[1]
|
曹华文, 张寿庭, 高永璋, 等. 内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球化学, 2014, 43(2): 131−140.
Google Scholar
CAO Huawen, ZHANG Shouting, GAO Yongzhang, et al. REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications, Inner Mongolia Autonomous Region[J]. Geochimica, 2014, 43(2): 131−140.
Google Scholar
|
[2]
|
曹俊臣. 华南低温热液脉状萤石矿床稀土元素地球化学特征[J]. 地球化学, 1995(3): 225−234.
Google Scholar
CAO Junchen. REE Geochemica characteristics of Epithermal Vien Fluorite Deposits In South China[J]. Geochimica, 1995(3): 225−234.
Google Scholar
|
[3]
|
陈军元, 刘艳飞, 颜玲亚, 等. 石墨, 萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 42(2): 287−296.
Google Scholar
CHEN Junyuan, LIU Yanfei, YAN Lingya, et al. Research on Development Trend of Strategic Nonmetallic Minerals such as Graphite and Fluorite[J]. Acta Geoscientica Sinica, 2021, 42(2): 287−296.
Google Scholar
|
[4]
|
代晓光, 商朋强, 张成信, 等. 冀北招素沟萤石矿地球化学特征及矿床成因探讨[J]. 岩石矿物学杂志, 2021, 40(1): 27−38.
Google Scholar
DAI Xiaoguang, SHANG Pengqiang, ZHANG Chengxin, et al. Geochemical characteristics and genesis of the Zhaosugou fluorite deposit, northern Hebei Province[J]. Acta Petrologica et Mineralogica, 2021, 40(1): 27−38.
Google Scholar
|
[5]
|
戴开明, 车长波, 王福良. 萤石资源勘查开发利用管理的建议[J]. 中国矿业, 2021, 30(9): 32−35.
Google Scholar
DAI Kaiming, CHE Zhangbo, WANG Fuliang. Suggestions on exploration, development and utilization management of fluorite resources[J]. China Mining Magazine, 2021, 30(9): 32−35.
Google Scholar
|
[6]
|
董文超, 庞绪成, 司媛媛, 等. 河南嵩县车村萤石矿床稀土元素特征及地质意义[J]. 中国稀土学报, 2020, 38(5): 706−714.
Google Scholar
DONG Wenchao, PANG Xucheng, SI Yuanyuan, et al. REE Geological Characteristics of Checun Fluorite Deposit in Song County, Henan Province[J]. Journal of The Chinese Society of Rare Earths, 2020, 38(5): 706−714.
Google Scholar
|
[7]
|
方贵聪, 王登红, 陈毓川, 等. 南岭萤石矿床成矿规律及成因[J]. 地质学报, 2020, 94(1): 161−178.
Google Scholar
FANG Guicong, WANG Denghong, CHEN Yuchuan, et al. Metallogenic regularities and genesis of the fluorite deposits in Nanling region[J]. Acta Geologica Sinica, 2020, 94(1): 161−178.
Google Scholar
|
[8]
|
高永宝, 赵辛敏, 王博, 等. 阿尔金西段卡尔恰尔-库木塔什超大型萤石矿带矿床地质、控矿花岗岩特征及找矿远景[J]. 中国地质, 2023, 50(3): 704−729.
Google Scholar
GAO Yongbao, ZHAO Xinmin, WANG Bo, et al. Geological characteristics of fluorite deposits and ore-controlling granites, and prospecting potential of the super-large Kaerqiaer-Kumutashi fluorite mineralization belt in West Altyn-Tagh, China[J]. Geology in China, 2023, 50(3): 704−729.
Google Scholar
|
[9]
|
顾雪祥, 李葆华, 章永梅, 等. 矿床学研究方法及应用[M]. 北京: 地质出版社, 2019, 499−526.
Google Scholar
GU Xuexiang, LI Baohua, ZHANG Yongmei, et al. Research Methods and Applications of Mineral Depositology[M]. Beijing: Geology Press, 2019, 499−526.
Google Scholar
|
[10]
|
黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及指示意义[J]. 地球科学与进展, 2015, 30(9): 1063−1073.
Google Scholar
HUANG Congjun, LI Zeqin. Trace elements geochemistry of fluorite and its implications in the Lala IOCG deposit[J]. Advances in Earth Science, 2015, 30(9): 1063−1073.
Google Scholar
|
[11]
|
黄鸿新, 罗平, 常斯敏, 等. 江西簧碧萤石矿床萤石稀土元素特征与成矿物质来源探讨[J]. 矿产与地质, 2018, 32(4): 641−654.
Google Scholar
HUANG Hongxin, LUO Ping, CHANG Simin, et al. Characteristics of rare earth elements and the source of mineralization of fluorite deposit in Huangbi, Jiangxi Province[J]. Mineral Resources And Geology, 2018, 32(4): 641−654.
Google Scholar
|
[12]
|
金少荣, 陈军, 代德荣, 等. 黔西南高岭萤石矿床微量和稀土元素地球化学特征[J]. 矿物学报, 2018, 38(6): 684−692.
Google Scholar
JIN Shaorong, CHEN Jun, DAI Derong, et al. Geochemical Characteristics of Trace Elements and REE in the Gaoling Fluorite Deposit, Southwest Guizhou, China[J]. Acta Mineralogica Sinica, 2018, 38(6): 684−692.
Google Scholar
|
[13]
|
李根, 方贵聪, 冯佐海, 等. 桂东北胡家田萤石矿床稀土元素地球化学特征及其指示意义[J]. 桂林理工大学学报, 2023, 43(1): 52−60.
Google Scholar
LI Gen, FANG Guicong, FENG Zuohai, et al. Geochemical characteristics of rare earth elements and their implications for Hujiatian fluorite deposit in northeast Guangxi[J]. Journal of Guilin University of Technology, 2023, 43(1): 52−60.
Google Scholar
|
[14]
|
黎彤. 化学元素的地球丰度[J]. 地球化学, 1976, 3(1): 167−174.
Google Scholar
LI Tong. Chemical Element Abundances In The Earth And It's Major Shells[J]. Geochimica, 1976, 3(1): 167−174.
Google Scholar
|
[15]
|
刘天航, 高永宝, 刘家军, 等. 内蒙古东七一山萤石矿微量、稀土元素特征及对成矿物质来源的指示[J/OL]. 中国地质, 2023: 1−19.
Google Scholar
LIU Tianhang, GAO Yongbao, LIU Jiajun, et al. Characteristics of trace and rare earth elements in Dongqiyishan fluorite deposit, Inner Mongolia: Indication of ore-forming material sources[J/OL]. Geology in China, 2023: 1−19.
Google Scholar
|
[16]
|
刘艳飞, 颜玲亚, 柳群义, 等. 我国重要非金属矿产评价研究及重点勘查建议[J]. 中国矿业, 2019, 28(10): 85−91.
Google Scholar
LIU Yanfei, YAN Lingya, LIU Qunyi, et al. Evaluation study on the important non-metallic minerals in China and suggestions for key exploration[J]. China Mining Magazine, 2019, 28(10): 85−91.
Google Scholar
|
[17]
|
马腾霄, 和源, 朱利东, 等. 川中地区下寒武统沧浪铺组下段碳氧同位素特征及其地质意义[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 187−199.
Google Scholar
MA Tengxiao, HE Yuan, ZHU Lidong, et al. Carbon and oxygen isotope characteristics of Lower Cambrian Canglangpu Formation in central Sichuan and their geological significance[J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(2): 187−199.
Google Scholar
|
[18]
|
吴益平, 张连昌, 周月斌, 等. 阿尔金卡尔恰尔超大型萤石矿床成矿流体特征及形成机制探讨[J]. 地质科学, 2022, 57(2): 495−509.
Google Scholar
WU Yiping, ZHANG Lianchang, ZHOU Yuebin, et al. Study on fluid characteristics and metallogenic mechanism of the super-large Kalqiar fluorite deposit in Altyn Tagh area[J]. Chinese Journal of Geology, 2022, 57(2): 495−509.
Google Scholar
|
[19]
|
王自国, 朱培元. 中央企业萤石矿战略布局思考[J]. 中国矿业, 2020, 29(6): 8−11.
Google Scholar
WANG Ziguo, ZHU Peiyuan. Strategic layout of fluorite mine in state-owned enterprises[J]. China Mining Magazine, 2020, 29(6): 8−11.
Google Scholar
|
[20]
|
辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(9): 1297−1316.
Google Scholar
XIN Houtian, NIU Wenchao, TIAN Jian, et al. Spatio-temporal structure of Beishan orogenic belt and evolution of PaleoAsian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1297−1316.
Google Scholar
|
[21]
|
许东青. 内蒙古苏莫查干敖包超大型萤石矿化区形成环境、地质特征及成矿机理研究[M]. 北京: 中国地质科学院, 2009.
Google Scholar
XU Dongqing. Geological Setting, features and Origin of the Sumochagan Obo Super-large Fluorite Mineralized District[M]. Beijing: Chinese Academy of Geological Sciences, 2009.
Google Scholar
|
[22]
|
许海, 刘海涛, 贾元琴, 等. 关于中国萤石矿产业发展的思考[J]. 四川有色金属, 2021, 3(2): 2−5.
Google Scholar
XU Hai, LIU Haitao, JIA Yuanqin, et al. Reflection on the Development of Fluorite Industry in China[J]. Sichuan Nonferrous Metals, 2021, 3(2): 2−5.
Google Scholar
|
[23]
|
杨世文, 丰成友, 楼法生, 等. 赣南隆坪萤石矿床成矿流体特征及成矿模式[J]. 地质学报, 2022, 96(11): 3886−3900.
Google Scholar
YANG Shiwen, FENG Chengyou, LOU Fasheng, et al. Characteriscs of ore-forming fluids and ore-forming model of the Longping fluorite deposit in southern Jiangxi Province[J]. Acta Geologica Sinica, 2022, 96(11): 3886−3900.
Google Scholar
|
[24]
|
游超, 王春连, 刘殿鹤, 等. 江西宁都坎田萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球学报, 2022, 43(3): 359−370.
Google Scholar
YOU Chao, WANG Chunlian, LIU Dianhe, et al. REE Geochemistry of Fluorite from Kantian Fluorite Deposit and Its Geological Implications in Ningdu Area, Jiangxi Province[J]. Acta Geoscientica Sinica, 2022, 43(3): 359−370.
Google Scholar
|
[25]
|
曾昭法, 曹华文, 高峰, 等. 内蒙古林西地区萤石矿床流体包裹体研究[J], 地球化学, 2013, 42(1): 73-81.
Google Scholar
ZENG Shaofa, CAO Huawen, GAO Feng, et al. Fluid inclusion study of fluorite deposits in Linxi region, Inner Mongolia[J]. Geochimica, 2013, 42(1): 73-81.
Google Scholar
|
[26]
|
张青松, 王春连, 栗克坤, 等. 闽北大坪萤石矿构造蚀变, 岩石地球化学特征与矿床成因探讨[J]. 岩石矿物学杂志, 2021, 40(6): 1131−1140.
Google Scholar
ZHANG Qingsong, WANG Chunlian, LI Kekun, et al. Discussion on structural alteration, rock geochemistry characteristics and genesis of Daping fluorite deposit in northern Fujian[J]. Acta Petrologica et Mineralogica, 2021, 40(6): 1131−1140.
Google Scholar
|
[27]
|
张善明, 王庭院, 张华, 等. 内蒙古东七一山钨锡多金属矿成矿特征与控矿因素分析[J]. 地质与勘探, 2014, 50(6): 1038−1049.
Google Scholar
ZHANG Shanming, WANG Tingyuan, ZHANG Hua, et al. Oregon-trolling factors and geological features of the W-Sn polymetallic ore deposits in East Qiyi Shan, Inner Mongolia[J]. Geology and Exploration, 2014, 50(6): 1038−1049.
Google Scholar
|
[28]
|
张苏坤, 王辉, 冯绍平, 等. 河南省栾川县杨山萤石矿成矿作用: 来自氢氧同位素和元素地球化学的约束[J]. 西北地质, 2022, 55(2): 209−216.
Google Scholar
ZHANG Sukun, WANG Hui, FENG Shaoping, et al. Mineralization of Yangshan Fluorite Deposit in Luanchuan County, Henan Province: Constraints from H-O Isotopes and Element Geochemistry[J]. Northwestern Geology, 2022, 55(2): 209−216.
Google Scholar
|
[29]
|
张振亮, 冯选洁, 赵国斌, 等. 东天山—北山地区中生代内生矿床成矿规律[J]. 西北地质, 2022, 55(4): 280−299.
Google Scholar
ZHANG Zhenliang, FENG Xuanjie, ZHAO Guobin, et al. The Metallogenic Rule of Mesozoic Hypogene Deposits in the Eastern Tianshan-Beishan Area[J]. Northwestern Geology, 2022, 55(4): 280−299.
Google Scholar
|
[30]
|
张遵遵, 龚银杰, 陈立波, 等. 黔东北沿河大竹园萤石矿床成矿物质来源探讨: 地球化学制约[J]. 地球化学, 2018, 47(3): 295−305.
Google Scholar
ZHANG Zunzun, GONG Yinjie, CHEN Libo, et al. Geochemical evidence of the source of ore-forming materials from Dazhuyuan fluorite deposit in northeastern Guizhou[J]. Geochimica, 2018, 47(3): 295−305.
Google Scholar
|
[31]
|
赵辛敏, 高永宝, 燕洲泉, 等. 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学, 稀土元素和Sr-Nd同位素的约束[J]. 西北地质, 2023, 56(1): 31−47.
Google Scholar
ZHAO Xinmin, GAO Yongbao, YAN Zhouquan et al. Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr–Nd Isotopes Constraints[J]. Northwestern Geology, 2023, 56(1): 31−47.
Google Scholar
|
[32]
|
邹灏, 方乙, 陈合毛, 等. 浙江天台盆地下陈萤石矿稀土元素地球化学特征及成因[J]. 中国地质, 2014, 41(4): 1375−1386.
Google Scholar
ZOU Hao, FANG Yi, CHEN Hemao, et al. REE geochemistry and genesis of the Xiachen fluorite deposit in Tiantai basin, Zhejiang Province[J]. Geology in China, 2014, 41(4): 1375−1386.
Google Scholar
|
[33]
|
陕西省地质调查中心. 内蒙古自治区阿拉善盟二龙包等四幅1∶5万矿产调查成果报告[R]. 陕西省地质调查中心, 2012.
Google Scholar
|
[34]
|
Bau M, Möller P. Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite[J]. Mineralogy & Petrology, 1992, 45: 231−246.
Google Scholar
|
[35]
|
Bau Michael, Dulski Peter. Comparative Study of Yttrium and Rare-Earth Element Behaviours in Fluorine-Rich Hydrothermal Fluids[J]. Contrib Mineral Petrol, 1995, 119(2): 213−223.
Google Scholar
|
[36]
|
Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[M]. Developments in Geochemistry, 1984, 63-114.
Google Scholar
|
[37]
|
Elderfield H, Sholkovitz, ER. Rare Earth Elements in the Pore Waters of Reducing Nearshore Sediments[J]. Earth & Planetary Science Letters, 1987, 82(3-4): 280−288.
Google Scholar
|
[38]
|
Ismail I, Baioumy H, Ouyang H, et al. Origin of fluorite mineralizations in the Nuba Mountains, Sudan and their rare earth element geochemistry[J]. J Afr Earth Sci, 2015, 112: 276−286. doi: 10.1016/j.jafrearsci.2015.09.016
CrossRef Google Scholar
|
[39]
|
Möller P, Parekh P P, Schneider H J. The Application of Tb/Ca-Tb/La Abundance Ratios to Problems of Fluorspar Genesis[J]. Mineralium Deposita, 1976, 11: 111−116. doi: 10.1007/BF00203098
CrossRef Google Scholar
|
[40]
|
Mondillo N, Boni M, Balassone G, et al. Rare Earth Elements (REE)-Minerals in the Silius Fluorite Vein System (Sardinia, Italy)[J]. Ore Geology Reviews, 2016, 74: 211−224. doi: 10.1016/j.oregeorev.2015.11.016
CrossRef Google Scholar
|
[41]
|
Pei Qiuming, Zhang Shouting, Santosh M, et al. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, Chian[J]. Ore Geology Reviews, 2017, 83: 174−190. doi: 10.1016/j.oregeorev.2016.12.022
CrossRef Google Scholar
|
[42]
|
Schwinn G, Markl G. REE Systematics in Hydrothermal Fluorite[J]. Chemical Geology, 2005, 216(3-4): 225−248. doi: 10.1016/j.chemgeo.2004.11.012
CrossRef Google Scholar
|
[43]
|
Souissi F, Souissi R, Dandurand J L. The Mississippi Valley-type Fluorite Ore at Jebel Stah (Zaghouan District, North-Eastern Tunisia): Contribution of REE and Sr Isotope Geochemistries to the Genetic Model[J]. Ore Geology Reviews, 2010, 37(1): 15−30. doi: 10.1016/j.oregeorev.2009.11.001
CrossRef Google Scholar
|
[44]
|
Veksler I V, Dorfman A M, Kamenetsky M, et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2847−2860. doi: 10.1016/j.gca.2004.08.007
CrossRef Google Scholar
|
[45]
|
Williams-Jones A E, Samson I M, Olivo G R. The Genesis of Hydrothermal Fluorite-REE Deposits in the Gallinas Mountains, New Mexico[J]. Economic Geology, 2000, 95: 327−341. doi: 10.2113/gsecongeo.95.2.327
CrossRef Google Scholar
|
[46]
|
Yang Shiwen, Feng Chengyou, Lou Fasheng, et al. Origin of the Tongda fluorite deposit related to the paleo-pacific plate subduction in southern Jiangxi Province, China: new evidence from fluid geochronology, geochemistry, fluid inclusion, and H-O isotope compositions[J]. Geological Journal, 2022, 57: 238−253. doi: 10.1002/gj.4295
CrossRef Google Scholar
|
[47]
|
Zou Hao, Li Min, Leon Ragas, et al. Fluid composition and evolution of the Langxi Ba-F deposit, Yangtze Block, China: new insight from LA-ICP-MS study of individual fluid inclusion[J]. Ore Geology Reviews, 2020, 107: 103702.
Google Scholar
|
[48]
|
Zou Hao, Li Min, Santosh M, et al. Fault-controlled carbonate-hosted barite-fluorite mineral systems: the Shuanghe deposit, Yangtze Block, South China[J]. Gondwana Research, 2022, 101: 26−43. doi: 10.1016/j.gr.2021.07.020
CrossRef Google Scholar
|