2025 Vol. 58, No. 3
Article Contents

ZHANG Xu, XU Dezhong, HAN Yuan, REN Huaning, QI Zhipeng, LI Xiu. 2025. Multi-Source SATEM 1D Inversion and Its Application to the 3D Model Data. Northwestern Geology, 58(3): 33-40. doi: 10.12401/j.nwg.2024085
Citation: ZHANG Xu, XU Dezhong, HAN Yuan, REN Huaning, QI Zhipeng, LI Xiu. 2025. Multi-Source SATEM 1D Inversion and Its Application to the 3D Model Data. Northwestern Geology, 58(3): 33-40. doi: 10.12401/j.nwg.2024085

Multi-Source SATEM 1D Inversion and Its Application to the 3D Model Data

More Information
  • In order to avoid the volume effect of long-wire sources in semi-airborne transient electromagnetic device and leverage the advantages of high detection depth and working efficiency, numerical simulations were conducted using single and multiple field sources. The effect of source distribution on the transient fields and resolution characteristics of underground models was analyzed. The feasibility of achieving 3D complex target inversion using simple explanation techniques was discussed by applying the 1D inversion to interpret 3D geoelectric model data. First, the 3D FEM is used to realize the 3D forward modeling of multi-source semi-airborne TEM, analyze the characteristics of the multi-sources transient field, and prove that the volume effect of electrical sources can be reduced by changing the source layout. Then, the 1D inversion method is used to interpret the 3D model data to prove that the simple interpretation method of multi-source device can also improve the resolution of the result. Finally, 1D inversion interpretation of survey data from a coal mine goaf in Gansu Province is carried out. The results show that compared with the results of single-radiation source survey data, the multi-source survey data can be more accurate on the distribution of water zone. The interpretation of the synthetic model and the survey data demonstrate that the resolution of the results can be effectively improved even if simple inversion methods are used for complex excitation sources, which provides new ideas and useful explorations for improving the accuracy of TEM interpretation.

  • 加载中
  • [1] 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11): 3640−3650.

    Google Scholar

    JI Yanju, WANG Yuan, XU Jiang, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics,2013,56(11):3640−3650.

    Google Scholar

    [2] 李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013, 56(9): 3145−3152.

    Google Scholar

    LI Suyi, LIN Jun, YANG Guihong, et al. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics,2013,56(9):3145−3152.

    Google Scholar

    [3] 李貅, 胡伟明, 薛国强. 多辐射源地空瞬变电磁响应三维数值模拟研究[J]. 地球物理学报, 2021, 64(2): 716−723.

    Google Scholar

    LI Xiu, HU Weiming, XUE Guoqiang. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response[J]. Chinese Journal of Geophysics,2021,64(2):716−723.

    Google Scholar

    [4] 李貅, 张莹莹, 卢绪山, 等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报, 2015, 58(1): 277−288.

    Google Scholar

    LI Xiu, ZHANG Yingying, LU Xushan, et al. Inverse Synthetic Aperture Imaging of Ground-Airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics,2015,58(1):277−288.

    Google Scholar

    [5] 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.

    Google Scholar

    LI Xiu. Theory and application of transient electromagnetic sounding [M]. Xi'an: Shaanxi Science Technology Press, 2002.

    Google Scholar

    [6] 薛国强, 李貅, 底青云. 瞬变电磁法正反演问题研究进展[J]. 地球物理学进展, 2008, 23(4): 1165−1172.

    Google Scholar

    XUE Guoqiang, LI Xiu, DI Qingyun. Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophysics,2008,23(4):1165−1172.

    Google Scholar

    [7] 张莹莹, 李貅, 李佳, 等. 多辐射场源地空瞬变电磁法快速成像方法研究[J]. 地球物理学进展, 2016, 31(2): 869−876.

    Google Scholar

    ZHANG Yingying, LI Xiu, LI Jia, et al. Fast imaging technique of multi-source ground-airborne transient electromagnetic method[J]. Progress in Geophysics,2016,31(2):869−876.

    Google Scholar

    [8] 周道卿, 谭林, 谭捍东, 等. 频率域吊舱式直升机航空电磁资料的马奎特反演[J]. 地球物理学报, 2010, 53(2): 421−427.

    Google Scholar

    ZHOU Daoqing, TAN Lin, TAN Handong, et al. Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method[J]. Chinese Journal of Geophysics,2010,53(2):421−427.

    Google Scholar

    [9] Allah S A, Mogi T, Ito H, et al. Three-dimensional resistivity modeling of GREATEM survey data from Kujukuri beach, Japan[J]. Proceedings of the 10th SEGJ International Symposium, 2011, 314-317.

    Google Scholar

    [10] Allah S A, Mogi T, Ito H, et al. Three-dimensional resistivity characterization of a coastal area: application of grounded electrical source airborne transient electromagnetic(GREATEM) survey data from Kujukuri beach, Japan[J]. Journal of Applied Geophysics,2013,99:1−11. doi: 10.1016/j.jappgeo.2013.09.011

    CrossRef Google Scholar

    [11] Bryan W, Roger E,Trenton. Resistivity Arrays as an Early Warning System for Monitoring Runoff Holding Ponds[J]. Journal of Environmental and Engineering Geophysics,2015,20:319−335. doi: 10.2113/JEEG20.4.319

    CrossRef Google Scholar

    [12] Ito H, Mogi T, Jomori A, et al. Further invertigations of underground resistivity structures in coastal areas using grounded source airborne edectromagnetics[J]. Earth Planets and Space,2011,63(8):9−12. doi: 10.5047/eps.2011.08.003

    CrossRef Google Scholar

    [13] Ito H, Kaieda H, Mogi T, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Aso Volcano, Japan[J]. Exploration Geophysics (CSIRO PUBLISHING),2014,45(1):43−48. doi: 10.1071/EG12074

    CrossRef Google Scholar

    [14] Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical-source airborne transient EM (GREATEM)[J]. Exploration Geophysics,1998,29:61−64. doi: 10.1071/EG998061

    CrossRef Google Scholar

    [15] Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan[J]. Exploration Geophysics,2009,40:1−7. doi: 10.1071/EG08115

    CrossRef Google Scholar

    [16] Smith R S, Annan A P, McGowan P D. A comparison of data from airborn, semi-airborne, and ground electromagnetic sounding method[J]. Geophysics,2001,66(5):1379−1385. doi: 10.1190/1.1487084

    CrossRef Google Scholar

    [17] Wright D A, Ziolkowski. Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey[J]. The Leading Edge,2002,21:852−864. doi: 10.1190/1.1508954

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Article Metrics

Article views(63) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint