Citation: | ZHANG Xu, XU Dezhong, HAN Yuan, REN Huaning, QI Zhipeng, LI Xiu. 2025. Multi-Source SATEM 1D Inversion and Its Application to the 3D Model Data. Northwestern Geology, 58(3): 33-40. doi: 10.12401/j.nwg.2024085 |
In order to avoid the volume effect of long-wire sources in semi-airborne transient electromagnetic device and leverage the advantages of high detection depth and working efficiency, numerical simulations were conducted using single and multiple field sources. The effect of source distribution on the transient fields and resolution characteristics of underground models was analyzed. The feasibility of achieving 3D complex target inversion using simple explanation techniques was discussed by applying the 1D inversion to interpret 3D geoelectric model data. First, the 3D FEM is used to realize the 3D forward modeling of multi-source semi-airborne TEM, analyze the characteristics of the multi-sources transient field, and prove that the volume effect of electrical sources can be reduced by changing the source layout. Then, the 1D inversion method is used to interpret the 3D model data to prove that the simple interpretation method of multi-source device can also improve the resolution of the result. Finally, 1D inversion interpretation of survey data from a coal mine goaf in Gansu Province is carried out. The results show that compared with the results of single-radiation source survey data, the multi-source survey data can be more accurate on the distribution of water zone. The interpretation of the synthetic model and the survey data demonstrate that the resolution of the results can be effectively improved even if simple inversion methods are used for complex excitation sources, which provides new ideas and useful explorations for improving the accuracy of TEM interpretation.
[1] | 嵇艳鞠, 王远, 徐江, 等. 无人飞艇长导线源时域地空电磁勘探系统及其应用[J]. 地球物理学报, 2013, 56(11): 3640−3650. JI Yanju, WANG Yuan, XU Jiang, et al. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics,2013,56(11):3640−3650. |
[2] | 李肃义, 林君, 阳贵红, 等. 电性源时域地空电磁数据小波去噪方法研究[J]. 地球物理学报, 2013, 56(9): 3145−3152. LI Suyi, LIN Jun, YANG Guihong, et al. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm[J]. Chinese Journal of Geophysics,2013,56(9):3145−3152. |
[3] | 李貅, 胡伟明, 薛国强. 多辐射源地空瞬变电磁响应三维数值模拟研究[J]. 地球物理学报, 2021, 64(2): 716−723. LI Xiu, HU Weiming, XUE Guoqiang. 3D modeling of multi-radiation source semi-airborne transient electromagnetic response[J]. Chinese Journal of Geophysics,2021,64(2):716−723. |
[4] | 李貅, 张莹莹, 卢绪山, 等. 电性源瞬变电磁地空逆合成孔径成像[J]. 地球物理学报, 2015, 58(1): 277−288. LI Xiu, ZHANG Yingying, LU Xushan, et al. Inverse Synthetic Aperture Imaging of Ground-Airborne transient electromagnetic method with a galvanic source[J]. Chinese Journal of Geophysics,2015,58(1):277−288. |
[5] | 李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002. LI Xiu. Theory and application of transient electromagnetic sounding [M]. Xi'an: Shaanxi Science Technology Press, 2002. |
[6] | 薛国强, 李貅, 底青云. 瞬变电磁法正反演问题研究进展[J]. 地球物理学进展, 2008, 23(4): 1165−1172. XUE Guoqiang, LI Xiu, DI Qingyun. Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophysics,2008,23(4):1165−1172. |
[7] | 张莹莹, 李貅, 李佳, 等. 多辐射场源地空瞬变电磁法快速成像方法研究[J]. 地球物理学进展, 2016, 31(2): 869−876. ZHANG Yingying, LI Xiu, LI Jia, et al. Fast imaging technique of multi-source ground-airborne transient electromagnetic method[J]. Progress in Geophysics,2016,31(2):869−876. |
[8] | 周道卿, 谭林, 谭捍东, 等. 频率域吊舱式直升机航空电磁资料的马奎特反演[J]. 地球物理学报, 2010, 53(2): 421−427. ZHOU Daoqing, TAN Lin, TAN Handong, et al. Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method[J]. Chinese Journal of Geophysics,2010,53(2):421−427. |
[9] | Allah S A, Mogi T, Ito H, et al. Three-dimensional resistivity modeling of GREATEM survey data from Kujukuri beach, Japan[J]. Proceedings of the 10th SEGJ International Symposium, 2011, 314-317. |
[10] | Allah S A, Mogi T, Ito H, et al. Three-dimensional resistivity characterization of a coastal area: application of grounded electrical source airborne transient electromagnetic(GREATEM) survey data from Kujukuri beach, Japan[J]. Journal of Applied Geophysics,2013,99:1−11. doi: 10.1016/j.jappgeo.2013.09.011 |
[11] | Bryan W, Roger E,Trenton. Resistivity Arrays as an Early Warning System for Monitoring Runoff Holding Ponds[J]. Journal of Environmental and Engineering Geophysics,2015,20:319−335. doi: 10.2113/JEEG20.4.319 |
[12] | Ito H, Mogi T, Jomori A, et al. Further invertigations of underground resistivity structures in coastal areas using grounded source airborne edectromagnetics[J]. Earth Planets and Space,2011,63(8):9−12. doi: 10.5047/eps.2011.08.003 |
[13] | Ito H, Kaieda H, Mogi T, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Aso Volcano, Japan[J]. Exploration Geophysics (CSIRO PUBLISHING),2014,45(1):43−48. doi: 10.1071/EG12074 |
[14] | Mogi T, Tanaka Y, Kusunoki K, et al. Development of grounded electrical-source airborne transient EM (GREATEM)[J]. Exploration Geophysics,1998,29:61−64. doi: 10.1071/EG998061 |
[15] | Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan[J]. Exploration Geophysics,2009,40:1−7. doi: 10.1071/EG08115 |
[16] | Smith R S, Annan A P, McGowan P D. A comparison of data from airborn, semi-airborne, and ground electromagnetic sounding method[J]. Geophysics,2001,66(5):1379−1385. doi: 10.1190/1.1487084 |
[17] | Wright D A, Ziolkowski. Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey[J]. The Leading Edge,2002,21:852−864. doi: 10.1190/1.1508954 |
Schematic of single source 3D model and its parameters
Multi-channel of the 3D model
Schematic of double source 3D model and its parameters
The multi-channel of double source modeling
Schematic of treble source model and its parameters
Multi-channel of treble source modeling
Schematic of quadruple source model and its parameters
Multi-channel figure of quadruple source modeling
Subdivision of the j galvanic source
Results of H model of ground-airborne transient electromagnetic method with a long wire source
Results of HA model of ground-airborne transient electromagnetic method with a long wire source
3D model with source and survey line location
Resistivity inversion profile
3D model with multi-source and survey line location
Resistivity inversion profile
Topographic map of survey area
Resistivity profile of single source data
Resistivity profile of multi-source data