2024 Vol. 57, No. 6
Article Contents

WANG Qian, SHEN Huan, WEI Zheng'an, LI Yubai, ZHANG Zhifeng. 2024. Quantitative Study of the Early Cretaceous Paleoclimate in Beishan Area, Gansu Province: Based on C-O Isotope Analysis of Reptiles. Northwestern Geology, 57(6): 136-149. doi: 10.12401/j.nwg.2024071
Citation: WANG Qian, SHEN Huan, WEI Zheng'an, LI Yubai, ZHANG Zhifeng. 2024. Quantitative Study of the Early Cretaceous Paleoclimate in Beishan Area, Gansu Province: Based on C-O Isotope Analysis of Reptiles. Northwestern Geology, 57(6): 136-149. doi: 10.12401/j.nwg.2024071

Quantitative Study of the Early Cretaceous Paleoclimate in Beishan Area, Gansu Province: Based on C-O Isotope Analysis of Reptiles

  • In order to quantitatively study important paleoclimatic indicators such as paleotemperature and precipitation of early Cretaceous in Beishan area, Gansu Province, effective samples of dinosaurs' teeth, crocodiles' teeth and turtles' carapace were collected from the Lower Cretaceous in the Beishan area of the northeastern margin of the Jiuquan Basin. Bioapatite was extracted from tooth enamel and tortoiseshell samples by chemical experiments, the δ18OP (‰, V-SMOW) of phosphate and the δ13CC (‰, V-PDB) in apatite have been extracted and measured. The δ18OP (‰, V-SMOW) of Iguanodon tooth enamel is between 14.627‰~22.137‰, the average value is 17.634‰; The δ18OP (‰, V-SMOW) of ceratopsia tooth enamel is between 15.532‰~22.668‰, the average value is 18.225‰; The δ18OP (‰, V-SMOW) of theropod tooth enamel is between 16.915‰~20.763‰, the average value is 18.925‰; The δ18OP (‰, V-SMOW) of crocodiles' tooth enamel is 16.619‰; The δ18OP (‰, V-SMOW) of turtles' carapace is between 15.106‰~16.627‰, the average value is 16.061‰. The δ13Cc (‰, V-PDB) of Iguanodon tooth enamel is between −6.477‰~−1.852‰, the average value is −5.274‰. The δ13Cc (‰, V-PDB) of ceratopsia tooth enamel is between −5.609‰~−2.495‰, the average value is −4.051‰. Based on oxygen isotope data, the annual average paleotemperature is calculated to be (19±3)℃, Based on carbon isotope data, the annual average precipitation is calculated to be (605 ± 151)mm/y, which indicates that the early Cretaceous in Jiuquan area had a warm temperate subtropical dry forest climate, mainly semi-arid to arid environment.

  • 加载中
  • [1] 甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989, 5−320.

    Google Scholar

    [2] 胡修棉. 白垩纪“温室”气候与海洋[J]. 中国地质, 2004, 314): 442448. doi: 10.3969/j.issn.1000-3657.2004.04.017

    CrossRef Google Scholar

    HU Xiumian. Greenhouse climate and ocean during the Cretaceous[J]. Geology in China, 2004, 314): 442448. doi: 10.3969/j.issn.1000-3657.2004.04.017

    CrossRef Google Scholar

    [3] 李爱静, 惠建国, 马国荣, 等. 甘肃马鬃山地区早白垩世 Carpolithus 化石的研究[J]. 地质学报, 2021, 955): 14001413. doi: 10.19762/j.cnki.dizhixuebao.2021029

    CrossRef Google Scholar

    LI Aijing, HUI Jianguo, MA Guorong, et al. Study of Carpolithus from the Lower Cretaceous of Mazongshan, Gansu Province[J]. Acta Geologica Sinica, 2021, 955): 14001413. doi: 10.19762/j.cnki.dizhixuebao.2021029

    CrossRef Google Scholar

    [4] 李成元, 薄海军, 李钢柱, 等. 川井坳陷砂岩型铀矿含矿地层孢粉组合及古气候意义[J]. 地质学报, 2023, 974): 12621277.

    Google Scholar

    LI Chengyuan, BO Haijun, LI Gangzhu, et al. Palynomorph assemblage of ore-bearing strata for sandstone-type uranium deposit in Chuanjing depression and its paleoclimatic significance[J]. Acta Geologica Sinica, 2023, 974): 12621277.

    Google Scholar

    [5] 李大庆. 中国甘肃酒泉地区俞井子盆地早白垩世镰刀龙类恐龙化石[D]. 北京: 中国地质大学(北京), 2008.

    Google Scholar

    LI Daqing. Therizinosauroid dinosaurs from the Early Cretaceous of Yujingzi Basin, Jiuquan Area, Gansu Province, China[D]. Beijing: China University of Geosciences (Beijing), 2008.

    Google Scholar

    [6] 李涛, 那玉玲, 李云峰, 等. 内蒙古大兴安岭地区下白垩统龙江组孢粉组合及其地质意义[J/OL]. 世界地质, 2023, 42(3): 409−421.

    Google Scholar

    LI Tao, NA Yuling, LI Yunfeng, et al. Sporollen assemblage from Lower Cretaceous Longjiang Formation in Greater Khingan Range, Inner Mongolia, and its geological implications[J/OL]. World Geology, 2023, 42(3): 409−421.

    Google Scholar

    [7] 柳永清, 旷红伟, 彭楠, 等. 山东胶莱盆地白垩纪恐龙足迹与骨骼化石埋藏沉积相与古地理环境[J]. 地学前缘, 2011, 184): 924.

    Google Scholar

    LIU Yongqing, KUANG Hongwei, PENG Nan, et al. Sedimentary facies of dinosaur trackways and bonebeds in the Cretaceous Jiaolai Basin, easternShandong, China, and their paleogeographical implications[J]. Earth Science Frontiers, 2011, 184): 924.

    Google Scholar

    [8] 任文秀, 胡斌, 唐德亮, 等. 北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义[J/OL]. 地球科学, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.

    Google Scholar

    REN Wenxiu, HU Bin, TANG Deliang, et al. Palynological assemblage and its significance of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan[J/OL]. Earth Science, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.

    Google Scholar

    [9] 谭结. 白垩纪胶莱盆地沉积物源及古气候变化对中国东部海岸山脉的响应[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    TAN Jie. Responses of Sedimentary Sources and Paleoclimatic Changes of the Cretaceous Jiaolai Basin to Coastal Mountains in Eastern China[D]. Beijing: China University of Geosciences (Beijing), 2020.

    Google Scholar

    [10] 王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 122): 1121. doi: 10.3321/j.issn:1005-2321.2005.02.003

    CrossRef Google Scholar

    WANG Chengshan, HU Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 122): 1121. doi: 10.3321/j.issn:1005-2321.2005.02.003

    CrossRef Google Scholar

    [11] 王毛毛, 毛广振, 季兴开, 等. 准噶尔盆地北缘黄花沟地区砂岩型铀矿目的层时代、古气候及铀矿化关系[J]. 铀矿地质, 2023, 394): 558568.

    Google Scholar

    WANG Maomao, MAO Guangzhen, JI Xingkai, et al. Forming Age and Paleoclimate of the Target Layer and Its Relation to Sandstone-type Uranium Mineralization in Huanghuagou Area, Northern Junggar Basin[J]. Uranium Geology, 2023, 394): 558568.

    Google Scholar

    [12] 王茜. 甘肃省北山地区早白垩世爬行动物碳氧同位素对古气候的指示[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    WANG Qian. Paleoclimte inferred from oxygen and carbon isotopes of reptiles in Gansu Province Beishan area during the early Cretaceous[D]. Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [13] 杨国林, 杨帆, 李军, 等. 甘肃酒泉盆地新民堡群植物群特征及其古生态意义[J]. 甘肃高师学报, 2022, 275): 1318. doi: 10.3969/j.issn.1008-9020.2022.05.004

    CrossRef Google Scholar

    YANG Guolin, YANG Fan, LI Jun, et al. Characteristics of the Xinminbao Group Flora in Jiuquan Basin, Gansu Province, and Its Paleoecological Significance[J]. Journal of Gansu Normal Colleges, 2022, 275): 1318. doi: 10.3969/j.issn.1008-9020.2022.05.004

    CrossRef Google Scholar

    [14] 玉门油田石油地质志编写组. 玉门油田 中国石油地质志 卷十三[M]. 北京: 石油工业出版社, 1989, 64−435.

    Google Scholar

    [15] 张茜楠, 尤海鲁, 李大庆. 甘肃马鬃山地区早白垩世晚期恐龙化石[J]. 地质通报, 2015, 345): 890897. doi: 10.3969/j.issn.1671-2552.2015.05.009

    CrossRef Google Scholar

    ZHANG Qiannan, YOU Hailu, LI Daqing. Dinosaurs from late Early Cretaceous in the Mazongshan area, Gansu Province[J]. Geological Bulletin of China, 2015, 345): 890897. doi: 10.3969/j.issn.1671-2552.2015.05.009

    CrossRef Google Scholar

    [16] Amiot R, Kusuhashi N, Saegusa H, et al. Paleoclimate and ecology of Cretaceous continental ecosystems of Japan inferred from the stable oxygen and carbon isotope compositions of vertebrate bioapatite[J]. Journal of Asian Earth Sciences, 2021, 205: 104602. doi: 10.1016/j.jseaes.2020.104602

    CrossRef Google Scholar

    [17] Amiot R, Wang X, Zhou Z, et al. Environment and ecology of East Asian dinosaurs during the Early Cretaceous inferred from stable oxygen and carbon isotopes in apatite[J]. Journal of Asian Earth Sciences, 2015, 98: 358370. doi: 10.1016/j.jseaes.2014.11.032

    CrossRef Google Scholar

    [18] Amiot R, Wang X, Zhou Z, et al. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 10813): 51795183. doi: 10.1073/pnas.1011369108

    CrossRef Google Scholar

    [19] Angst D, Lécuyer C, Amiot R, et al. Isotopic and anatomical evidence of anherbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems[J]. Naturwissenschaften, 2014, 101: 313322. doi: 10.1007/s00114-014-1158-2

    CrossRef Google Scholar

    [20] Barral A, Gomez B, Legendre S, et al. Evolution of the carbon isotope composition of atmospheric CO2 throughout the Cretaceous[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471: 4047. doi: 10.1016/j.palaeo.2017.01.034

    CrossRef Google Scholar

    [21] Barron E J, Fawcett P J, Peterson W H, et al. A“simulation ”of mid-Cretaceous climate[J]. Paleoceanography, 1995, 10: 953962. doi: 10.1029/95PA01624

    CrossRef Google Scholar

    [22] Bojar A V, Halas S, Bojar H P, et al. Stable isotope hydrology of precipitation and groundwater of a region with high continentality, South Carpathians, Romania[J]. Carpathian Journal of Earth and Environmental Sciences, 2017, 12: 513524.

    Google Scholar

    [23] Cavalheiro L, Wagner T, Steinig S, et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event[J]. Nature Communications, 2021, 12: 5411. doi: 10.1038/s41467-021-25706-0

    CrossRef Google Scholar

    [24] Chenery C A, Pashley V, Lamb A L, et al. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite[J]. Rapid Commun. Mass Spectrom, 2012, 26: 309319. doi: 10.1002/rcm.5331

    CrossRef Google Scholar

    [25] Cormie A B, Luz B, Schwarcz H P. Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity[J]. Geochimica et Cosmochimica Acta, 1994, 58: 34393449. doi: 10.1016/0016-7037(94)90097-3

    CrossRef Google Scholar

    [26] D’Angela D, Longinelli A. Oxygen isotopes in living mammal’s bone phosphate: Further results[J]. Chemical Geology: Isotope Geoscience section, 1990, 86: 7582. doi: 10.1016/0168-9622(90)90007-Y

    CrossRef Google Scholar

    [27] Dera G, Neige P, Dommergues J L, et al. Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions[J]. Global and Planetary Change, 2011, 783-4): 92105. doi: 10.1016/j.gloplacha.2011.05.009

    CrossRef Google Scholar

    [28] Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 2010, 10713): 57385743.

    Google Scholar

    [29] Ehleringer J R, Monson R K. Evolutionary and ecological aspects of photosynthetic pathway variation[J]. Annual Review of Ecology and Systematics, 1993, 24: 411439. doi: 10.1146/annurev.es.24.110193.002211

    CrossRef Google Scholar

    [30] Erickson G M. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts[J]. Proceedings of the National Academy of Sciences, 1996a, 93: 1462314627. doi: 10.1073/pnas.93.25.14623

    CrossRef Google Scholar

    [31] Erickson G M. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts[J]. Journal of Morphology, 1996b, 228: 189194. doi: 10.1002/(SICI)1097-4687(199605)228:2<189::AID-JMOR7>3.0.CO;2-0

    CrossRef Google Scholar

    [32] Fluteau F, Ramstein G, Besse J, et al. Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247: 357381. doi: 10.1016/j.palaeo.2006.11.016

    CrossRef Google Scholar

    [33] Fricke H C, Pearson D A. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota[J]. Paleobiology, 2008a, 34: 534552. doi: 10.1666/08020.1

    CrossRef Google Scholar

    [34] Fricke H C, Rogers R R, Backlund R, et al. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008b, 266: 1327. doi: 10.1016/j.palaeo.2008.03.030

    CrossRef Google Scholar

    [35] Grimes S T, Mattey D P, Collinson M E, et al. Using mammal tooth phosphate with freshwater carbonate and phosphate palaeoproxies to obtain mean paleotemperatures[J]. Quaternary Science Reviews, 2004a, 237-8): 967976. doi: 10.1016/j.quascirev.2003.06.023

    CrossRef Google Scholar

    [36] Grimes S T, Collinson M E, Hooker J J, et al. Distinguishing the diets of coexisting fossil theridomyid and glirid rodents using carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004b, 2081-2): 103119. doi: 10.1016/j.palaeo.2004.02.031

    CrossRef Google Scholar

    [37] Hasegawa H, Tada R, Jiang X, et al. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse[J]. Clim. Past, 2012, 84): 13231337. doi: 10.5194/cp-8-1323-2012

    CrossRef Google Scholar

    [38] Hay W W, Floegel S. New thoughts about the Cretaceous climate and oceans[J]. Earth-Science Reviews, 2012, 115: 262272. doi: 10.1016/j.earscirev.2012.09.008

    CrossRef Google Scholar

    [39] Holdridge L R. Determination of world plant formations from simple climatic data[J]. Science, 1947, 105: 367368. doi: 10.1126/science.105.2727.367

    CrossRef Google Scholar

    [40] Huber M. Progress in Greenhouse Climate Modeling[J]. The Paleontological Society Papers, 2012, 18: 213262. doi: 10.1017/S108933260000262X

    CrossRef Google Scholar

    [41] Hyneka S A, Benjamin H, Passey B H, et al. Small mammal carbon isotope ecology across the Miocene–Pliocene boundary, northwestern Argentina[J]. Earth and Planetary Science Letters, 2012, 321–322, 177−188.

    Google Scholar

    [42] IAEA-WMO. Global network of isotopes in precipitation[EB/OL]. The GNIP Database, 2016. Accessible at: http://www-naweb.iaea.org/napc/ih/index.html.

    Google Scholar

    [43] Jin P, Ji L, Ma B, et al. Early Cretaceous palynology and paleoclimate of the Hanxia-Hongliuxia Area, Jiuxi Basin, China[J]. Review of Palaeobotany and Palynology, 281: 104259. https://doi.org/10.1016/j.revpalbo.2020.104259.

    Google Scholar

    [44] Koch P L, Tuross N, Fogel M L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite[J]. Journal of Archaeological Science, 1997, 24: 417429. doi: 10.1006/jasc.1996.0126

    CrossRef Google Scholar

    [45] Kolodny Y, Luz B, Navon O. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game[J]. Earth and Planetary Science Letters, 1983, 64: 398404. doi: 10.1016/0012-821X(83)90100-0

    CrossRef Google Scholar

    [46] Lécuyer C, Amiot R, Touzeau A, et al. Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations[J]. Chemical Geology, 2013, 3476): 217226. doi: 10.1016/j.chemgeo.2013.03.008

    CrossRef Google Scholar

    [47] Lécuyer C, Balter V, Martineau F, et al. Oxygen isotope fractionation between apatite-bound carbonate and water determined from controlled experiments with synthetic apatites precipitated at 10-37 ℃[J]. Geochimica et Cosmochimica Acta, 2010, 747): 20722081. doi: 10.1016/j.gca.2009.12.024

    CrossRef Google Scholar

    [48] Miller K G, Wight J D, Fairbanks R D. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. Journal of Geophysical Research, 1991, 96: 68296848. doi: 10.1029/90JB02015

    CrossRef Google Scholar

    [49] Passey B H, Robinson T F, Ayliffe L K, et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals[J]. Journal of Archaeological Science, 2005, 32: 14591470. doi: 10.1016/j.jas.2005.03.015

    CrossRef Google Scholar

    [50] Rey K, Amiot R, Fourel F, et al. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa[J]. Gondwana Research, 2016, 37: 384396. doi: 10.1016/j.gr.2015.09.008

    CrossRef Google Scholar

    [51] Royer A, Lécuyer C, Montuire S, et al. What does the oxygen isotope composition of rodent teeth record?[J]. Earth and Planetary Science Letters, 2013, 361: 258271. doi: 10.1016/j.jpgl.2012.09.058

    CrossRef Google Scholar

    [52] Shuo C, Jing M, Laiming Z. Quantitative reconstruction of Early Cretaceous dune morphology in the Ordos paleo-desert and its paleoclimatic implications[J]. Frontiers in Earth Science, 2023. doi:10.3389/FEART.2023.1142034.

    Google Scholar

    [53] Straight W H, Barrick R E, Eberth D A. Reflections of surface water, seasonality and climate in stable oxygen isotopes from tyrannosaurid tooth enamel[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 206: 239256. doi: 10.1016/j.palaeo.2004.01.006

    CrossRef Google Scholar

    [54] Takashima R, Nishi H, Huber B T, et al. Greenhouse[J]. Oceanography, 2006, 19: 82. doi: 10.5670/oceanog.2006.07

    CrossRef Google Scholar

    [55] Tang F, Luo Z, Zhou Z, et al. Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China[J]. Cretaceous Research, 2001, 22: 115129. doi: 10.1006/cres.2000.0242

    CrossRef Google Scholar

    [56] Tütken T. The diet of sauropod dinosaurs: implications from carbon isotope analysis of teeth, bones, and plants, in: Klein N, Remes K, Sander M (Eds.). Biology of the Sauropod Dinosaurs: Understanding the Life of Giants[M]. Bloomington: Indiana University Press, 2011, 57−79.

    Google Scholar

    [57] Zazzo A, Lécuyer C, Mariotti A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions[J]. Geochimica et Cosmochimica Acta, 2004a, 68: 112.

    Google Scholar

    [58] Zazzo A, Lécuyer C, Sheppard SMF, et al. Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel[J]. Geochimica et Cosmochimica Acta, 2004b, 68: 22452258. doi: 10.1016/j.gca.2003.11.009

    CrossRef Google Scholar

    [59] Zhang L, Yan D, Yang S, et al. Evolution of the Middle Jurassic paleoclimate: Sedimentary evidence from coal-bearing strata in the Santanghu Basin, NW China[J]. Journal of Asian Earth Sciences, 2023, 242: 105495. doi: 10.1016/j.jseaes.2022.105495

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(459) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint