1

    CrossRef Google Scholar

    [40] Utsugi M. 3-D inversion of magnetic data based on the L1–L2 norm regularization[J]. Earth, Planets and Space,2019,71(1):73. doi: 10.1186/s40623-019-1052-4

    CrossRef Google Scholar

    [41] Vanzon T, Roy-Chowdhury K. Structural inversion of gravity data using linear programming[J]. Geophysics,2006,71(3):J41−J50. doi: 10.1190/1.2197491

    CrossRef Google Scholar

    [42] Wardinski I, Saturnino D, Amit H, et al. Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13)[J]. Earth Planets and Space,2020,72(1):155. doi: 10.1186/s40623-020-01254-7

    CrossRef Google Scholar

    [43] Xiao F, Wang Z. Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: Implications for porphyry Cu-Mo polymetallic deposits exploration[J]. Ore Geology Reviews,2017,80:1042−1055. doi: 10.1016/j.oregeorev.2016.08.034

    CrossRef Google Scholar

    [44] Yurichev A N, Chernyshov A I. New Ore Minerals from the Kingash Ultramafic Massif, Northwestern Eastern Sayan[J]. Geology of Ore Deposits,2017,59(7):626−631. doi: 10.1134/S107570151707011X

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(58) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint