2024 Vol. 57, No. 6
Article Contents

GE Rongfeng, ZHU Wenbin, ZHOU Teng, SI Yang, MA Ding. 2024. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues. Northwestern Geology, 57(6): 1-24. doi: 10.12401/j.nwg.2024061
Citation: GE Rongfeng, ZHU Wenbin, ZHOU Teng, SI Yang, MA Ding. 2024. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues. Northwestern Geology, 57(6): 1-24. doi: 10.12401/j.nwg.2024061

Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues

  • The Tarim Craton is one of the three ancient continental blocks in China, but the formation and evolution of its ancient basement have been poorly studied due to extensive sedimentary cover. However, in recent years, Archean rocks have been found in the Kuruktag, Dunhuang, North Altyn Tagh, Tiekelike areas on the periphery of the Tarim Basin, as well as in the drill core from its basement, indicating that there may be a widespread Archean basement. In this paper, the study history and recent progress of Archean rocks in the Tarim Craton are summarized, the formation time, mechanism and geodynamics of Archean continental crust are discussed, and the future research direction is pointed out. The results show that the formation of the Archean continental crust in the Tarim Craton appears to have regional differences. Neoarchean magmatism was widely developed in the Kuruktag, Dunhuang and North Altyn areas, with peaks of ~2.5 Ga and ~2.7 Ga. The discovery of ~3.7 Ga rocks in the North Altyn Tagh area provides reliable evidence for the existence of an Eoarchean continental nucleus in the Tarim Craton. The Tiekelike area and basin basement in the southwest Tarim are characterized by Mesoarchean (3.2~2.8 Ga) crustal growth and reworking, and no Neoarchean rocks have been found. Geochemistry, thermodynamic modelling and zircon oxybarometer-hygrometer indicate that the Archean continental crust might have been produced by water-induced melting of different source rocks at different depths (pressures) and formed in subduction-related tectonic settings, indicating that early plate tectonics have been in operation since the Eoarchean. The elucidation of the components of the Archean continental crust, the identification of metamorphism and deformation, and the determination of the physical and chemical conditions of magma formation are still the focus of future studies of the Archean geology in the Tarim Craton.

  • 加载中
  • [1] 邓兴梁, 舒良树, 朱文斌, 等. 新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J]. 岩石学报, 2008, 2412): 28002808.

    Google Scholar

    DENG Xingliang, SHU Liangshu, ZHU Wenbin, et al. Precambrian tectonism, deformation and geochronology of igneous rocks in the Xingdi fault zone, Xinjiang[J]. Acta Petrologica Sinica, 2008, 2412): 28002808.

    Google Scholar

    [2] 翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动——前沿热点介绍与展望[J]. 岩石学报, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

    CrossRef Google Scholar

    ZHAI Mingguo, ZHAO Lei, ZHU Xiyan, et al. Review and overview for the frontier hotspot: Early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

    CrossRef Google Scholar

    [3] 董昕, 张泽明, 唐伟. 塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J]. 岩石学报, 2011, 271): 4758.

    Google Scholar

    DONG Xin, ZHANG Zeming, TANG Wei. Precambrian tectono-thermal events of the northern margin of the Tarim Craton: Constraints of zircon U-Pb chronology from high-grade metamorphic rocks of the Korla, Xinjiang[J]. Acta Petrologica Sinica, 2011, 271): 4758.

    Google Scholar

    [4] 高振家, 陈晋镳, 彭昌文, 等. 新疆北部前寒武系[M]. 北京: 地质出版社, 1993: 171.

    Google Scholar

    GAO Zhenjia, CHEN Jinbiao, PENG Changwen., et al. Precambrian Geology of the North Xinjing[M]. Beijing: Geological Press, 1993: 171.

    Google Scholar

    [5] 辜平阳, 计文化, 陈锐明, 等. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示[J]. 地球科学, 2020, 459): 32683281.

    Google Scholar

    GU Pingyang, JI Wenhua, CHEN Ruiming, et al. Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution[J]. Earth Science, 2020, 459): 32683281.

    Google Scholar

    [6] 辜平阳, 徐学义, 何世平, 等. 塔里木东南缘安南坝地区约 2.5 Ga 花岗闪长质片麻岩的发现及岩石成因[J]. 地质通报, 2019, 385): 834844.

    Google Scholar

    GU Pingyang, XU Xueyi, HE Shiping, et al. Ca. 2.5 Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis[J]. Geological Bulletin of China, 2019, 385): 834844.

    Google Scholar

    [7] 郭新成, 郑玉壮, 高军, 等. 新疆西昆仑中太古界古陆核的确定及地质意义[J]. 地质论评, 2013, 593): 401412. doi: 10.3969/j.issn.0371-5736.2013.03.001

    CrossRef Google Scholar

    GUO Xincheng, ZHENG Yuzhuang, GAO Jun, et al. Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains, Xinjiang, China[J]. Geological Review, 2013, 593): 401412. doi: 10.3969/j.issn.0371-5736.2013.03.001

    CrossRef Google Scholar

    [8] 郭瑞清, 秦切, 邹明煜, 等. 新疆库鲁克塔格西段辉长岩脉年代学、岩石地球化学特征及构造意义[J]. 西北地质, 2018, 514): 7081.

    Google Scholar

    GUO Ruiqing, QIN Qie, ZOU Mingyu, et al. Geochronology, Petrogeochemical Characteristics and Tectonic Significance of Gabbro Dike from Western Quruqtagh in Xinjiang[J]. Northwestern Geology, 2018, 514): 7081.

    Google Scholar

    [9] 郭召杰, 张志诚, 刘树文, 等. 塔里木克拉通早前寒武纪基底层序与组合: 颗粒锆石U-Pb年龄新证据[J]. 岩石学报, 2003, 193): 537542. doi: 10.3969/j.issn.1000-0569.2003.03.020

    CrossRef Google Scholar

    GUO Zhaojie, ZHANG Zhicheng, LIU Shuwen, et al. U-Pb geochronological evidence for the early Precambrian complex of the Tarim Craton, NW China[J]. Acta Petrologica Sinica, 2003, 193): 537542. doi: 10.3969/j.issn.1000-0569.2003.03.020

    CrossRef Google Scholar

    [10] 胡霭琴, 罗杰斯. 新疆塔里木北缘首次发现33亿年的岩石[J]. 科学通报, 1992, (7): 627630.

    Google Scholar

    HU Aiqin, Rogers G. Discovery of 3.3 Ga Archean Rocks in North Tarim Block of Xinjiang, Western China[J]. Science Bulletin, 1992, (7): 627630.

    Google Scholar

    [11] 胡霭琴, 韦刚健. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J]. 地质学报, 2006, 801): 126134. doi: 10.3321/j.issn:0001-5717.2006.01.014

    CrossRef Google Scholar

    HU Aiqin, WEI Gangjian. On the Age of the Neo-Archean Qingir Gray Gneisses from the Northern Tarim Basin, Xinjiang, China[J]. Acta Geologica Sinica, 2006, 801): 126134. doi: 10.3321/j.issn:0001-5717.2006.01.014

    CrossRef Google Scholar

    [12] 黎敦朋, 李新林, 周小康, 等. 塔里木西南缘新太古代变质辉长岩脉的锆石SHRIMP U-Pb定年及其地质意义[J]. 中国地质, 2007, 342): 262269. doi: 10.3969/j.issn.1000-3657.2007.02.007

    CrossRef Google Scholar

    LI Dunpeng, LI Xinlin, ZHOU Xiaokang, et al. SHRIMP U-Pb Zircon Dating of Neoarchean Metagabbro Dikes On the Southwestern Margin of the Tarim Plate and its Significance[J]. Geology in China, 2007, 342): 262269. doi: 10.3969/j.issn.1000-3657.2007.02.007

    CrossRef Google Scholar

    [13] 李惠民, 陆松年, 郑健康, 等. 阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义[J]. 矿物岩石地球化学通报, 2001, 204): 259262. doi: 10.3969/j.issn.1007-2802.2001.04.016

    CrossRef Google Scholar

    LI Huimin, LU Songnian, ZHENG Jiangkang, et al. Dating of 3.6 Ga Zircons in Granite-Gneiss from the Eastern Altyn Mountains and Its Geological Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 204): 259262. doi: 10.3969/j.issn.1007-2802.2001.04.016

    CrossRef Google Scholar

    [14] 李晓剑, 王毅, 李慧莉, 等. 新元古代陆缘岩浆弧——塔里木盆地巴楚隆起的基底: 来自钻井岩芯的最新证据[J]. 岩石学报, 2018, 347): 21402164.

    Google Scholar

    LI Xiaojian, WANG Yi, LI Huili, et al. Bachu uplift in the central Tarim Basin based on Neoproterozoic continental arc: New lines of evidence from drilled andesite and dacite[J]. Acta Petrologica Sinica, 2018, 347): 21402164.

    Google Scholar

    [15] 陆松年. 新疆库鲁克塔格元古宙地质演化[A]. 中国地质科学院天津地质矿产研究所文集[C].1992, 26−27: 279292.

    Google Scholar

    LU Songnian. Geological evolution of Proterozoic in Kuruktage, Xinjiang[A]. Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences[C].1992, 26−27: 279292.

    Google Scholar

    [16] 陆松年, 袁桂邦. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J]. 地质学报, 2003, 771): 6168. doi: 10.3321/j.issn:0001-5717.2003.01.008

    CrossRef Google Scholar

    LU Songnian, YUAN Guibang. Geochronology of early Precambrian magmatic activities in Aketashitage, east Altyn Tagh[J]. Acta Geologica Sinica, 2003, 771): 6168. doi: 10.3321/j.issn:0001-5717.2003.01.008

    CrossRef Google Scholar

    [17] 梅华林, 于海峰, 李铨, 等. 甘肃北山地区首次发现榴辉岩和古元古花岗质岩石[J]. 科学通报, 1998, 2119): 21052111. doi: 10.3321/j.issn:0023-074X.1998.19.022

    CrossRef Google Scholar

    MEI Hualin, YU Haifeng, LI Quan, et al. Archean tonalite in the Dunhuang, Gansu Provience: age from the U-Pb sigle zircon and Nd isotope[J]. Progress in Precambrian Research, 1998, 2119): 21052111. doi: 10.3321/j.issn:0023-074X.1998.19.022

    CrossRef Google Scholar

    [18] 邬光辉, 张承泽, 汪海, 等. 塔里木盆地中部塔参1井花岗闪长岩的锆石SHRIMP U-Pb年龄[J]. 地质通报, 2009, 285): 568571.

    Google Scholar

    WU Guanghui, ZHANG Chengze, WANG Hai, et al. Zircon SHRIMP U-Pb age of granodiorite of the Tacan 1 well in the cen-tral Tarim basin, China[J]. Geologcal Bulletin of China, 2009, 285): 568571.

    Google Scholar

    [19] 辛后田, 刘永顺, 罗照华, 等. 塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生: 米兰岩群和 TTG 片麻岩的地球化学及年代学约束[J]. 地学前缘, 2013, 201): 240259.

    Google Scholar

    XIN Houtian, LIU Yongshun, LUO Zhaohua, et al. The growth of Archean continental crust in Aqtashtagh Area of Southeast Tarim, China: Constraints from petrochemistry and chronology about Milan Group and TTG-gneiss[J]. Earth Science Frontiers, 2013, 201): 240259.

    Google Scholar

    [20] 辛后田, 罗照华, 刘永顺, 等. 塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义[J]. 地学前缘, 2012, 196): 167178.

    Google Scholar

    XIN Houtian, LUO Zhaohua, LIU Yongshun, et al. Geological features and significance of Paleoproterozoic carbonatite of crust origin in Aqtashtagh area of southeast Tarim Basin, China[J]. Earth Science Frontiers, 2012, 196): 167178.

    Google Scholar

    [21] 辛后田, 赵凤清, 罗照华, 等. 塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义[J]. 地质学报, 2011, 8512): 19771993.

    Google Scholar

    XIN Houtian, ZHAO Fengqing, LUO Zhaohua, et al. Determination of the Paleoproterozoic Geochronological Framework in Aqtashtagh Area in Southeastern Tarim, China, and Its Geological Significance[J]. Acta Geologica Sinica, 2011, 8512): 19771993.

    Google Scholar

    [22] 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 762.

    Google Scholar

    [23] 叶现韬, 张传林. 阿尔金北缘新太古代 TTG 片麻岩的成因及其构造意义[J]. 岩石学报, 2020, 3611): 33973413. doi: 10.18654/1000-0569/2020.11.09

    CrossRef Google Scholar

    YE Xiantao, ZHANG Chuanlin. Petrogenesis and tectonic implications of the Neoarchean TTG gneiss in the North Altyn Tagh area, southeastern Tarim Craton[J]. Acta Petrologica Sinica, 2020, 3611): 33973413. doi: 10.18654/1000-0569/2020.11.09

    CrossRef Google Scholar

    [24] 张传林, 王中刚, 沈加林, 等. 西昆仑山阿卡孜岩体锆石SHRIMP定年及其地球化学特征[J]. 岩石学报, 2003, 193): 523529. doi: 10.3969/j.issn.1000-0569.2003.03.018

    CrossRef Google Scholar

    ZHANG Chuanlin, WANG Zhonggang, SHEN Jialin, et al. Zircon SHRIMP dating and geochemistry characteristics of Akazi rock mass of Western Kunlun[J]. Acta Petrologica Sinica, 2003, 193): 523529. doi: 10.3969/j.issn.1000-0569.2003.03.018

    CrossRef Google Scholar

    [25] 赵国春, 张国伟. 大陆的起源[J]. 地质学报, 2021, 951): 119. doi: 10.1111/1755-6724.14621

    CrossRef Google Scholar

    ZHAO Guochun, ZHANG Guowei. Origin of continents[J]. Acta Geologica Sinica, 2021, 951): 119. doi: 10.1111/1755-6724.14621

    CrossRef Google Scholar

    [26] 赵燕, 第五春荣, 敖文昊, 等. 敦煌地块发现~3.06 Ga花岗闪长质片麻岩[J]. 科学通报, 2015, 601): 7587.

    Google Scholar

    ZHAO Yan, DIWU Chunrong, AO Wenhao, et al. Ca. 3.06 Ga granodioritic gneiss in Dunhuang block[J]. 科学通报, 2015, 601): 7587.

    Google Scholar

    [27] 赵燕, 第五春荣, 孙勇, 等. 甘肃敦煌水峡口地区前寒武纪岩石的锆石 U-Pb 年龄, Hf 同位素组成及其地质意义[J]. 岩石学报, 2013, 295): 16981712.

    Google Scholar

    ZHAO Yan, DIWU Chunrong, SUN Yong, et al. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province[J]. Acta Petrologica Sinica, 2013, 295): 16981712.

    Google Scholar

    [28] 郑永飞. 太古宙地质与板块构造: 观察与解释[J]. 中国科学: 地球科学, 2024, 541): 130.

    Google Scholar

    ZHENG Yongfei. Plate tectonics in the Archean: Observations versus interpretations[J]. Science China Earth Sciences, 2024, 541): 130.

    Google Scholar

    [29] 朱文斌, 林和丰, 葛荣峰, 等. 塔里木克拉通北缘库鲁克塔格地块太古宙基底组成与地壳演化[J]. 地质学报, 2022, 969): 30843101.

    Google Scholar

    ZHU Wenbin, LIN Hefeng, GE Rongfeng, et al. Archean basement composition and crustal evolution of the Kuluketage block in the northern margin of the Tarim Craton[J]. Acta Geologica Sinica, 2022, 969): 30843101.

    Google Scholar

    [30] Aarons S M, Johnson A C, Rader S T. Forming Earth's Continental Crust: A Nontraditional Stable Isotope Perspective[J]. Elements, 2021, 176): 413418. doi: 10.2138/gselements.17.6.413

    CrossRef Google Scholar

    [31] Aarons S M, Reimink J R, Greber N D, et al. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex[J]. Science Advances, 2020, 650): eabc9959. doi: 10.1126/sciadv.abc9959

    CrossRef Google Scholar

    [32] Armstrong R L. A model for the evolution of strontium and lead isotopes in a dynamic earth[J]. Reviews of Geophysics, 1968, 62): 175199. doi: 10.1029/RG006i002p00175

    CrossRef Google Scholar

    [33] Armstrong R L. The Persistent Myth of Crustal Growth[J]. Australian Journal of Earth Sciences, 1991, 385): 613630. doi: 10.1080/08120099108727995

    CrossRef Google Scholar

    [34] Arndt N T. The Formation and Evolution of the Continental Crust[J]. Geochemical Perspectives, 2013, 32): 405533.

    Google Scholar

    [35] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 3626416): 144146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [36] Aulbach S, Stagno V. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle[J]. Geology, 2016, 449): 751754. doi: 10.1130/G38070.1

    CrossRef Google Scholar

    [37] Barker F, Arth J G. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites[J]. Geology, 1976, 410): 596600. doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2

    CrossRef Google Scholar

    [38] Bédard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 2006, 705): 11881214. doi: 10.1016/j.gca.2005.11.008

    CrossRef Google Scholar

    [39] Bédard J H. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics[J]. Geoscience Frontiers, 2018, 91): 1949. doi: 10.1016/j.gsf.2017.01.005

    CrossRef Google Scholar

    [40] Belousova E A, Kostitsyn Y A, Griffin W L, et al. The growth of the continental crust: Constraints from zircon Hf-isotope data[J]. Lithos, 2010, 1193−4): 457466. doi: 10.1016/j.lithos.2010.07.024

    CrossRef Google Scholar

    [41] Cai Z, Jiao C, He B, et al. Archean–Paleoproterozoic tectonothermal events in the central Tarim Block: constraints from granitic gneisses revealed by deep drilling wells [J]. Precambrian Research, 2020: 105776.

    Google Scholar

    [42] Cai Z, Xu Z, Yu S, et al. Neoarchean magmatism and implications for crustal growth and evolution of the Kuluketage region, northeastern Tarim Craton[J]. Precambrian Research, 2018, 304: 156170. doi: 10.1016/j.precamres.2017.11.016

    CrossRef Google Scholar

    [43] Cawood P A, Chowdhury P, Mulder J A, et al. Secular evolution of continents and the Earth system [J]. Reviews of Geophysics, 2023: e2022RG000789.

    Google Scholar

    [44] Collins W J, Murphy J B, Johnson T E, et al. Critical role of water in the formation of continental crust[J]. Nature Geoscience, 2020, 13: 331338. doi: 10.1038/s41561-020-0573-6

    CrossRef Google Scholar

    [45] Condie K C. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?[J]. Earth and Planetary Science Letters, 1998, 1631−4): 97108. doi: 10.1016/S0012-821X(98)00178-2

    CrossRef Google Scholar

    [46] Condie K C. How to make a continent: thirty-five years of TTG research. In Dilek Y, Furnes H (eds). Evolution of Archean Crust and Early Life[M]. Springer, 2014: 179−193.

    Google Scholar

    [47] Condie K C, Kröner A. The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 232): 394402. doi: 10.1016/j.gr.2011.09.011

    CrossRef Google Scholar

    [48] Dhuime B, Hawkesworth C J, Cawood P A, et al. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 2012, 3356074): 13341336. doi: 10.1126/science.1216066

    CrossRef Google Scholar

    [49] Dong C, Ge R, Liu S, et al. Multiple episodes of early Precambrian magmatism and tectonism in the Tarim Craton: A North China connection[J]. Lithos, 2022, 430: 106883.

    Google Scholar

    [50] Drummond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting - Archean to modern comparisons[J]. Journal of Geophysical Research-Solid Earth and Planets, 1990, 95B13): 2150321521. doi: 10.1029/JB095iB13p21503

    CrossRef Google Scholar

    [51] Feng L, Lin S, Davis D W, et al. Dunhuang Tectonic Belt in northwestern China as a part of the Central Asian Orogenic Belt: Structural and U-Pb geochronological evidence[J]. Tectonophysics, 2018, 747−748: 281297. doi: 10.1016/j.tecto.2018.09.008

    CrossRef Google Scholar

    [52] Fischer R, Gerya T. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling[J]. Gondwana Research, 2016, 37: 5370. doi: 10.1016/j.gr.2016.06.002

    CrossRef Google Scholar

    [53] Ganne J, Feng X. Primary magmas and mantle temperatures through time[J]. Geochemistry, Geophysics, Geosystems, 2017, 183): 872888. doi: 10.1002/2016GC006787

    CrossRef Google Scholar

    [54] Gao L, Liu S, Cawood P A, et al. Oxidation of Archean upper mantle caused by crustal recycling[J]. Nature Communications, 2022, 131): 3283. doi: 10.1038/s41467-022-30886-4

    CrossRef Google Scholar

    [55] Ge R F, Zhu W B, Wilde S A, et al. Archean magmatism and crustal evolution in the northern Tarim Craton: Insights from zircon U–Pb–Hf–O isotopes and geochemistry of ~2.7 Ga orthogneiss and amphibolite in the Korla Complex[J]. Precambrian Research, 2014a, 252: 145165. doi: 10.1016/j.precamres.2014.07.019

    CrossRef Google Scholar

    [56] Ge R F, Zhu W B, Wilde S A, et al. Zircon U–Pb–Lu–Hf–O isotopic evidence for ≥3.5 Ga crustal growth, reworking and differentiation in the northern Tarim Craton[J]. Precambrian Research, 2014b, 249: 115128. doi: 10.1016/j.precamres.2014.05.004

    CrossRef Google Scholar

    [57] Ge R F, Zhu W B, Wilde S A, et al. Synchronous crustal growth and reworking recorded in late Paleoproterozoic granitoids in the northern Tarim craton: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints and tectonic implications[J]. Geological Society of America Bulletin, 2015, 1275−6): 781803. doi: 10.1130/B31050.1

    CrossRef Google Scholar

    [58] Ge R F, Zhu W B, Wu H L, et al. Timing and mechanisms of multiple episodes of migmatization in the Korla Complex, northern Tarim Craton, NW China: Constraints from zircon U–Pb–Lu–Hf isotopes and implications for crustal growth[J]. Precambrian Research, 2013, 231: 136156. doi: 10.1016/j.precamres.2013.03.005

    CrossRef Google Scholar

    [59] Ge R, Wilde S A, Kemp A I S, et al. Generation of Eoarchean continental crust from altered mafic rocks derived from a chondritic mantle: The ∼3.72 Ga Aktash gneisses, Tarim Craton (NW China)[J]. Earth and Planetary Science Letters, 2020, 538: 116225. doi: 10.1016/j.jpgl.2020.116225

    CrossRef Google Scholar

    [60] Ge R, Wilde S A, Zhu W, et al. Formation and evolution of Archean continental crust: A thermodynamic–geochemical perspective of granitoids from the Tarim Craton, NW China[J]. Earth-Science Reviews, 2022, 234: 104219. doi: 10.1016/j.earscirev.2022.104219

    CrossRef Google Scholar

    [61] Ge R, Wilde S A, Zhu W, et al. Earth’s early continental crust formed from wet and oxidizing arc magmas[J]. Nature, 2023, 623: 334339. doi: 10.1038/s41586-023-06552-0

    CrossRef Google Scholar

    [62] Ge R, Zhu W, Wilde S A, et al. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 42): aao3159. doi: 10.1126/sciadv.aao3159

    CrossRef Google Scholar

    [63] Gehrels G E, Yin A, Wang X. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108B9): 2423.

    Google Scholar

    [64] Green E, White R W, Diener J, et al. Activity‐composition relations for the calculation of partial melting equilibria in metabasic rocks[J]. Journal of Metamorphic Geology, 2016, 349): 845869. doi: 10.1111/jmg.12211

    CrossRef Google Scholar

    [65] Guo Z J, Yin A, Robinson A, et al. Geochronology and Geochemistry of Deep-Drill-Core Samples From the Basement of the Central Tarim Basin[J]. Journal of Asian Earth Sciences, 2005, 251): 4556. doi: 10.1016/j.jseaes.2004.01.016

    CrossRef Google Scholar

    [66] Harrison T M. Hadean Earth[M]. Springer, 2020:1−291.

    Google Scholar

    [67] Hastie A R, Fitton J G, Bromiley G D, et al. The origin of Earth's first continents and the onset of plate tectonics[J]. Geology, 2016, 4410): 855858. doi: 10.1130/G38226.1

    CrossRef Google Scholar

    [68] Hawkesworth C J, Kemp A I S. Evolution of the continental crust[J]. Nature, 2006, 4437113): 811817. doi: 10.1038/nature05191

    CrossRef Google Scholar

    [69] Herzberg C, Condie K, Korenaga J. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 2010, 2921): 7988.

    Google Scholar

    [70] Hoffmann J E, Zhang C, Nagel T. The formation of Tonalites–Trondjhemite–Granodiorites in Early continental crust. In Earth's oldest rocks, Van Kranendonk M J, Bennett V, Hoffmann E, Eds.; Elsevier: 2019: 133−168.

    Google Scholar

    [71] Holland T J B, Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 293): 333383. doi: 10.1111/j.1525-1314.2010.00923.x

    CrossRef Google Scholar

    [72] Holland T J, Green E C, Powell R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr[J]. Journal of Petrology, 2018, 595): 881900. doi: 10.1093/petrology/egy048

    CrossRef Google Scholar

    [73] Jagoutz O, Schmidt M W, Enggist A, et al. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust[J]. Contributions to Mineralogy and Petrology, 2013, 1664): 10991118. doi: 10.1007/s00410-013-0911-4

    CrossRef Google Scholar

    [74] Jahn B, Glikson A Y, Peucat J J, et al. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 1981, 459): 16331652. doi: 10.1016/S0016-7037(81)80002-6

    CrossRef Google Scholar

    [75] Johnson T E, Brown M, Gardiner N J, et al. Earth's first stable continents did not form by subduction[J]. Nature, 2017, 543: 239242. doi: 10.1038/nature21383

    CrossRef Google Scholar

    [76] Johnson T E, Kirkland C L, Lu Y, et al. Giant impacts and the origin and evolution of continents[J]. Nature, 2022, 6087922): 330335. doi: 10.1038/s41586-022-04956-y

    CrossRef Google Scholar

    [77] Kamber B S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic[J]. Precambrian Research, 2015, 258: 4882. doi: 10.1016/j.precamres.2014.12.007

    CrossRef Google Scholar

    [78] Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 2006, 4397076): 580583. doi: 10.1038/nature04505

    CrossRef Google Scholar

    [79] Kendrick J, Duguet M, Yakymchuk C. Diversification of Archean tonalite - trondhjemite - granodiorite suites in a mushy middle crust[J]. Geology, 2022, 501): 7680. doi: 10.1130/G49287.1

    CrossRef Google Scholar

    [80] Kleinhanns I C, Kramers J D, Kamber B S. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa[J]. Contributions to Mineralogy and Petrology, 2003, 1453): 377389. doi: 10.1007/s00410-003-0459-9

    CrossRef Google Scholar

    [81] Korenaga J. Hadean geodynamics and the nature of early continental crust[J]. Precambrian Research, 2021, 359: 106178. doi: 10.1016/j.precamres.2021.106178

    CrossRef Google Scholar

    [82] Laurent O, Björnsen J, Wotzlaw J, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 132): 163169. doi: 10.1038/s41561-019-0520-6

    CrossRef Google Scholar

    [83] Lee C A, Luffi P, Chin E J. Building and Destroying Continental Mantle[J]. Annual Review of Earth and Planetary Sciences, 2011, 391): 5990. doi: 10.1146/annurev-earth-040610-133505

    CrossRef Google Scholar

    [84] Li W, Costa F. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta, 2020, 269: 203222. doi: 10.1016/j.gca.2019.10.035

    CrossRef Google Scholar

    [85] Liou P, Guo J. Generation of Archaean TTG Gneisses Through Amphibole-Dominated Fractionation[J]. Journal of Geophysical Research: Solid Earth, 2019, 1244): 36053619. doi: 10.1029/2018JB017024

    CrossRef Google Scholar

    [86] Long X P, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim Craton, NW China: zircon U-Pb and Hf isotopic constraints[J]. Precambrian Research, 2010, 1803−4): 272284. doi: 10.1016/j.precamres.2010.05.001

    CrossRef Google Scholar

    [87] Long X P, Yuan C, Sun M, et al. The discovery of the oldest rocks in the Kuluketage area and its geological implications[J]. Science in China Series D: Earth Sciences, 2011, 543): 342348. doi: 10.1007/s11430-010-4156-z

    CrossRef Google Scholar

    [88] Long X P, Yuan C, Sun M, et al. New geochemical and combined zircon U–Pb and Lu–Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China [J]. Lithos, 2014, 200–201: 418 - 431.

    Google Scholar

    [89] Long X, Wilde S A, Yuan C, et al. Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton: Implications for tectonic setting and crustal growth[J]. Precambrian Research, 2015, 260: 7690. doi: 10.1016/j.precamres.2015.01.008

    CrossRef Google Scholar

    [90] Loucks R R, Fiorentini M L, Henríquez G J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 613): egaa34.

    Google Scholar

    [91] Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 1601−2): 94107. doi: 10.1016/j.precamres.2007.04.025

    CrossRef Google Scholar

    [92] Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas[J]. Geology, 1986, 149): 753756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

    CrossRef Google Scholar

    [93] Martin H, Moyen J, Guitreau M, et al. Why Archaean TTG cannot be generated by MORB melting in subduction zones[J]. Lithos, 2014, 198−199: 113.

    Google Scholar

    [94] Moore W B, Webb A A G. Heat-pipe earth[J]. Nature, 2013, 5017468): 501505. doi: 10.1038/nature12473

    CrossRef Google Scholar

    [95] Moyen J F, Stevens G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[J]. Geophysical Monograph-American Geophysical Union, 2006, 164: 149175.

    Google Scholar

    [96] Moyen J. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 2011, 1231−4): 2136. doi: 10.1016/j.lithos.2010.09.015

    CrossRef Google Scholar

    [97] Moyen J. Archean granitoids: classification, petrology, geochemistry and origin[J]. Geological Society, London, Special Publications, 2020, 4891): 1549. doi: 10.1144/SP489-2018-34

    CrossRef Google Scholar

    [98] Moyen J, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148: 312336. doi: 10.1016/j.lithos.2012.06.010

    CrossRef Google Scholar

    [99] Palin R M, White R W, Green E C R. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling[J]. Precambrian Research, 2016, 287: 7390. doi: 10.1016/j.precamres.2016.11.001

    CrossRef Google Scholar

    [100] Pearson D G, Scott J M, Liu J, et al. Deep continental roots and cratons[J]. Nature, 2021, 5967871): 199210. doi: 10.1038/s41586-021-03600-5

    CrossRef Google Scholar

    [101] Pourteau A, Doucet L S, Blereau E R, et al. TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia[J]. Earth and Planetary Science Letters, 2020, 550: 116548. doi: 10.1016/j.jpgl.2020.116548

    CrossRef Google Scholar

    [102] Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite[J]. Nature, 2003, 4256958): 605609. doi: 10.1038/nature02031

    CrossRef Google Scholar

    [103] Rollinson H. Do all Archaean TTG rock compositions represent former melts?[J]. Precambrian Research, 2021, 367: 106448. doi: 10.1016/j.precamres.2021.106448

    CrossRef Google Scholar

    [104] Roman A, Arndt N. Differentiated Archean oceanic crust: Its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 2020, 278: 6577. doi: 10.1016/j.gca.2019.07.009

    CrossRef Google Scholar

    [105] Rozel A B, Golabek G J, Jain C, et al. Continental crust formation on early Earth controlled by intrusive magmatism[J]. Nature, 2017, 5457654): 332335. doi: 10.1038/nature22042

    CrossRef Google Scholar

    [106] Rudnick R L. Making continental crust[J]. Nature, 1995, 3786557): 571578. doi: 10.1038/378571a0

    CrossRef Google Scholar

    [107] Rudnick R L, Gao S. Composition of the continental crust[A]. In: Rudnick R L (ed). Treatise on geochemistry[M]. Elsevier, 2014, 4: 1−51.

    Google Scholar

    [108] Shi M, Hou Q, Wu C, et al. Paleozoic Sanweishan arc in the northern Dunhuang region, NW China: The Dunhuang block is a Phanerozoic orogen, not a Precambrian block[J]. Journal of Asian Earth Sciences, 2020, 194: 103954. doi: 10.1016/j.jseaes.2019.103954

    CrossRef Google Scholar

    [109] Shu L S, Deng X L, Zhu W B, et al. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 425): 774790. doi: 10.1016/j.jseaes.2010.08.018

    CrossRef Google Scholar

    [110] Si Y, Ge R, Zhou T, et al. Decoupling of metamorphic zircon U-Pb ages and P-T paths in the Dunhuang metamorphic complex, northwestern China [J]. Precambrian Research, 2022, 379: 106783.

    Google Scholar

    [111] Sizova E, Gerya T, Brown M, et al. Subduction styles in the Precambrian: Insight from numerical experiments[J]. Lithos, 2010, 1163−4): 209229. doi: 10.1016/j.lithos.2009.05.028

    CrossRef Google Scholar

    [112] Sizova E, Gerya T, Stüwe K, et al. Generation of felsic crust in the Archean: A geodynamic modeling perspective[J]. Precambrian Research, 2015, 271: 198224. doi: 10.1016/j.precamres.2015.10.005

    CrossRef Google Scholar

    [113] Smithies R H, Lu Y, Johnson T E, et al. No evidence for high-pressure melting of Earth's crust in the Archean[J]. Nature Communications, 2019, 101): 112. doi: 10.1038/s41467-018-07882-8

    CrossRef Google Scholar

    [114] Smithies R H, Lu Y, Kirkland C L, et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust[J]. Nature, 2021, 5927852): 7075. doi: 10.1038/s41586-021-03337-1

    CrossRef Google Scholar

    [115] Smythe D J, Brenan J M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium[J]. Earth and Planetary Science Letters, 2016, 453: 260266. doi: 10.1016/j.jpgl.2016.08.013

    CrossRef Google Scholar

    [116] Sobolev A V, Asafov E V, Gurenko A A, et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir[J]. Nature, 2016, 5317596): 628632. doi: 10.1038/nature17152

    CrossRef Google Scholar

    [117] Sobolev A V, Asafov E V, Gurenko A A, et al. Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago[J]. Nature, 2019, 5717766): 555559. doi: 10.1038/s41586-019-1399-5

    CrossRef Google Scholar

    [118] Sun X, Li X, Lei R, et al. Paleoproterozoic crustal evolution of the Tarim Craton, NW China: Constraints from geochronology and geochemistry of orthogneisses and granitic veins in the Xingdi region of the Quruqtagh Block[J]. Precambrian Research, 2023, 399: 107247. doi: 10.1016/j.precamres.2023.107247

    CrossRef Google Scholar

    [119] Tang M, Wang X, Shu X, et al. Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anatexis[J]. Earth and Planetary Science Letters, 2014, 389: 188199. doi: 10.1016/j.jpgl.2013.12.036

    CrossRef Google Scholar

    [120] Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 332): 241265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [121] Taylor S R, McLennan S. Planetary crusts: their composition, origin and evolution[M]. Cambridge: Cambridge University Press, 2009, 378.

    Google Scholar

    [122] Van Hunen J, Moyen J. Archean Subduction: Fact or Fiction?[J]. Annual Review of Earth and Planetary Sciences, 2012, 401): 195219. doi: 10.1146/annurev-earth-042711-105255

    CrossRef Google Scholar

    [123] Van Hunen J, van den Berg A P. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere[J]. Lithos, 2008, 1031−2): 217235. doi: 10.1016/j.lithos.2007.09.016

    CrossRef Google Scholar

    [124] Van Kranendonk M J, Bennett V C, Hoffmann J E. Earth's oldest rocks[M]. Elsevier, 2019, 1078.

    Google Scholar

    [125] Vervoort J D, Kemp A I S. Clarifying the zircon Hf isotope record of crust–mantle evolution[J]. Chemical Geology, 2016, 425: 6575. doi: 10.1016/j.chemgeo.2016.01.023

    CrossRef Google Scholar

    [126] Wang C, Liu L, Wang Y, et al. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2015, 257: 6582. doi: 10.1016/j.precamres.2014.11.022

    CrossRef Google Scholar

    [127] Wang C, Wang Y, Liu L, et al. The Paleoproterozoic magmatic–metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2014, 254: 210225. doi: 10.1016/j.precamres.2014.08.018

    CrossRef Google Scholar

    [128] Wang H Y, Chen H, Zhang Q W, et al. Tectonic mélange records the Silurian–Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt[J]. Geology, 2017, 455): 427430. doi: 10.1130/G38834.1

    CrossRef Google Scholar

    [129] Wu Z, Song J, Zhao G, et al. Water-Induced Mantle Overturns Leading to the Origins of Archean Continents and Subcontinental Lithospheric Mantle[J]. Geophysical Research Letters, 2023, 5022): e2023GL105178. doi: 10.1029/2023GL105178

    CrossRef Google Scholar

    [130] Xia X, Cui Z, Li W, et al. Zircon water content: Reference material development and simultaneous measurement with oxygen isotope by SIMS [J]. Journal of Analytical Atomic Spectrometry, 2019.

    Google Scholar

    [131] Xiang H, Connolly J A D. GeoPS: an interactive visual computing tool for thermodynamic modeling of phase equilibria[J]. Journal of Metamorphic Geology, 2022, 40: 243255. doi: 10.1111/jmg.12626

    CrossRef Google Scholar

    [132] Xu Z Q, He B Z, Zhang C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150162. doi: 10.1016/j.precamres.2013.06.001

    CrossRef Google Scholar

    [133] Yang H, Wu G, Kusky T M, et al. Paleoproterozoic assembly of the North and South Tarim terranes: New insights from deep seismic profiles and Precambrian granite cores[J]. Precambrian Research, 2018, 305: 151165. doi: 10.1016/j.precamres.2017.11.015

    CrossRef Google Scholar

    [134] Ye X, Zhang C, Santosh M, et al. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca. 1.4 Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 2016, 275: 1834. doi: 10.1016/j.precamres.2015.12.017

    CrossRef Google Scholar

    [135] Zhang C L, Li H K, Santosh M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47: 520. doi: 10.1016/j.jseaes.2011.05.018

    CrossRef Google Scholar

    [136] Zhang C L, Li Z X, Li X H, et al. An early Paleoproterozoic high-K intrusive complex in southwestern Tarim block, NW China: Age, geochemistry, and tectonic implications[J]. Gondwana Research, 2007, 121−2): 101112. doi: 10.1016/j.gr.2006.10.006

    CrossRef Google Scholar

    [137] Zhang C, Ye X, Zou H, et al. Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China: New evidence from field observations, detrital zircon U–Pb ages and Hf isotope compositions[J]. Precambrian Research, 2016, 280: 3145. doi: 10.1016/j.precamres.2016.04.011

    CrossRef Google Scholar

    [138] Zhang C, Zou H, Santosh M, et al. Is the Precambrian basement of the Tarim Craton in NW China composed of discrete terranes?[J]. Precambrian Research, 2014, 254: 226244. doi: 10.1016/j.precamres.2014.08.006

    CrossRef Google Scholar

    [139] Zhang J X, Yu S Y, Gong J H, et al. The latest Neoarchean–Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U–Pb dating and Hf isotopic analyses[J]. Precambrian Research, 2013, 226: 2142. doi: 10.1016/j.precamres.2012.11.014

    CrossRef Google Scholar

    [140] Zhang Q, Zhao L, Zhou D, et al. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago[J]. Science Advances, 2023, 926): eadf693.

    Google Scholar

    [141] Zhao Y, Sun Y, Diwu C, et al. The Dunhuang block is a Paleozoic orogenic belt and part of the Central Asian Orogenic Belt (CAOB), NW China[J]. Gondwana Research, 2016, 30: 207223. doi: 10.1016/j.gr.2015.08.012

    CrossRef Google Scholar

    [142] Zhao Y, Sun Y, Yan J, et al. The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: Constraints from zircon U–Pb geochronology and in situ Hf isotopes[J]. Precambrian Research, 2015, 271: 8397. doi: 10.1016/j.precamres.2015.10.002

    CrossRef Google Scholar

    [143] Zhu R, Zhao G, Xiao W, et al. Origin, Accretion and Reworking of Continents [J]. Reviews of Geophysics, 2021: e2019RG000689.

    Google Scholar

    [144] Zong K Q, Liu Y S, Zhang Z M, et al. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China[J]. Precambrian Research, 2013, 235: 251263. doi: 10.1016/j.precamres.2013.07.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(672) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint