2025 Vol. 58, No. 3
Article Contents

HUANG Zhao, ZHANG Xiaobing, LI Zhong, WU Zhonghai, WU Qinghua, YANG Gong, WANG Jinming, HUANG Liang. 2025. Geological Structure Characteristics of the Luliang Basin and Adjacent Areas in Central Yunnan Detected by Audio Magnetotelluric Method. Northwestern Geology, 58(3): 75-85. doi: 10.12401/j.nwg.2024073
Citation: HUANG Zhao, ZHANG Xiaobing, LI Zhong, WU Zhonghai, WU Qinghua, YANG Gong, WANG Jinming, HUANG Liang. 2025. Geological Structure Characteristics of the Luliang Basin and Adjacent Areas in Central Yunnan Detected by Audio Magnetotelluric Method. Northwestern Geology, 58(3): 75-85. doi: 10.12401/j.nwg.2024073

Geological Structure Characteristics of the Luliang Basin and Adjacent Areas in Central Yunnan Detected by Audio Magnetotelluric Method

More Information
  • The Luliang Basin with active tectonics is the largest Cenozoic (Neogene) basin in Yunnan Province.The audio magnetotelluric sounding was effectively used to detect and analyze the underground spatial electrical properties and structural characteristics of the basin and its adjacent areas.Twenty faults (F1-F20) were identified, including the Qujing-Luliang fault belt (F15-F18) that has a great impact on the basin morphology;seven concealed faults in the basin section that probably continue active during the Quaternary period;and the main boundary faults at the eastern edge of the basin characterized by significant normal fault movement.The profile shows that its depth is more than 1000 m, and the depth of the whole basin center is more than 1600 m. The strata in the basin from surface to deep has been divided into five layers comprised of the Quaternary and the first to the fourth Members of Neogene Ciying Formation (N2c1-4). The structural and morphological characteristics of the basin suggest that the Luliang basin is a Cenozoic SW trending dustpan fault basin, with Devonian, Carboniferous and Permian basement.The example shows that audio magnetotelluric sounding is an effective geophysical method for basin exploration.

  • 加载中
  • [1] 崔建, 李建明, 居亚娟, 等. 云南陆良盆地茨营组水下扇沉积特征[J]. 石油地质与工程, 2008, 22(2): 4−7. doi: 10.3969/j.issn.1673-8217.2008.02.002

    CrossRef Google Scholar

    CUI Jian, LI Jianming, JU Yajuan, et al. Sedimentary characteristics of nearshore subaqueous fan of Neogene Ciying Formation in Luliang basin. Yunnan[J]. Petroleum Geology and Engineering,2008,22(2):4−7. doi: 10.3969/j.issn.1673-8217.2008.02.002

    CrossRef Google Scholar

    [2] 侯宇光, 何生, 唐大卿. 滇东北新生代盆地构造反转与生物气藏的形成[J]. 中南大学学报(自然科学版), 2012, 43(6): 2238−2246.

    Google Scholar

    HOU Yuguang, HE Sheng, TANG Daqing. Tectonic reverse of Cenozoic basins and its relationship with the biogas accumulation in north-east of Yunnan Province[J]. Journal of Central South University (Science and Technology),2012,43(6):2238−2246.

    Google Scholar

    [3] 侯宇光, 何生, 唐大卿. 云南曲靖盆地构造演化及其对生物气成藏条件的控制[J]. 现代地质, 2006, 20(4): 597−604. doi: 10.3969/j.issn.1000-8527.2006.04.011

    CrossRef Google Scholar

    HOU Yuguang, HE Sheng, TANG Daqing. Tectonic Evolution and Its Effect on the Accumulation Elements of biogas in Qujing Basin, Yunnan[J]. Geoscience,2006,20(4):597−604. doi: 10.3969/j.issn.1000-8527.2006.04.011

    CrossRef Google Scholar

    [4] 胡雅杰. 陆良盆地茨营组沉积相和气藏特征分析[D]. 2012, 北京: 中国地质大学.

    Google Scholar

    HU Yajie. Analysis of Sedimentary Facies and Characteristics of Gas Reservoir in Citing Formation in LuLiang Basin[D]. Beijing: China University of Geosciences, 2012.

    Google Scholar

    [5] 黄元有, 信太岭, 陈强, 等. EH-4低频模式在楚雄盆地页岩气地质调查中的试验[J]. 云南大学学报, 2017, 39(S2): 30−38.

    Google Scholar

    HUANG Yuanyou, XIN Tailing, CHEN Qiang, et al. Test effect of the EH-4 low frequency model for shale gas geological survey at the Chuxiong Basin, Yunnan[J]. Journal of Yunnan University,2017,39(S2):30−38.

    Google Scholar

    [6] 季风玲. 陆良盆地茨营组流体判别标准分析[J]. 天然气技术, 2009, 3(6): 18−20.

    Google Scholar

    JI Fengling. Fluid Distinguishing Criterion Analysis of Ciying Formation, Luliang Area[J]. Natural Gas Technology,2009,3(6):18−20.

    Google Scholar

    [7] 荆林海, 沈远超. 胶莱盆地北缘遥感信息提取及解译分析[J]. 地质学报, 2001, 35(1): 91−94. doi: 10.3321/j.issn:0001-5717.2001.01.010

    CrossRef Google Scholar

    JING Linhai, SHEN Yuanchao. Extraction and Interperation for the Northern Marigin of the Jiaolai Basin with Remote Sensing[J]. Geology and Exploration,2001,35(1):91−94. doi: 10.3321/j.issn:0001-5717.2001.01.010

    CrossRef Google Scholar

    [8] 李卿. 云南曲靖盆地储层地震预测[D]. 成都: 成都理工大学, 2010.

    Google Scholar

    LI Qing. Reservoir seismic prediction in Qujing Basin,Yunnan[D]. Chengdu:Chengdu University of Technology,2010.

    Google Scholar

    [9] 李智, 张志业, 李双建, 等. 南襄盆地地质结构与形成演化[J]. 西北地质, 2022, 55(2): 116−117.

    Google Scholar

    LI Zhi,ZHANG Zhiye,LI Shuangjian,et al. Geology Architecyure and Tectonic Evolution of Nanxiang Basin[J]. Northwestern Geology,2022,55(2):116−117.

    Google Scholar

    [10] 李忠, 肖高强, 许晶. EH-4电导率成像技术和化探综合方法在镇康放羊山铅锌铁矿区勘查中的应用[J]. 云南大学学报, 2017, 39(S2): 105−109.

    Google Scholar

    LI Zhong, XIAO Gaoqiang , XU Jing. EH-4 conductivity imaging and geochemical comprehensive method in Fangyang hill of Zhenkang exploration the application of lead and zinc iron mining area[J]. Journal of Yunnan University,2017,39(S2):105−109.

    Google Scholar

    [11] 李忠, 吴中海, 王金明, 等. 利用EH4音频大地电磁测深仪探测巧家巨型古滑坡及其结构面特征[J]. 地质力学学报, 2021, 27(2): 317−325.

    Google Scholar

    LI Zhong,WU Zhonghai,WANG Jingming,et al. Using EH4 audio magnetotelluric sounder to detect the gigantic Qiaojiapaleo-landslide: Identification of structural surface characteristics[J]. Journal of Geomechanics,2021,27(2):317−325.

    Google Scholar

    [12] 刘树根, 戴苏兰, 赵永胜, 等. 云南盆地的形成与演化[J]. 成都理工学院学报, 1997, 24(4): 9−22.

    Google Scholar

    LIU Shugen, DAI Sulan, ZHAO Yongsheng, et al. The Formation and Evolution of Luliang Basin in Yunnan Province[J]. Journal of Chengdu Uninersity of Technology,1997,24(4):9−22.

    Google Scholar

    [13] 吕儒明, 陈宗太, 伍佳明, 等. 陆良盆地陆9块上第三系茨营组地震相研究[J]. 石油天然气学报, 2005, 27(5): 566−568. doi: 10.3969/j.issn.1000-9752.2005.05.008

    CrossRef Google Scholar

    LV Ruming, CHEN Zongtai, WU Jiaming, et al. Study on Seismic Facies of the Upper Tertiary Ciying Formation in Lu 9 Block, Luliang Basin[J]. Journal of Oil and Gas Technology,2005,27(5):566−568. doi: 10.3969/j.issn.1000-9752.2005.05.008

    CrossRef Google Scholar

    [14] 秦帮策, 方维萱, 张建国, 等. 汾河裂谷晋中盆地内第四纪沉积序列与沉积环境恢复[J]. 地质力学学报, 2021, 27(6): 1035−1050. doi: 10.12090/j.issn.1006-6616.2021.27.06.084

    CrossRef Google Scholar

    QIN Bangce, FANG Weixuan, ZHANG Jianguo, et al. Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe rifit vally[J]. Journal of Geomechanics,2021,27(6):1035−1050. doi: 10.12090/j.issn.1006-6616.2021.27.06.084

    CrossRef Google Scholar

    [15] 王桥, 杨剑, 夏时斌, 等. 四川盆地新区新层系页岩气的音频大地电磁探测-以川西南乐山地区须家河组为例[J]. 地质学报, 2020, 96(2): 699−711.

    Google Scholar

    WANG Qiao, YANG Jian, XIA Shibin, et al. Audio magnetotelluric detection of shale gas in the new horizon of the area of Sichuan basin: a case study of the Xujiahe Formation in the Leshan area, southwest Sichuan[J]. Acta Geoloica Sinica,2020,96(2):699−711.

    Google Scholar

    [16] 王伟平, 姚永坚, 蔡周荣, 等. 中建南盆地后扩张期T5和T3不整合面的发育特征及对南海科学钻探的意义[J]. 地质学报, 2022, 96(8): 2822−2832.

    Google Scholar

    WANG Weiping, YAO Yongjian, CAI Zhourong, et al. Characteristics of unconformity T5 and T3 in the Zhongjiangnan basin and their significance for scientific drilling in the South China Sea during the post-spreading period[J]. Acta Geologica Sinica,2022,96(8):2822−2832.

    Google Scholar

    [17] 肖朝阳, 黄强太, 张绍阶, 等. EH4电磁成像系统在金矿勘探中的应用—以黄金洞金矿为例[J]. 大地构造与成矿学, 2011, 35(2): 242−248.

    Google Scholar

    XIAO Zhaoyang, HUANG Qiangtai, ZHANG Shaojie, et al. Application of EH4 Electromagnetic Image Sytemin Mineral Resource Exploraion -An Example from the Huangjindong Gold Ore Deposit[J]. Geotectonicaet Metallogenia,2011,35(2):242−248.

    Google Scholar

    [18] 曾普胜, 李华, 朱晓华, 等. 云南曲靖盆地蔡家冲粗面英安质泥灰岩—扬子克拉通内曲靖深大断裂新生代强烈活动的证据[J]. 地质通报, 2015, 34(10): 1826−1836. doi: 10.3969/j.issn.1671-2552.2015.10.007

    CrossRef Google Scholar

    ZENG Pusheng, LI Hua, ZHU Xiaohua, et al. Trachytic dacitic tuffs in Caijiachong Qujing basin, Yunnna province: Evidence for a strong activity of the Qujing deep fault within the Yangtze Craton.[J]. Geological Bulletin of China,2015,34(10):1826−1836. doi: 10.3969/j.issn.1671-2552.2015.10.007

    CrossRef Google Scholar

    [19] 张建成, 王通. EH4电磁法在深埋滑坡变形体探测中的应用[J]. 工程勘察, 2015, 43(2): 94−98.

    Google Scholar

    ZHANG Jiancheng, WANG Tong. Application of EH4 conductivity imaging system in exploration of deep buried landslide deformation[J]. Geotechnical Investigation & Surveying,2015,43(2):94−98.

    Google Scholar

    [20] 赵俊, 向龙洲, 李忠, 等. 综合物探在水文地质调查中的应用及适用性分析[J]. 云南大学学报, 2017, 39(S2): 110−115.

    Google Scholar

    ZHAO Jun, XIANG Longzhou, LI Zhong, et al. Application and applicability analysis of comprehensive geophysical prospecting in hydrogeological survey[J]. Journal of Yunnan University,2017,39(S2):110−115.

    Google Scholar

    [21] 周道卿, 曹宝宝, 赵睿, 等. 羌唐盆地高精度航空重磁调查对盆地基底性质与构造格局的启示[J]. 地质学报, 2020, 95(11): 3178−3191. doi: 10.3969/j.issn.0001-5717.2020.11.002

    CrossRef Google Scholar

    ZHOU Daoqing, CAO Baobao, ZHAO Rui, et al. High-precision airborne gravity and magnetic survey analysis of the Qiangtang basin: implications for basin basement properties and tectonic framework[J]. Acta Geologica Sinica,2020,95(11):3178−3191. doi: 10.3969/j.issn.0001-5717.2020.11.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(87) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint