2024 Vol. 57, No. 3
Article Contents

HE Lei, HAN Xiaofeng, YANG Huaiyu, SONG Bo, XU Wei, XU Haihong, SHI Jizhong, SUN Jiaopeng, ZHANG Huiyuan. 2024. Late Ordovician Tectono-Sedimentary Evolution of the Changma Area, Forearc Basin in the Western North Qilian Orogen. Northwestern Geology, 57(3): 128-138. doi: 10.12401/j.nwg.2024037
Citation: HE Lei, HAN Xiaofeng, YANG Huaiyu, SONG Bo, XU Wei, XU Haihong, SHI Jizhong, SUN Jiaopeng, ZHANG Huiyuan. 2024. Late Ordovician Tectono-Sedimentary Evolution of the Changma Area, Forearc Basin in the Western North Qilian Orogen. Northwestern Geology, 57(3): 128-138. doi: 10.12401/j.nwg.2024037

Late Ordovician Tectono-Sedimentary Evolution of the Changma Area, Forearc Basin in the Western North Qilian Orogen

More Information
  • The paleogeography and tectonic evolution history of the Early Paleozoic archipelago-type North Qilian Ocean remain controversial. A set of Early Paleozoic deep-water clastic-volcanic succussion are well exposed in the Changma Area between the north and south ophiolitic belt of the North Qilian Orogen. Previous geologic mappings generally assigned a Cambrian to Early Ordovician stratigraphic age for these strata. In this study, we conducted systemic field-based investigations on outcrops in the Yingzuishan and Chelugou Section in the western Changma, and conducted zircon LA-ICP-MS U-Pb datings on collected turbidites and volcanics. Geochronologic results indicate that the sandstone sample 2307NQL-13 from the previously termed Cambrian Number a unit of the Yingzuishan Section yielded a well-defined weighted mean age of (456±4) Ma for the youngest detrital zircons. An andesite sample 2307NQL-06 from the previously termed Early Ordovician Yingou Formation yielded a well-defined weighted mean age of (450±4) Ma. These new data solidly demonstrated the existence of Late Ordovician sedimentary strata in the Changma Area, requiring further consideration of previous mapping proposals. Detrital zircons from sandstones are mostly of Cambrian-Ordovician ages, indicating major sedimentary derivations form newly-formed magmatic arcs. Appearance of 32 Neo- to Paleoproterozoic aged zircons imply additional supply form metamorphic basement complexes, revealing depositor of detritus from the Central Qilian. This clue hints at that the southern branch of the North Qilian Ocean should have been closed in Late Ordovician to allow sedimentary materials from the Central Qilian to be transported to and deposited in the Changma Area. The subduction-related depositional setting indicates that ongoing subduction of the oceanic crust of the northern branch should sustain until then. These clues provide new geochronologic data and related observations on stratigraphy and sedimentary evolution history of the Changma Area, and yield further constraints on the composite Early Paleozoic subduction-closure history of the North Qilian Ocean.

  • 加载中
  • [1] 董云鹏, 张国伟, 孙圣思, 等. 中国大陆“十字构造”形成演化及其大陆动力学意义[J]. 地质力学学报, 2019, 2505): 769797.

    Google Scholar

    DONG Yunpeng, ZHANG Guowei, SUN Shengsi, et al. The “Cross-Tectonics” in China Continent: formation, Evolution, and its Significance for Continental Dynamics[J]. Journal of Geomechanics, 2019, 2505): 769797.

    Google Scholar

    [2] 杜远生, 张哲, 周道华, 等. 北祁连-河西走廊志留纪和泥盆纪古地理及其对同造山过程的沉积响应[J]. 古地理学报, 2002, 0404): 18.

    Google Scholar

    DU Yuansheng, ZHANG Zhe, ZHOU Daohua, et al. Silurian and Devonian Palaeogeography of Northern Qilian-Hexi Corridor and its Sedimentary Response to Synorngenesis of North Qilian Orogenic Belt[J]. Journal of Palaeogeography, 2002, 0404): 18.

    Google Scholar

    [3] 冯益民, 何世平. 祁连山及其邻区大地构造基本特征-兼论早古生代海相火山岩的成因环境[J]. 西北地质科学, 1995, 1601): 92103.

    Google Scholar

    FENG Yimin, HE Shiping. Basic Characteristics of Tectonics in the Qilian Mountains and its Neighbourings, and Genetic Environments of Early Paleozoic Marine Volcanics[J]. Northwest Geoscience, 1995, 1601): 92103.

    Google Scholar

    [4] 甘肃省区调报告昌马幅1: 20万[R]. 兰州: 甘肃省地质调查局, 1972.

    Google Scholar

    [5] 黄增保, 许荣科, 张彦杰, 等. 甘肃玉门昌马地区蛇绿混杂岩地质特征[J]. 甘肃地质学报, 2001, 1002): 1222.

    Google Scholar

    HUANG Zengbao, XU Rongke, ZHANG Yanjie, et al. Geological Characteristics of Ophiolitic Mixtite in Changma Region, Yumen, Gansu[J]. Acta Geologica Gansu, 2001, 1002): 1222.

    Google Scholar

    [6] 金霞, 黄增保. 甘肃昌马地区阴沟群火山岩地质特征及构造环境探讨[J]. 甘肃地质学报, 2004, 1301): 4653.

    Google Scholar

    JIN Xia, HUANG Zengbao. Discussion on the geological characteristics and its tectonic setting of volcanic rocks of Yingou group in Changma area, Gansu[J]. Acta Geologica Gansu, 2004, 1301): 4653.

    Google Scholar

    [7] 史仁灯, 杨经绥, 吴才来, 等. 北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据[J]. 地质学报, 2004, 7805): 649657.

    Google Scholar

    SHI Rendeng, YANG Jingsui, WU Cailai, et al. First SHRIMP Dating for the Formation of the Late Sinian Yushigou Ophiolite, North Qilian Mountains[J]. Acta Geologica Sinica, 2004, 7805): 649657.

    Google Scholar

    [8] 任海东, 王涛, 潘彤, 等. 东昆仑东段三叠纪岩浆岩Nd–Hf同位素组分特征、物源演变规律及其构造背景[J]. 西北地质, 2023, 56(6): 95−112.

    Google Scholar

    REN Haidong, WANG Tao, PAN Tong, et al. Nd–Hf Isotopic Characteristics, Evolution Trend and Tectonic Setting of Triassic Magmatic Rocks in the Eastern Segment of East Kunlun Orogeny[J]. Northwestern Geology, 2023, 56(6): 95−112..

    Google Scholar

    [9] 宋述光, 吴珍珠, 杨立明, 等. 祁连山蛇绿岩带和原特提斯洋演化[J]. 岩石学报, 2019, 3510): 29482970.

    Google Scholar

    SONG Shuguang, WU Zhenzhu, YANG Liming, et al. Ophiolite Belts and Evolution of the Proto-Tethys Ocean in the Qilian Orogen[J]. Acta Petrologica Sinica, 2019, 3510): 29482970.

    Google Scholar

    [10] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 3606): 16271674. doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan Geodynamics[J]. Acta Petrologica Sinica, 2020, 3606): 16271674. doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [11] 夏林圻, 夏祖春, 彭礼贵, 等. 北祁连山石灰沟奥陶纪岛弧火山岩系岩浆性质的确定[J]. 岩石矿物学杂志, 1991, 1001): 110.

    Google Scholar

    XIA Linqi, XIA Zuchun, PENG Ligui, et al. Determination of Magmatic Nature of Ordovician Island Arc Volcanic Series in The Shihuigou Area in the Northern Qilian Mountains[J]. Acta Petrologica et Mineralogica, 1991, 1001): 110.

    Google Scholar

    [12] 夏林圻, 夏祖春, 徐学义. 北祁连山构造-火山岩浆演化动力学[J]. 西北地质科学, 1995, 1601): 128.

    Google Scholar

    XIA Linqi, XIA Zuchun, XU Xueyi. Dynamics of Tectono-Volcano-Magmatic Evolution from North Qilian Mountains, China[J]. Northwest Geoscience, 1995, 1601): 128.

    Google Scholar

    [13] 夏林圻, 夏祖春, 徐学义. 南秦岭中~晚元古代火山岩性质与前寒武纪大陆裂解[J]. 中国科学(D辑: 地球科学), 1996, 2603): 237243.

    Google Scholar

    XIA Linqi, XIA Zuchun, XU Xueyi. Properties of Middle to Late Proterozoic Volcanic Rocks in South Qinling and Precambrian Continental Cracking[J]. Science in China (Earth Sciences), 1996, 2603): 237243.

    Google Scholar

    [14] 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.

    Google Scholar

    XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139..

    Google Scholar

    [15] 肖序常, 陈国铭, 朱志直. 祁连山古蛇绿岩带的地质构造意义[J]. 地质学报, 197804): 281295+338.

    Google Scholar

    XIAO Xuchang, CHEN Guoming, ZHU Zhizhi. A Preliminary Study on the Tectonics of Ancient Ophiolites in the Qilian Mountain, Northwest China[J]. Acta Geologica Sinica, 197804): 281295+338.

    Google Scholar

    [16] 徐亚军, 杜远生, 杨江海. 北祁连造山带晚奥陶世-泥盆纪构造演化: 碎屑锆石年代学证据[J]. 地球科学, 2013, 3805): 934946.

    Google Scholar

    XU Yajun, DU Yuansheng, YANG Jianghai. Tectonic Evolution of the North Qilian Orogenic Belt from the Late Ordovician to Devonian: Evidence from Detrital Zircon geochronology[J]. Earth Sciences, 2013, 3805): 934946.

    Google Scholar

    [17] 许志琴, 徐惠芬, 张建新, 等. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学[J]. 地质学报, 1994, 6801): 115.

    Google Scholar

    XU Zhiqin, XU Huifeng, ZHANG Jianxin, et al. The Zhoulangnanshan Caledonian Subductive Complex in the Northern Qilian Mountains and its Dynamics[J]. Acta Geologica Sinica, 1994, 6801): 115.

    Google Scholar

    [18] 张国伟, 董云鹏, 姚安平. 造山带与造山作用及其研究的新起点[J]. 西北地质, 2001, 3401): 19.

    Google Scholar

    ZHANG Guowei, DONG Yunpeng, YAO Anping. Review on the Development of Studies on the Tectonic and Orogen Process of Orogenic Belt, and Discussing on Some New Key Problems[J]. Northwestern Geology, 2001, 3401): 19.

    Google Scholar

    [19] 张建新, 宫江华. 阿拉善地块性质和归属的再认识[J]. 岩石学报, 2018, 344): 940962.

    Google Scholar

    ZHANG Jianxin, GONG Jianghua. Revisiting the Nature and Affinity of the Alxa Block[J]. Acta Petrologica Sinica, 2018, 344): 940962.

    Google Scholar

    [20] 张建新, 许志琴, 李海兵, 等. 北祁连加里东造山带从挤压到伸展造山机制的转换[J]. 长春地质学院学报, 1997, 2703): 3844.

    Google Scholar

    ZHANG Jianxin, XU Zhiqin, LI Haibing, et al. The Transition of Orogenic Mechanism from Compression to Extension in Northern Qilian Orogenic Belt[J]. Journal of Changchun University of Earth Sciences, 1997, 2703): 3844.

    Google Scholar

    [21] 张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 3112): 35313554.

    Google Scholar

    ZHANG Jianxin, YU Shenyao, LI Yunshuai, et al. Subduction, Accretion and Closure of Proto-Tethyan Ocean: Early Paleozoic Accretion or Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System[J]. Acta Petrologica Sinica, 2015, 3112): 35313554.

    Google Scholar

    [22] 左国朝, 吴茂炳, 毛景文, 等. 北祁连西段早古生代构造演化史[J]. 甘肃地质学报, 1999, 801): 714.

    Google Scholar

    ZUO Guochao, WU Maobing, MAO Jingwen, et al. Structural Evolution of Early Paleozoic Tectonic Belt in the West Section of Northern Qilian Area[J]. Acta Geologica Gansu, 1999, 801): 714.

    Google Scholar

    [23] Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 1435): 602622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [24] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 4010): 875878. doi: 10.1130/G32945.1

    CrossRef Google Scholar

    [25] Dong Y P, He D F, Sun S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231261.

    Google Scholar

    [26] Dong Y P, Sun S S, Santosh M, et al. Central China Orogenic Belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 10005): 131194.

    Google Scholar

    [27] Ludwig K R. A geochronological toolkit for Microsoft Excel[J]. Isoplot, 2003, 3: 170.

    Google Scholar

    [28] Sláma J, Košler J, Condon D J, et al. Plešovice zircon-a new natural referen−ce material for U–Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 2491-2): 135. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [29] Song S G, Niu Y L, Li S, et al. Tectonics of the North Qilian orogen, NW China[J]. Gondwana Research, 2013, 234): 13781401. doi: 10.1016/j.gr.2012.02.004

    CrossRef Google Scholar

    [30] Sun J P, Dong Y P. Ordovician tectonic shift in the western North China Craton constrained by stratigraphic and geochronological analyses[J]. Basin Research, 2020, 326): 14131440. doi: 10.1111/bre.12435

    CrossRef Google Scholar

    [31] Sun J P, Dong Y P, Chen Q, et al. Ordovician tectonic transition from passive margin into peripheral foreland in the southern Ordos: A diagnostic insight into the closure of Erlangping Ocean between the North Qinling Arc and North China Block[J]. Basin Research, 2023, 351): 336362. doi: 10.1111/bre.12714

    CrossRef Google Scholar

    [32] Tang M, Ji W Q, Chu X, et al. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons[J]. Geology, 2021, 491): 7680. doi: 10.1130/G47745.1

    CrossRef Google Scholar

    [33] Wiedenbeck M A P, Corfu F Y, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 191): 123. doi: 10.1111/j.1751-908X.1995.tb00147.x

    CrossRef Google Scholar

    [34] Xiao W J, Windley B F Y Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 353−4): 323333. doi: 10.1016/j.jseaes.2008.10.001

    CrossRef Google Scholar

    [35] Yan Z, Fu C L, Aitchison J C, et al. Retro-foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau[J]. Tectonics, 2019, 3812): 42294248. doi: 10.1029/2019TC005560

    CrossRef Google Scholar

    [36] Yan Z, Xiao W J, Aitchison J C, et al. Age and origin of accreted ocean plate stratigraphy in the North Qilian belt, NE Tibet Plateau: evidence from microfossils and geochemistry of cherts and siltstones[J]. Journal of the Geological Society, 2021, 1786): jgs2020231.

    Google Scholar

    [37] Yang J H, Cawood P A, Du Y S, et al. Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261: 120131.

    Google Scholar

    [38] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 281): 211280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(135) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint