|
[1]
|
甘肃省地质矿产局. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989, 5−320.
Google Scholar
|
|
[2]
|
胡修棉. 白垩纪“温室”气候与海洋[J]. 中国地质, 2004, 31(4): 442−448. doi: 10.3969/j.issn.1000-3657.2004.04.017
CrossRef Google Scholar
HU Xiumian. Greenhouse climate and ocean during the Cretaceous[J]. Geology in China, 2004, 31(4): 442−448. doi: 10.3969/j.issn.1000-3657.2004.04.017
CrossRef Google Scholar
|
|
[3]
|
李爱静, 惠建国, 马国荣, 等. 甘肃马鬃山地区早白垩世 Carpolithus 化石的研究[J]. 地质学报, 2021, 95(5): 1400−1413. doi: 10.19762/j.cnki.dizhixuebao.2021029
CrossRef Google Scholar
LI Aijing, HUI Jianguo, MA Guorong, et al. Study of Carpolithus from the Lower Cretaceous of Mazongshan, Gansu Province[J]. Acta Geologica Sinica, 2021, 95(5): 1400−1413. doi: 10.19762/j.cnki.dizhixuebao.2021029
CrossRef Google Scholar
|
|
[4]
|
李成元, 薄海军, 李钢柱, 等. 川井坳陷砂岩型铀矿含矿地层孢粉组合及古气候意义[J]. 地质学报, 2023, 97(4): 1262−1277.
Google Scholar
LI Chengyuan, BO Haijun, LI Gangzhu, et al. Palynomorph assemblage of ore-bearing strata for sandstone-type uranium deposit in Chuanjing depression and its paleoclimatic significance[J]. Acta Geologica Sinica, 2023, 97(4): 1262−1277.
Google Scholar
|
|
[5]
|
李大庆. 中国甘肃酒泉地区俞井子盆地早白垩世镰刀龙类恐龙化石[D]. 北京: 中国地质大学(北京), 2008.
Google Scholar
LI Daqing. Therizinosauroid dinosaurs from the Early Cretaceous of Yujingzi Basin, Jiuquan Area, Gansu Province, China[D]. Beijing: China University of Geosciences (Beijing), 2008.
Google Scholar
|
|
[6]
|
李涛, 那玉玲, 李云峰, 等. 内蒙古大兴安岭地区下白垩统龙江组孢粉组合及其地质意义[J/OL]. 世界地质, 2023, 42(3): 409−421.
Google Scholar
LI Tao, NA Yuling, LI Yunfeng, et al. Sporollen assemblage from Lower Cretaceous Longjiang Formation in Greater Khingan Range, Inner Mongolia, and its geological implications[J/OL]. World Geology, 2023, 42(3): 409−421.
Google Scholar
|
|
[7]
|
柳永清, 旷红伟, 彭楠, 等. 山东胶莱盆地白垩纪恐龙足迹与骨骼化石埋藏沉积相与古地理环境[J]. 地学前缘, 2011, 18(4): 9−24.
Google Scholar
LIU Yongqing, KUANG Hongwei, PENG Nan, et al. Sedimentary facies of dinosaur trackways and bonebeds in the Cretaceous Jiaolai Basin, easternShandong, China, and their paleogeographical implications[J]. Earth Science Frontiers, 2011, 18(4): 9−24.
Google Scholar
|
|
[8]
|
任文秀, 胡斌, 唐德亮, 等. 北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义[J/OL]. 地球科学, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.
Google Scholar
REN Wenxiu, HU Bin, TANG Deliang, et al. Palynological assemblage and its significance of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan[J/OL]. Earth Science, 2022: 1−29. https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.
Google Scholar
|
|
[9]
|
谭结. 白垩纪胶莱盆地沉积物源及古气候变化对中国东部海岸山脉的响应[D]. 北京: 中国地质大学(北京), 2020.
Google Scholar
TAN Jie. Responses of Sedimentary Sources and Paleoclimatic Changes of the Cretaceous Jiaolai Basin to Coastal Mountains in Eastern China[D]. Beijing: China University of Geosciences (Beijing), 2020.
Google Scholar
|
|
[10]
|
王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘, 2005, 12(2): 11−21. doi: 10.3321/j.issn:1005-2321.2005.02.003
CrossRef Google Scholar
WANG Chengshan, HU Xiumian. Cretaceous world and oceanic red beds[J]. Earth Science Frontiers, 2005, 12(2): 11−21. doi: 10.3321/j.issn:1005-2321.2005.02.003
CrossRef Google Scholar
|
|
[11]
|
王毛毛, 毛广振, 季兴开, 等. 准噶尔盆地北缘黄花沟地区砂岩型铀矿目的层时代、古气候及铀矿化关系[J]. 铀矿地质, 2023, 39(4): 558−568.
Google Scholar
WANG Maomao, MAO Guangzhen, JI Xingkai, et al. Forming Age and Paleoclimate of the Target Layer and Its Relation to Sandstone-type Uranium Mineralization in Huanghuagou Area, Northern Junggar Basin[J]. Uranium Geology, 2023, 39(4): 558−568.
Google Scholar
|
|
[12]
|
王茜. 甘肃省北山地区早白垩世爬行动物碳氧同位素对古气候的指示[D]. 北京: 中国地质大学(北京), 2015.
Google Scholar
WANG Qian. Paleoclimte inferred from oxygen and carbon isotopes of reptiles in Gansu Province Beishan area during the early Cretaceous[D]. Beijing: China University of Geosciences (Beijing), 2015.
Google Scholar
|
|
[13]
|
杨国林, 杨帆, 李军, 等. 甘肃酒泉盆地新民堡群植物群特征及其古生态意义[J]. 甘肃高师学报, 2022, 27(5): 13−18. doi: 10.3969/j.issn.1008-9020.2022.05.004
CrossRef Google Scholar
YANG Guolin, YANG Fan, LI Jun, et al. Characteristics of the Xinminbao Group Flora in Jiuquan Basin, Gansu Province, and Its Paleoecological Significance[J]. Journal of Gansu Normal Colleges, 2022, 27(5): 13−18. doi: 10.3969/j.issn.1008-9020.2022.05.004
CrossRef Google Scholar
|
|
[14]
|
玉门油田石油地质志编写组. 玉门油田 中国石油地质志 卷十三[M]. 北京: 石油工业出版社, 1989, 64−435.
Google Scholar
|
|
[15]
|
张茜楠, 尤海鲁, 李大庆. 甘肃马鬃山地区早白垩世晚期恐龙化石[J]. 地质通报, 2015, 34(5): 890−897. doi: 10.3969/j.issn.1671-2552.2015.05.009
CrossRef Google Scholar
ZHANG Qiannan, YOU Hailu, LI Daqing. Dinosaurs from late Early Cretaceous in the Mazongshan area, Gansu Province[J]. Geological Bulletin of China, 2015, 34(5): 890−897. doi: 10.3969/j.issn.1671-2552.2015.05.009
CrossRef Google Scholar
|
|
[16]
|
Amiot R, Kusuhashi N, Saegusa H, et al. Paleoclimate and ecology of Cretaceous continental ecosystems of Japan inferred from the stable oxygen and carbon isotope compositions of vertebrate bioapatite[J]. Journal of Asian Earth Sciences, 2021, 205: 104602. doi: 10.1016/j.jseaes.2020.104602
CrossRef Google Scholar
|
|
[17]
|
Amiot R, Wang X, Zhou Z, et al. Environment and ecology of East Asian dinosaurs during the Early Cretaceous inferred from stable oxygen and carbon isotopes in apatite[J]. Journal of Asian Earth Sciences, 2015, 98: 358−370. doi: 10.1016/j.jseaes.2014.11.032
CrossRef Google Scholar
|
|
[18]
|
Amiot R, Wang X, Zhou Z, et al. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5179−5183. doi: 10.1073/pnas.1011369108
CrossRef Google Scholar
|
|
[19]
|
Angst D, Lécuyer C, Amiot R, et al. Isotopic and anatomical evidence of anherbivorous diet in the Early Tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems[J]. Naturwissenschaften, 2014, 101: 313−322. doi: 10.1007/s00114-014-1158-2
CrossRef Google Scholar
|
|
[20]
|
Barral A, Gomez B, Legendre S, et al. Evolution of the carbon isotope composition of atmospheric CO2 throughout the Cretaceous[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471: 40−47. doi: 10.1016/j.palaeo.2017.01.034
CrossRef Google Scholar
|
|
[21]
|
Barron E J, Fawcett P J, Peterson W H, et al. A“simulation ”of mid-Cretaceous climate[J]. Paleoceanography, 1995, 10: 953−962. doi: 10.1029/95PA01624
CrossRef Google Scholar
|
|
[22]
|
Bojar A V, Halas S, Bojar H P, et al. Stable isotope hydrology of precipitation and groundwater of a region with high continentality, South Carpathians, Romania[J]. Carpathian Journal of Earth and Environmental Sciences, 2017, 12: 513−524.
Google Scholar
|
|
[23]
|
Cavalheiro L, Wagner T, Steinig S, et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event[J]. Nature Communications, 2021, 12: 5411. doi: 10.1038/s41467-021-25706-0
CrossRef Google Scholar
|
|
[24]
|
Chenery C A, Pashley V, Lamb A L, et al. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite[J]. Rapid Commun. Mass Spectrom, 2012, 26: 309−319. doi: 10.1002/rcm.5331
CrossRef Google Scholar
|
|
[25]
|
Cormie A B, Luz B, Schwarcz H P. Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity[J]. Geochimica et Cosmochimica Acta, 1994, 58: 3439−3449. doi: 10.1016/0016-7037(94)90097-3
CrossRef Google Scholar
|
|
[26]
|
D’Angela D, Longinelli A. Oxygen isotopes in living mammal’s bone phosphate: Further results[J]. Chemical Geology: Isotope Geoscience section, 1990, 86: 75−82. doi: 10.1016/0168-9622(90)90007-Y
CrossRef Google Scholar
|
|
[27]
|
Dera G, Neige P, Dommergues J L, et al. Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions[J]. Global and Planetary Change, 2011, 78(3-4): 92−105. doi: 10.1016/j.gloplacha.2011.05.009
CrossRef Google Scholar
|
|
[28]
|
Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 2010, 107(13): 5738−5743.
Google Scholar
|
|
[29]
|
Ehleringer J R, Monson R K. Evolutionary and ecological aspects of photosynthetic pathway variation[J]. Annual Review of Ecology and Systematics, 1993, 24: 411−439. doi: 10.1146/annurev.es.24.110193.002211
CrossRef Google Scholar
|
|
[30]
|
Erickson G M. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts[J]. Proceedings of the National Academy of Sciences, 1996a, 93: 14623−14627. doi: 10.1073/pnas.93.25.14623
CrossRef Google Scholar
|
|
[31]
|
Erickson G M. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts[J]. Journal of Morphology, 1996b, 228: 189−194. doi: 10.1002/(SICI)1097-4687(199605)228:2<189::AID-JMOR7>3.0.CO;2-0
CrossRef Google Scholar
|
|
[32]
|
Fluteau F, Ramstein G, Besse J, et al. Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247: 357−381. doi: 10.1016/j.palaeo.2006.11.016
CrossRef Google Scholar
|
|
[33]
|
Fricke H C, Pearson D A. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota[J]. Paleobiology, 2008a, 34: 534−552. doi: 10.1666/08020.1
CrossRef Google Scholar
|
|
[34]
|
Fricke H C, Rogers R R, Backlund R, et al. Preservation of primary stable isotope signals in dinosaur remains, and environmental gradients of the Late Cretaceous of Montana and Alberta[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008b, 266: 13−27. doi: 10.1016/j.palaeo.2008.03.030
CrossRef Google Scholar
|
|
[35]
|
Grimes S T, Mattey D P, Collinson M E, et al. Using mammal tooth phosphate with freshwater carbonate and phosphate palaeoproxies to obtain mean paleotemperatures[J]. Quaternary Science Reviews, 2004a, 23(7-8): 967−976. doi: 10.1016/j.quascirev.2003.06.023
CrossRef Google Scholar
|
|
[36]
|
Grimes S T, Collinson M E, Hooker J J, et al. Distinguishing the diets of coexisting fossil theridomyid and glirid rodents using carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004b, 208(1-2): 103−119. doi: 10.1016/j.palaeo.2004.02.031
CrossRef Google Scholar
|
|
[37]
|
Hasegawa H, Tada R, Jiang X, et al. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse[J]. Clim. Past, 2012, 8(4): 1323−1337. doi: 10.5194/cp-8-1323-2012
CrossRef Google Scholar
|
|
[38]
|
Hay W W, Floegel S. New thoughts about the Cretaceous climate and oceans[J]. Earth-Science Reviews, 2012, 115: 262−272. doi: 10.1016/j.earscirev.2012.09.008
CrossRef Google Scholar
|
|
[39]
|
Holdridge L R. Determination of world plant formations from simple climatic data[J]. Science, 1947, 105: 367−368. doi: 10.1126/science.105.2727.367
CrossRef Google Scholar
|
|
[40]
|
Huber M. Progress in Greenhouse Climate Modeling[J]. The Paleontological Society Papers, 2012, 18: 213−262. doi: 10.1017/S108933260000262X
CrossRef Google Scholar
|
|
[41]
|
Hyneka S A, Benjamin H, Passey B H, et al. Small mammal carbon isotope ecology across the Miocene–Pliocene boundary, northwestern Argentina[J]. Earth and Planetary Science Letters, 2012, 321–322, 177−188.
Google Scholar
|
|
[42]
|
IAEA-WMO. Global network of isotopes in precipitation[EB/OL]. The GNIP Database, 2016. Accessible at: http://www-naweb.iaea.org/napc/ih/index.html.
Google Scholar
|
|
[43]
|
Jin P, Ji L, Ma B, et al. Early Cretaceous palynology and paleoclimate of the Hanxia-Hongliuxia Area, Jiuxi Basin, China[J]. Review of Palaeobotany and Palynology, 281: 104259. https://doi.org/10.1016/j.revpalbo.2020.104259.
Google Scholar
|
|
[44]
|
Koch P L, Tuross N, Fogel M L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite[J]. Journal of Archaeological Science, 1997, 24: 417−429. doi: 10.1006/jasc.1996.0126
CrossRef Google Scholar
|
|
[45]
|
Kolodny Y, Luz B, Navon O. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game[J]. Earth and Planetary Science Letters, 1983, 64: 398−404. doi: 10.1016/0012-821X(83)90100-0
CrossRef Google Scholar
|
|
[46]
|
Lécuyer C, Amiot R, Touzeau A, et al. Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations[J]. Chemical Geology, 2013, 347(6): 217−226. doi: 10.1016/j.chemgeo.2013.03.008
CrossRef Google Scholar
|
|
[47]
|
Lécuyer C, Balter V, Martineau F, et al. Oxygen isotope fractionation between apatite-bound carbonate and water determined from controlled experiments with synthetic apatites precipitated at 10-37 ℃[J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2072−2081. doi: 10.1016/j.gca.2009.12.024
CrossRef Google Scholar
|
|
[48]
|
Miller K G, Wight J D, Fairbanks R D. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion[J]. Journal of Geophysical Research, 1991, 96: 6829−6848. doi: 10.1029/90JB02015
CrossRef Google Scholar
|
|
[49]
|
Passey B H, Robinson T F, Ayliffe L K, et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals[J]. Journal of Archaeological Science, 2005, 32: 1459−1470. doi: 10.1016/j.jas.2005.03.015
CrossRef Google Scholar
|
|
[50]
|
Rey K, Amiot R, Fourel F, et al. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa[J]. Gondwana Research, 2016, 37: 384−396. doi: 10.1016/j.gr.2015.09.008
CrossRef Google Scholar
|
|
[51]
|
Royer A, Lécuyer C, Montuire S, et al. What does the oxygen isotope composition of rodent teeth record?[J]. Earth and Planetary Science Letters, 2013, 361: 258−271. doi: 10.1016/j.jpgl.2012.09.058
CrossRef Google Scholar
|
|
[52]
|
Shuo C, Jing M, Laiming Z. Quantitative reconstruction of Early Cretaceous dune morphology in the Ordos paleo-desert and its paleoclimatic implications[J]. Frontiers in Earth Science, 2023. doi:10.3389/FEART.2023.1142034.
Google Scholar
|
|
[53]
|
Straight W H, Barrick R E, Eberth D A. Reflections of surface water, seasonality and climate in stable oxygen isotopes from tyrannosaurid tooth enamel[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 206: 239−256. doi: 10.1016/j.palaeo.2004.01.006
CrossRef Google Scholar
|
|
[54]
|
Takashima R, Nishi H, Huber B T, et al. Greenhouse[J]. Oceanography, 2006, 19: 82. doi: 10.5670/oceanog.2006.07
CrossRef Google Scholar
|
|
[55]
|
Tang F, Luo Z, Zhou Z, et al. Biostratigraphy and palaeoenvironment of the dinosaur-bearing sediments in Lower Cretaceous of Mazongshan area, Gansu Province, China[J]. Cretaceous Research, 2001, 22: 115−129. doi: 10.1006/cres.2000.0242
CrossRef Google Scholar
|
|
[56]
|
Tütken T. The diet of sauropod dinosaurs: implications from carbon isotope analysis of teeth, bones, and plants, in: Klein N, Remes K, Sander M (Eds.). Biology of the Sauropod Dinosaurs: Understanding the Life of Giants[M]. Bloomington: Indiana University Press, 2011, 57−79.
Google Scholar
|
|
[57]
|
Zazzo A, Lécuyer C, Mariotti A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions[J]. Geochimica et Cosmochimica Acta, 2004a, 68: 1−12.
Google Scholar
|
|
[58]
|
Zazzo A, Lécuyer C, Sheppard SMF, et al. Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel[J]. Geochimica et Cosmochimica Acta, 2004b, 68: 2245−2258. doi: 10.1016/j.gca.2003.11.009
CrossRef Google Scholar
|
|
[59]
|
Zhang L, Yan D, Yang S, et al. Evolution of the Middle Jurassic paleoclimate: Sedimentary evidence from coal-bearing strata in the Santanghu Basin, NW China[J]. Journal of Asian Earth Sciences, 2023, 242: 105495. doi: 10.1016/j.jseaes.2022.105495
CrossRef Google Scholar
|