2024 Vol. 57, No. 6
Article Contents

CHEN Yangyang, DUAN Jun, XU Gang, QIAN Zhuangzhi, YANG Tao, LIU Juntai. 2024. Geochemical Characteristics and Tectonic Significance of Late Triassic Lamprophyre in the Beishan Region, Gansu Province. Northwestern Geology, 57(6): 78-94. doi: 10.12401/j.nwg.2024043
Citation: CHEN Yangyang, DUAN Jun, XU Gang, QIAN Zhuangzhi, YANG Tao, LIU Juntai. 2024. Geochemical Characteristics and Tectonic Significance of Late Triassic Lamprophyre in the Beishan Region, Gansu Province. Northwestern Geology, 57(6): 78-94. doi: 10.12401/j.nwg.2024043

Geochemical Characteristics and Tectonic Significance of Late Triassic Lamprophyre in the Beishan Region, Gansu Province

More Information
  • The Beishan region is located at the southern margin of the Central Asian Orogenic Belt (CAOB) and is a key area for studying the tectonic evolution of the CAOB. Lamprophyres are the product of low-degree partial melting of the subcontinental lithospheric mantle in the extensional background. Their formation age and petrogenesis can play a significant role in ascertaining the regional tectonic evolution. In this paper, systematic petrological, geochemical and zircon U-Pb chronology and Hf isotope studies were carried out on the lamprophyre in the Liuyuan area in southern Beishan region. The zircon U-Pb age of the Liuyuannan lamprophyre is (228.2±1.1) Ma (Late Triassic). The lamprophyre is rich in volatile component minerals such as phlogopite and hornblende. The Liuyuannan lamprophyre belongs to ultrapotassic lamprophyre, and its parent magma is an alkaline magma series. The Liuyuannan lamprophyre are characterized by pronounced negative Nb-Ta and Zr-Hf anomalies, positive zircon εHf (t) values ranging from 0.5 to 4.9, with an average value of +2.8. These data indicate that the mantle source was metasomatized by the subducted melts/fluids. The Mn/Fe and Ca/Fe ratios of olivine crystals in the Liuyuannan lamprophyre indicate that the mantle source is phlogopite-rich harzburgite mantle; trace element simulations indicate that the mantle source of Liuyuannan lamprophyre is an enriched peridotite-type mantle. Therefor, the source of the Liuyuan lamprophyre should be the lithospheric mantle metasomatized by subducting slab fluids. Combined with previous studies on the tectonic evolution of the southern of the CAOB, we believe that the Beishan region has entered intracontinental extensional environment in the Late Triassic. Decompression promoted low-degree partial melting of the lithospheric mantle metasomatized by subduction fluids, resulting in the formation of the Liuyuan lamprophyre.

  • 加载中
  • [1] 初航, 张晋瑞, 魏春景, 等. 内蒙古温都尔庙群变质基性火山岩构造环境及年代新解[J]. 科学通报, 2013, 5828−29): 29582965.

    Google Scholar

    CHU Hang, ZHANG Jingrui, WEI Chunjing, et al. A New Interpretation of the Tectonic Setting and Age of Meta-Basic Volcanics in the Ondor Sum Group, Inner Mongolia[J]. China Sciences Bulletin, 2013, 5828−29): 29582965.

    Google Scholar

    [2] 邓晋福, 莫宣学, 罗照华, 等. 火成岩构造组合与壳-幔成矿系统[J]. 地学前缘, 1999, 62): 6677.

    Google Scholar

    DENG Jinfu, MO Xuanxue, LUO Zhaohua, et al. Igneous Petrotectonic Assemblage and Crust-Mantle Metallogenic System[J]. Earth Science Frontiers, 1999, 62): 6677.

    Google Scholar

    [3] 甘肃省地质矿产局. 北山红柳园幅1∶20万比例尺地质图[R].甘肃省地质矿产局, 1966.

    Google Scholar

    [4] 高俊, 龙灵利, 钱青, 等. 南天山: 晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报, 2006, 225): 10491061.

    Google Scholar

    GAO Jun, LONG Liling, QIAN Qing, et al. South TianShan: A Late Paleocoic or a Triessic[J]. Acta Petrologic Sinica, 2006, 225): 10491061.

    Google Scholar

    [5] 高文彬, 钱壮志, 徐刚, 等. 甘肃北山地区古堡泉辉绿岩脉地球化学特征及其地质意义[J]. 地球科学与环境学报, 2020, 425): 622636.

    Google Scholar

    GAO Wenbin, QIAN Zhuangzhi, XU Gang, et al. Geochemical Characteristics of Guobaoquan Dolerite Dykes in Beishan Area of Gansu, China and Theeir Geological Significance[J]. Journal of Earth Sciences and Environment, 2020, 425): 622636.

    Google Scholar

    [6] 高文彬. 甘肃柳园地区西南山岩体地质特征及岩石地球化学研究[D]. 西安:长安大学, 2021.

    Google Scholar

    GAO Wenbing. Study on Geological Characteristics and Petrogeochemistry of the Xinanshan Mafic-Ultramafic Intrusion in the Liuyuan Area, Gansu Province[D]. Xi’an: Chang’an University, 2021.

    Google Scholar

    [7] 高峰, 菅坤坤, 李宁, 等. 北山造山带东段芨芨泉岩体地球化学特征、锆石U-Pb年代学及其构造意义[J]. 西北地质, 2018, 513): 2637.

    Google Scholar

    GAO Feng, JIAN Kunkun, LI Ning, et al. U-zircon U-Pb Dating and Geochemistry of Jijiquan Pluton in the Eastern Section of Beishan Orogenic Belt and their Tectononic Implications[J]. Northwestern Geology, 2018, 513): 2637.

    Google Scholar

    [8] 过磊, 王国强, 郭琳, 等. 北山造山带南部芦草沟地区早三叠世酸性脉岩成因[J]. 矿物岩石地球化学通报, 2018, 373): 502512.

    Google Scholar

    GUO Lei, WANG Guoqiang, GUO Lin, et al. Petrogensis of Early Triassic Felsic Dikes in the Lucaogou Area of Southern Beishan Orogenic Belt[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2018, 373): 502512.

    Google Scholar

    [9] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, 2310): 25952604.

    Google Scholar

    HOU Kejun, LI Yanhe, ZOU Tianren, et al. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and its Geological Applications[J]. Acta Petrologica Sinice, 2007, 2310): 25952604.

    Google Scholar

    [10] 江思宏, 聂凤军. 北山地区花岗岩类的40Ar-39Ar同位素年代学研究[J]. 岩石学报, 2006, 2211): 27192732.

    Google Scholar

    JIANG Sihong, NIE Fengjun. 40Ar-39Ar Geochronology of the Granitoids in Beishan Mountmain[J]. Acta Petrologica Sinica, 2006, 2211): 27192732.

    Google Scholar

    [11] 牛腾, 倪志耀, 孟宝航, 等. 冀北康保芦家营巨斑状花岗岩: 华北克拉通北缘中段1.3~1.2Ga B. P. 伸展-裂解事件的地质记录[J]. 成都理工大学学报(自然科学版), 2023, 504): 486503.

    Google Scholar

    NIU Teng, NI Zhiyao, MENG Baohang, et al. The Lujiaying megaporphyric granite in Kangbao area, North Hebei: A geological record of extension and breakup event at 1.3~1.2Ga B. P. in the central segment of northern margin of North China Craton[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 504): 486503.

    Google Scholar

    [12] 刘畅, 赵泽辉, 郭召杰, 等. 甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论[J]. 岩石学报, 2006, 225): 12941306.

    Google Scholar

    LIU Chang, ZHAO Zehui, GUO Zhaojie, et al. Chronology and Geochemistry of Lamprophyre Dykes from Beishan Area, Gansu Province and Implications for the Crust-Mantle Interaction[J]. Acta Petrologyica Sinica, 2006, 225): 12941306.

    Google Scholar

    [13] 刘雪亚, 王荃. 中国西部北山造山带的大地构造及其演化[A]. 中国地质科学院地质研究所文集[C]. 地质出版社, 1995, 12: 42-53.

    Google Scholar

    [14] 路凤香, 舒小辛, 赵崇贺. 有关煌斑岩分类的建议[J]. 地质科技情报, 1991S1): 5562.

    Google Scholar

    LU Fengxiang, SHU Xiaoxin, ZHAO Chonghe. A Suggestion on Classification of Lamprophyres[J]. Geological Science and Technology Information, 1991S1): 5562.

    Google Scholar

    [15] 栾燕, 何克, 谭细娟, 等. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 387): 12061218.

    Google Scholar

    LUAN Yan, HE Ke, TAN Xijuan, et al. Insitu U-Pb Dating and Trace Element Determination of Standard Zircons by LA-ICP-MS[J]. Geological Bulletin of China, 2019, 387): 12061218.

    Google Scholar

    [16] 李舢, 王涛, 童英, 等. 北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义[J]. 岩石学报, 2011, 2710): 30553070.

    Google Scholar

    LI Shan, WANG Tao, TONG Ying, et al. Zircon U-Pb Age, Origin and Tectonic Significances of Huitongshan Devonian K-Feldspar Granites from Beishan Orogen, NW China[J]. Acta Petrologica Sinica, 2011, 2710): 30553070.

    Google Scholar

    [17] 孙海瑞, 吕志成, 于晓飞, 等. 甘肃柳园地区晚三叠世辉绿岩脉年代学和地球化学研究及其对北山造山带早中生代构造演化的指示[J]. 岩石学报, 2020, 366): 17551768. doi: 10.18654/1000-0569/2020.06.07

    CrossRef Google Scholar

    SUN Hairui, LÜ Zhicheng, YU Xiaofei, et al. Early Mesozoic Tectonic Evolution of Beishan Orogenic Belt: Constraints from Chronology and Geochemistry of the Late Triassic Diabase Dyke in Liuyuan Area, Gansu Province[J]. Acta Petrologica Sinica, 2020, 366): 17551768. doi: 10.18654/1000-0569/2020.06.07

    CrossRef Google Scholar

    [18] 孙海瑞, 吕志成, 于晓飞, 等. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征: 对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报, 2020, 505): 14331449.

    Google Scholar

    SUN Hairui, LÜ Zhicheng, YU Xiaofei, et al. Late Paleoozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province[J]. Journal of Jilin University, 2020, 505): 14331449.

    Google Scholar

    [19] 孙万龙, 韩奎, 鲁麟, 等. 南秦岭镇安西部晚三叠世煌斑岩脉地球化学特征及其对构造环境的指示[J]. 地质通报, 2022, 4111): 19821995.

    Google Scholar

    SUN Wanlong, HAN Kui, LU Ling, et al. Geochemical Characteristics of Late Triassic Lamprophyres from the Western Zhen’an, South Qinling and its Indicative Significance for Tectonic Environment[J]. Geological Bulletin of China, 2022, 4111): 19821995.

    Google Scholar

    [20] 王国强, 李向民, 徐学义, 等. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 401): 7181.

    Google Scholar

    WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Research Status and Progress of Paleozoic Ophiolites in Beishan Orogenic[J]. Geological Bulletin of China, 2021, 401): 7181.

    Google Scholar

    [21] 王文宝, 李卫星, 雷聪聪, 等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质, 2024, 573): 2943.

    Google Scholar

    WANG Wenbao, LI Weixing, LEI Congcong, et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology, 2024, 573): 2943.

    Google Scholar

    [22] 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 495): 586600.

    Google Scholar

    WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 495): 586600.

    Google Scholar

    [23] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 232): 185220.

    Google Scholar

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf Isotopic Systematics and Their Applications in Petrology[J]. Acta Petrologica Sinica, 2007, 232): 185220.

    Google Scholar

    [24] 吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 573): 1128.

    Google Scholar

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 573): 1128.

    Google Scholar

    [25] 肖文交, 宋东方, Windley B F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 地球科学, 2019, 4910): 15121545.

    Google Scholar

    XIAO Wenjiao, SONG Dongfang, Windley B F, et al. Research Progresses of the Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, 4910): 15121545.

    Google Scholar

    [26] 许伟, 徐学义, 牛亚卓, 等. 北山南部二叠纪海相玄武岩地球化学特征及其构造意义[J]. 地质学报, 2019, 938): 19281953.

    Google Scholar

    XU Wei, XU Xueyi, NIU Yazhuo, et al. Geochronology and Petrogenesis of the Permian Marine Basalt in the Southern Beishan Region and Their Tectonic Implications[J]. Acta Geologica Sinica, 2019, 938): 19281953.

    Google Scholar

    [27] 杨高学. 俯冲起始的机制、地质记录及其研究意义[J]. 地球科学与环境学报, 2023, 452): 194207.

    Google Scholar

    YANG Gaoxue. Mechanism, Geological Record and Significance of Subduction Initiation[J]. Journal of Earth Sciences and Environment, 2023, 452): 194207.

    Google Scholar

    [28] 余吉远, 李向民, 王国强, 等. 甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义[J]. 地质通报, 2012, 3112): 20382045.

    Google Scholar

    YU Jiyuan, LI Xiangming, WANG Guoqiang, et al. Zircon U-Pb Ages of Huitongshan and Zhangfangshan Ophiolite in Beishan of Gansu-Inner Mongolia Border Area and Their Significance[J]. Geological Bulletin of China, 2012, 3112): 20382045.

    Google Scholar

    [29] 俞胜, 赵斌斌, 贾轩, 等. 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 554): 267279.

    Google Scholar

    YU Sheng, ZHAO Binbin, JIA Xuan, et al.Geochemistry, Geochronology Characteristics and Tectonic Significance of Yitiaoshan Diorite in the Southern Margin of Bishan Orogenic Belt[J]. Northwestern Geology, 2022, 554): 267279.

    Google Scholar

    [30] 张文, 吴泰然, 贺元凯, 等. 甘肃北山西涧泉子富碱高钾花岗岩体的锆石LA-ICP-MS定年及其构造意义[J]. 岩石矿物学杂志, 2010, 296): 719731.

    Google Scholar

    ZHANG Wen, WU Tairan, HE Yuankai, et al. LA-ICP-MS Zircon U-Pb Ages of Xijianquanzi Alkali-Rich Potassium-High Granites in Beishan Gansu Province and Their Tectonic Significance[J]. Acta Petrologica et Mineralogica, 2010, 296): 719731.

    Google Scholar

    [31] 左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 19904): 305314.

    Google Scholar

    ZUO Guochao, ZHANG Shuling, HE Guoqi, et al. Early Paleozoic Plate Tectonics in Beishan Area[J]. Science Geological Sinica, 19904): 305314.

    Google Scholar

    [32] Albarede F, Scherer E E, Blichert-Toft J, et al. γ-Ray Irradiation in the early Solar System and the Conundrum of the 176Lu Decay Constant[J]. Geochim Cosmochim Acta, 2006, 705): 12611270. doi: 10.1016/j.gca.2005.09.027

    CrossRef Google Scholar

    [33] Ammannati E, Jacob D E, Avanzinelli R, et al. Low Ni Olivine in Silica-undersaturated Ultrapotassic Igneous Rocks as Evidence for Carbonate Metasomatism in the Mantle[J]. Earth Planet Science Letters, 2016, 444: 6474. doi: 10.1016/j.jpgl.2016.03.039

    CrossRef Google Scholar

    [34] Bouvier A, Vervoort J D, Patchett P J, et al. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial planets[J]. Earth and Planetary Science Letters, 2008, 2731−2): 4857.

    Google Scholar

    [35] Bowen N L. The Evolution of the Igneous Rocks, Princeton, University Press[M]. Princeton, New Jersey, 1928.

    Google Scholar

    [36] Boynton W V. Rare Earth Element Geochemistry[J]. Developments in Geochemistry, 1984, 2: 63114.

    Google Scholar

    [37] Brown G C, Mussett A E. The Inaccessible Earth: An Integrated View to Its Structure and Composition. Chapman Hall[J]. London, 1993, 118-144.

    Google Scholar

    [38] Chauvel C, Lewin E, Carpentier M, et al. Role of Recycled Oceanic Basalt and Sediment in Generating the Hf-Nd Mantle-Array Nature[J]. Geosci, 2008, 11): 6467.

    Google Scholar

    [39] Duggen S, Hoernle K, Vanden B P, et al. Post–Collisional Transition from Subduction–to Intraplate–type Magmatism in the Westernmost Mediterranean: Evidence for Continental–edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology, 2005, 466): 11551201. doi: 10.1093/petrology/egi013

    CrossRef Google Scholar

    [40] Elliott T, Plank T, Zindler A, et al. Element Transport from Slab to Volcanic Front at the Mariana Arc[J]. Journal of Geophysical Research:Solid Earth, 1997, 10245): 1499115019.

    Google Scholar

    [41] Feng L M, Lin S F, Li L M, et al. Constraints on the Tectonic Evolution of the Southern Central Asian Orogenic Belt from Early Permian–Middle Triassic Granitoids from the Central Dunhuang Orogenic Belt, NW China[J]. Journal of Asian Earth Sciences, 2020, 194: 104284.

    Google Scholar

    [42] Feng W Y, Zhang J H. Triassic magmatism and Tectonic Setting of the Eastern Tianshan, NW China: Constraints from the Weiya Intrusive Complex[J]. Lithos, 2021, 394: 106171.

    Google Scholar

    [43] Frey F A, Green D H, Roy S D, et al. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data[J]. Petrol, 1978, 193): 463513. doi: 10.1093/petrology/19.3.463

    CrossRef Google Scholar

    [44] Foley S F, Prelevic D, Rehfeldt T, et al. Minor and Trace Elements in Olivines as Probes into Early Igneous And Mantle Melting Processes[J]. Earth Planet Science Letters, 2013, 363: 181191. doi: 10.1016/j.jpgl.2012.11.025

    CrossRef Google Scholar

    [45] Foley S F. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas[J]. Lithos, 1992, 283−6): 435453.

    Google Scholar

    [46] Förster M W, Prelević D, Schmück H R, et al. Melting Phlogopite-rich MARID: Lamproites and the Role of Alkalis in Olivineliquid Ni-Partitioning[J]. Chemical Geology, 2018, 476: 429440. doi: 10.1016/j.chemgeo.2017.11.039

    CrossRef Google Scholar

    [47] Gao J, Long L L, Qian Q, et al. The Collision Between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen[J]. Tectonophysics, 2011, 4991−4): 118131.

    Google Scholar

    [48] Guo F, Fan W, Wang Y, et al. Origin of Early Cretaceous Calc-alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes Beneath Continental Collisional Belt[J]. Lithos, 2004, 783): 291305. doi: 10.1016/j.lithos.2004.05.001

    CrossRef Google Scholar

    [49] Hou Q, Yang X Y, Tang J, et al. Geochemistry and Geochronology of Early Cretaceous Lamprophyres of the Sulu Orogenic Belt: Implications for Lithospheric Evolution of Eastern China. 2022.

    Google Scholar

    [50] Hoskin P W, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 531): 2762. doi: 10.2113/0530027

    CrossRef Google Scholar

    [51] Irvine T N , Baragar WRA. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Earth Science, 1971, 85): 523548.

    Google Scholar

    [52] Kessel R, Schmidt M W, Ulmer P, et al. Race Element Signature of Subduction-zone Fluids, Melts and Supercritical Liquidsat 120–180 km Depth[J]. Nature, 2005, 4377059): 724727. doi: 10.1038/nature03971

    CrossRef Google Scholar

    [53] Jahn B M, Windley B, Natal’in B, et al. Phanerozoic ContinentalGrowth in Central Asia[J]. Journal of Asian Earth Sciences, 2004, 235): 599603.

    Google Scholar

    [54] Kinny P, Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zircon[J]. Reviews in Mineralogy and Geochemistry, 2003, 531): 327341. doi: 10.2113/0530327

    CrossRef Google Scholar

    [55] Kou C H, Liu Y, Huang H, et al. The Neoproterozoic Arc-type and OIB-type Mafic-ultramafic Rocks in the Western Jiangnan Orogen: Implications for Tectonic Settings[J]. Lithos, 2018, 312: 3856.

    Google Scholar

    [56] Li S, Chung S L, Wilde S A, et al. Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens[J]. Geophys Research Solid Earth, 2017, 1223): 22912309. doi: 10.1002/2017JB014006

    CrossRef Google Scholar

    [57] Li S, Wang T, Wilde S A, et al. Geochronology, Petrogenesis and Tectonic Implications of Triassic Granitoids from Beishan. NW China[J]. Lithos, 2012, 134: 123145.

    Google Scholar

    [58] Li X F, Zhang C L, Li L, et al. Formation Age, Geochemical Characteristics of the Mingshujing Pluton in Beishan Area of Gansu Province and its Geological Significance[J]. Acta Petrol Sinica, 2015, 31: 25212538.

    Google Scholar

    [59] Liu Q, Zhao G C, Han Y G, et al. Detrital Zircon Provenance Constraints on the Final Closure of the Middle Segment of the Paleo-asian Ocean[J]. Gondwana Research. 2019, 69: 73-88.

    Google Scholar

    [60] Liu Y S, Hu Z C, Gao S, et al. Insitu, Analysis of Major and Trace Elements of An Hydrous Minerals by LA-ICP-MS Without Applying An Internal Standard[J]. Chemical Geology, 2008, 2571): 3443.

    Google Scholar

    [61] Ludwig K R. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel[M]. California: Berkeley Geochronology Center Special Publication, 2003, 4: 1−70.

    Google Scholar

    [62] Ma X, Shu L, Meert J G, et al. The Paleozoic Evolution of Central Tianshan: Geochemical and Geochronological Evidence[J]. Gondwana Research, 2014, 252): 797819. doi: 10.1016/j.gr.2013.05.015

    CrossRef Google Scholar

    [63] Mao Q G, AO S J, Brain F, et al. Middle–Late Triassic Southward-Younging Granitoids: Tectonic Transition from Subduction to Collision in the Eastern Tianshan-Beishan Orogen, NW China[J]. Geological Society of America Bulletin, 2021, 1349−10): 22062224.

    Google Scholar

    [64] Mao Y J, Schoneveld L, Stephen J, et al. Coupled Li-P Zoning and Trace Elements of Olivine from Magmatic Ni-Cu Deposits: Implications for Postcumulus Re-equilibration in Olivine[J]. Journal of Petrology, 2022, 633): 122.

    Google Scholar

    [65] McCulloch M T and Gamble J A. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism[J]. Earth Planet. Sinica Lett, 1991, 1023−4): 358374.

    Google Scholar

    [66] McKenzie D, O'Nions R K, Partial Melt Distribution from Inversion of Rare Earth Element Concentrations[J]. Journal of Petrology, 1991, 32(5): 1021-091.

    Google Scholar

    [67] McKenzie D P , O’Nions R K. The Source Regions of Ocean Island Basalts[J]. Journal of Petrology, 1995, 361): 133159. doi: 10.1093/petrology/36.1.133

    CrossRef Google Scholar

    [68] McKenzie D. Some Remarks on the Movement of Small Melt Fractions in the Mantle[J]. Earth Planet Science. Lett, 1989, 951−2): 5372.

    Google Scholar

    [69] Mole D R, Barnes S J, Le Vaillant M, et al. Timing, Geochemistry and Tectonic Setting of Intrusion-Hosted Ni-Cu Sulfide Deposits of the Halls Creek Orogen, Western Australia[J]. Lithos, 2018, 314: 425446.

    Google Scholar

    [70] Pearce J A. Gochemical Fngerprinting of Oanic Bsalts with Aplications to Ohiolite Cassification and the Sarch for Archean Oeanic Cust[J]. Lithos, 2008, 1001−4): 1448.

    Google Scholar

    [71] Prelević D, Jacob D E, Foley S F. Recycling Plus: A New Recipe for the Formation of Alpine-Himalayan Orogenic Mantle Lithosphere[J]. Earth and Planetary Science Letters, 2013, 362: 187197. doi: 10.1016/j.jpgl.2012.11.035

    CrossRef Google Scholar

    [72] Rock N M S. The Nature and Origin of Lamprophyres: An Overview[J]. Geological Society, London, Special Publications, 1987, 301): 191226. doi: 10.1144/GSL.SP.1987.030.01.09

    CrossRef Google Scholar

    [73] Rock N M S, Bowes D R, Wright A E, et al. Lamporphyres[M]. Blackie: Glasgow, 1991: 1-285.

    Google Scholar

    [74] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Journal of Geoscience and Environment Protection, 2003, 3: 164.

    Google Scholar

    [75] Scarrow J H, Molina J F, Bea F, et al. Lamprophyre Dikes as Tectonic Markers of Late Orogenic Transtension Timing and Kinematics: A Case Study from the Central Iberian Zone[J]. Tectonics, 2011, 30(4).

    Google Scholar

    [76] Schnetzler C C, John A, Philpotts P, et al. Coefficients of Rare-earth Elements Between Igneous Matrix Material and Rock-Forming Mineral Phenocrysts—II[J]. Geochimica et Cosmochimica Acta, 1970, 343): 331340. doi: 10.1016/0016-7037(70)90110-9

    CrossRef Google Scholar

    [77] Shi Y R, Liu D Y, Miao L C, et al. Devonian A-type Granitic Magmatism on the Northern Margin of the North China Craton; SHRIMP U-Pb Zircon Dating and Hf-isotpes of the Hongshan Granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 174): 632641. doi: 10.1016/j.gr.2009.11.011

    CrossRef Google Scholar

    [78] Slama J, Kosler J, Condon D J, et al. Plesovice zircon: A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis[J]. Chemical Geology, 2008, 2491−2): 135.

    Google Scholar

    [79] Sobolev A V, Hofmann A W, Kuzmin D V, et al. The Amount of Recycled Crust in Sources of Mantle-derived Melts[J]. science, 2007, 3165823): 412417. doi: 10.1126/science.1138113

    CrossRef Google Scholar

    [80] Song S G, Wang M M, Xu X, et al. Ophiolites in the Xing’an-inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary or Ogenicevents[J]. Tectonics, 2015, 3410): 22212248. doi: 10.1002/2015TC003948

    CrossRef Google Scholar

    [81] Straub S M, Stuart F M, Zellmer G F, et al. Formation of Hybrid Arc Andesites Beneath Thick Continental Crust[J]. Earth and Planetary Science, 2011, 3033−4): 337347.

    Google Scholar

    [82] Sun S S, Mcdonough W F. Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Mantle Composition and Process. In: Saunders A D, Norry M J. (Eds), Magmatism in Ocean Basins[J]. Geological Society, London, Special Publications, 1989, 421): 313345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [83] Vaughan A P M, J H, Scarrow, et al. K-rich Mantle Metasomatism Control of Localization and Initiation of Lithospheric Strike-slip Faulting[J]. Terra Nova, 2003, 153): 163169. doi: 10.1046/j.1365-3121.2003.00485.x

    CrossRef Google Scholar

    [84] Vasyukova, A E, Izokh A S, Borisenko, et al. Early Mesozoic Lamprophyres in Gorny Altai: Petrology and Age Boundaries[J]. Russian Geology and Geophysics, 2011, 5212): 15741591. doi: 10.1016/j.rgg.2011.11.010

    CrossRef Google Scholar

    [85] Veroot J D, Patchett P J, Albarede F. Relationships Between Lu-Hf and Sr-Nd Isotopic Systems in the Global Sedimentary System. Earth Planet[J]. Sinica Letters, 1999, 1681−2): 7999.

    Google Scholar

    [86] Wang X, Wang Z C, Cheng H, et al. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction[J]. Lithos, 2020, 368: 105593.

    Google Scholar

    [87] Wiedenbeck M, Allé P, Corfu F, et al. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses[J]. Geostandards Newsletter, 1995, 191): 123. doi: 10.1111/j.1751-908X.1995.tb00147.x

    CrossRef Google Scholar

    [88] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope Analysis with An Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomita Age Estimation[J]. Chemical Geology, 2004, 091−2): 121135.

    Google Scholar

    [89] Wu D D, Li S, Chew David, et al. Permian-Triassic Magmatic Evolution of Granitoids from the Southeastern Central Asian Orogenic Belt: Implications for Accretion Leading to Collision[J]. Science China Earth Sciences, 2021, 645): 788806. doi: 10.1007/s11430-020-9714-5

    CrossRef Google Scholar

    [90] Windley B F, Alexeiev D, Xiao W, et al. Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Geol Soc, 2007, 164: 3147.

    Google Scholar

    [91] Xiao W J, Mao Q G, Windley B F, et al. Paleozoicmultiple Accretionary and Collisional Processes of the Beishanorogenic Collage[J]. American Journal of Science, 2010, 31010): 15531594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [92] Xiao W J, Windley B F, Huang B C, et al. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia[J]. Earth Sciences, 2009, 98: 11891217.

    Google Scholar

    [93] Xiao W J, Windley BF, Han C, et al. Late Paleozoic to Early Triassic Multiple Roll-back and Oroclinal Bending of the Mongolia Collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [94] Xu B J, Charvet Y, Chen P. et al. Middle Paleozoic Convergent Orogenic Belts Inwestern Inner Mongolia(China): Frame Work, Kinematics, Geochronology and Implications for Tectonice Volution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 234): 13421364.

    Google Scholar

    [95] Xu G, Duan J, Gao W B, et al. Geochronological and Geochemical Constraints on the Petrogenesis of Permian Dolerite Dyke Swarms in the Beishan Orogenic Belt, NW China[J]. Front Earth Science, 2021, 9: 657−716.

    Google Scholar

    [96] Xue S, Qin K, Li C, et al. Permian Bimodal Magmatism in the Southern Margin of the Central Asian Orogenic Belt, Beishan, Xinjiang, NW China. Petrogenesis and Implication for Post-Subduction Crustal Growth[J]. Lithos, 2018, 314: 617629.

    Google Scholar

    [97] Zhang D Y, Zhang Z C, Encarnación J, et al. Petrogenesis of the Kekesai Composite Intrusion, Western Tianshan, NW China: Implications for Tectonic Evolution During Late Paleozoic Time[J]. Lithos, 2012, 146: 6579.

    Google Scholar

    [98] Zhang F, Wang Y, Liu J, et al. Zircon U-Pb and Molybdenite Re-Os Geochronology, Hf Isotope Analyses, and Whole-rock Geochemistry of the Donggebi Mo Tianshan, Northwest China, and Their Geological Significance[J]. Internationa Geology Review, 2015, 574): 446462. doi: 10.1080/00206814.2015.1013067

    CrossRef Google Scholar

    [99] Zhang H F. Peridotite-Melt Interaction: A Key Point for the Destruction of Cratonic Lithospheric Mantle[J]. Chinese Science Bulletin, 2009, 5419): 34173437. doi: 10.1007/s11434-009-0307-z

    CrossRef Google Scholar

    [100] Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Rocks from Central Inner Mongolia, North China: Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008, 2493−4): 262281.

    Google Scholar

    [101] Zhang Z Z, Gu L X, Wu C Z, et al. Zircon SHRIMP dating for the Weiya Pluton, Tian Shan: its Geological Implications[J]. Acta Geologica Sinica (English Edition), 2005, 794): 481490. doi: 10.1111/j.1755-6724.2005.tb00914.x

    CrossRef Google Scholar

    [102] Zhou J B, Wilde S A, Zhao G C, et al. New SHRIMP U-Pb Zircon Ages from the Heilongjiang High-Pressure Belt: Constraints on the Mesozoic Evolution of NE China[J]. American Journal of Science, 2008, 3109): 10241053.

    Google Scholar

    [103] Zindler A, Hart S R. Annual Review of Earth and Planetary Sciences[J]. Chemical Geodynamics, 1986, 14: 493−571.

    Google Scholar

    [104] Zuo G C, Zhang S L, He G Q, et al. Plate Tectonic Characteristics During the Early Paleozoic in Beishan Near the Sino-Mongolian Border Region, China[J]. Tectonophysics, 1991, 1883−4): 385392.

    Google Scholar

    [105] Zuo G C, Zhang S L, He G Q, et al. Early Paleozoic Plate Tectonics in Beishan Area[J]. Scientia Geologica Sinica, 1990, 254): 305314.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(530) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint