2024 Vol. 57, No. 5
Article Contents

PANG Xujing, ZUO Wenzhe, CAO Chong, WANG Junpeng, HE Haifei, WANG Yan. 2024. The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area. Northwestern Geology, 57(5): 272-282. doi: 10.12401/j.nwg.2024022
Citation: PANG Xujing, ZUO Wenzhe, CAO Chong, WANG Junpeng, HE Haifei, WANG Yan. 2024. The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area. Northwestern Geology, 57(5): 272-282. doi: 10.12401/j.nwg.2024022

The Role of Gypsum Salt Layer in the Mineralization Process of Skarn Type Iron Deposits: A Case Study of Hanxing Area

More Information
  • The Skarn-type iron deposit is an important type of iron-rich deposits in China with reserves accounting for about 60% of all iron-rich ores. In recent, the role of gypsum salt layer in the mineralization process of Skarn iron deposits has been the focus of attention of scholars. The results show that the δ34S values of sulfate and sulfide in the Skarn-type iron deposits in the Hanxing area range from 24‰ to 29‰ and from 11‰ to 20‰, respectively, and have the characteristics of sulfur isotope composition of marine sedimentary rocks. These data imply that sedimentary gypsum-salt layer material is involved in the mineralization of skarn-type iron deposits. Taking the skarn iron deposit in the Hanxing area in this study, the compositions of δ34S of the sulfides, gypsums, and other sulfur-containing minerals in this area were systematically analyzed, and the role of the gypsum salt layer in the mineralization process was clarified. ① Na+, Cl and other substances, as mineralizer, in the gypsum salt layer are added to the gas-water hydrothermal fluid. The alkali-rich gas-water hydrothermal fluid causes the albitization of the diorite near the contact area, which precipitates Fe and migrates iorn in the form of sodium chlorate complex and iron halide. ② the sulfate in the gypsum salt layer has high oxidation activity under high temperature conditions, and it would cause a redox reaction with the reducing iron-rich hydrothermal fluid to increase the oxygen fugacity. The Fe2+ in the hydrothermal fluid, therefore, is oxidized to Fe3+, resulting in the formation of magmatite (i.e., Fe3O4). Hence, the magnetite is enriched and precipitated among the surrounding rock layers to form an iron-rich deposit. ③ various dissolution erosion voids are formed in the carbonate rock layers after the dissolution of the gypsum salt layer material, which provides a favorable mineralization space and is one of the important geological conditions for the formation of skarn magnetite deposits. In conlusion, gypsum salt layer has important significance in providing mineralizer, oxidant and ore-contained space in the process of skarn iron mineralization.

  • 加载中
  • [1] 蔡本俊, 李席珍, 魏寿彭, 等. 邯邢地区中奥陶统蒸发岩特征及其对内生铁(硫)矿床的控制[J]. 中国地质科学院地质力学研究所所刊, 1987, (2): 1−84.

    Google Scholar

    CAI Benjun, LI Xizhen, WEI Shoupeng, et al. Features of the middle ordovician evaporites and its control over the endogenic iron (sulfur) deposits in Han-Xing district, HeBei[J]. Journal of Geomechanics,1987,(2):1−84.

    Google Scholar

    [2] 成嘉伟, 刘新星, 张娟, 等. 河北邯邢地区白涧铁矿蚀变矿物红外光谱分析及找矿研究[J]. 地球科学, 2023, 48(4): 1551−1567.

    Google Scholar

    CHENG Jiawei, LIU Xinxing, ZHANG Juan, et al. Infrared spectral analysis and prospecting of alteration minerals of Baijian skarn type iron deposit in Han-Xing area[J]. Earth Science,2023,48(4):1551−1567.

    Google Scholar

    [3] 陈洪新. 鄂东南程潮铁矿区矿化与三叠系蒸发岩的关系[J]. 中国地质科学院地质力学研究所所刊, 1993, 163−176.

    Google Scholar

    CHEN Hongxin. Relationship of the triassic evaporite beds with the mineralization of iron ores in Chengchao, southeastern Hubei Province[J]. Journal of Geomechanics, 1993, 163−176.

    Google Scholar

    [4] 草广金. 我国内生铁铜矿床与膏盐的关系[J]. 地质与勘探, 1978, (3): 24−30.

    Google Scholar

    CAO Guangjin. Relationship between pig iron copper deposit and paste salt in China[J]. Geology and Exploration,1978,(3):24−30.

    Google Scholar

    [5] 陈艳, 张招崇. 矽卡岩型铁矿的铁质来源与迁移富集机理探讨[J]. 岩矿测试, 2012, 31(5): 889−897.

    Google Scholar

    CHEN Yan, ZHANG Zhaochong. Study on source, transport and the enrichment mechanism of iron in iron skarn deposits[J]. Rock and Mineral Analysis,2012,31(5):889−897.

    Google Scholar

    [6] 贾木欣, 于方, 冯钟燕. 邯邢式铁矿成因机理探讨[J]. 矿冶, 2006, (2): 80−84. doi: 10.3969/j.issn.1005-7854.2006.02.021

    CrossRef Google Scholar

    JIA Muxin, YU Fang, FENG Zhongyan. Study on the mechanism of the HanXing iron ore formation[J]. Mining and Metallurgy,2006,(2):80−84. doi: 10.3969/j.issn.1005-7854.2006.02.021

    CrossRef Google Scholar

    [7] 蒋俊毅, 苏尚国, 崔晓亮, 等. 早白垩世华北克拉通东部岩石圈减薄过程和机制: 来自河北西石门杂岩体的证据[J]. 岩石学报, 2020, 36(2): 356−390. doi: 10.18654/1000-0569/2020.02.03

    CrossRef Google Scholar

    JIANG Junyi, SU Shangguo, CUI Xiaoliang, et al. Process and mechanism of lithosphere thinning in the eastern North China Craton during the Early Cretaceous: evidence from the Xishimen Complex in Hebei Province[J]. Acta Petrologica Sinica,2020,36(2):356−390. doi: 10.18654/1000-0569/2020.02.03

    CrossRef Google Scholar

    [8] 霍延安, 苏尚国, 杨誉博, 等. 中生代华北克拉通岩石圈减薄的证据——以河北武安固镇杂岩体为例[J]. 岩石学报, 2019, 35(4): 989−1014. doi: 10.18654/1000-0569/2019.04.02

    CrossRef Google Scholar

    HUO Yanan, SU Shangguo, YANG Yubo, et al. Evidence of lithosphere thinning in the Mesozoic North China Craton: a case study of the Guzhen Complex in Wuan, Hebei Province[J]. Acta Petrologica Sinica,2019,35(4):989−1014. doi: 10.18654/1000-0569/2019.04.02

    CrossRef Google Scholar

    [9] 孔源. 河北省沙河市綦村铁矿田邯邢式铁矿成矿地质特征及找矿方向[D]. 石家庄: 石家庄经济学院, 2014.

    Google Scholar

    KONG Yuan. The metallogenic geological characteristics and prospecting direction research of Qicun Han-Xing type iron ore of Shahe City in Hebei Province[D]. Shijiazhuang: Shijiazhuang University of Economics, 2014.

    Google Scholar

    [10] 梁贤, 张聚全, 卢静, 等. 邯邢地区中生代侵入岩中磷灰石的成因矿物学研究[J]. 地质与勘探, 2020, 56(5): 969−984. doi: 10.12134/j.dzykt.2020.05.007

    CrossRef Google Scholar

    LIANG Xian, ZHANG Juquan, LU Jing, et al. Genetic mineralogy of apatite in mesozoic intrusive rocks in Handan-Xingtai region, Hebei Provinc[J]. Geology and Exploration,2020,56(5):969−984. doi: 10.12134/j.dzykt.2020.05.007

    CrossRef Google Scholar

    [11] 李延河, 谢桂青, 段超, 等. 膏盐层在矽卡岩型铁矿成矿中的作用[J]. 地质学报, 2013, 87(9): 1324−1334.

    Google Scholar

    LI Yanhe, XIE Guiqing, DUAN Chao, et al. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores[J]. Acta geologica Sinica,2013,87(9):1324−1334.

    Google Scholar

    [12] 李延河, 段超, 韩丹, 等. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2010, 26(5): 1355−1368.

    Google Scholar

    LI Yanhe, DUAN Chao, HAN Dan, et al. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the middle-lower yangtze river area[J]. Acta Petrologica Sinica,2010,26(5):1355−1368.

    Google Scholar

    [13] 李延河, 段超, 韩丹, 等. 矿浆型铁矿的氧同位素判别标志: 以宁芜玢岩铁矿为例[J]. 岩石学报, 2017, 33(11): 3411−3421.

    Google Scholar

    LI Yanhe, DUAN Chao, HAN Dan, et al. Oxygen isotopic discriminant marker of magmatic iron deposits: Ningwu porphyrite iron ore as an example[J]. Acta Petrologica Sinica,2017,33(11):3411−3421.

    Google Scholar

    [14] 李雷, 秦永军, 张凯. 矽卡岩型铁矿的成矿地质特征及成因综述[J]. 中国金属通报, 2018(11): 252−253.

    Google Scholar

    LI Lei, QIN Yongjun, ZHAG Kai. Skarn type iron ore ore-forming geological characteristics and genesis of review[J]. China Metal Bulletin,2018(11):252−253.

    Google Scholar

    [15] 马健飞, 胡永亮, 李仁杰. 矽卡岩型铁矿的成矿地质特征及成因综述[J]. 西部资源, 2016(4): 21−23.

    Google Scholar

    MA Jianfei, HU Yongliang, LI Renjie. Skarn type iron ore ore-forming geological characteristics and genesis of review[J]. Western Resources,2016(4):21−23.

    Google Scholar

    [16] 毛景文, 周涛发, 谢桂青, 等. 长江中下游地区成矿作用研究新进展和存在问题的思考[J]. 矿床地质, 2020, 39(4): 547−558.

    Google Scholar

    MAO Jingwen, ZHOU Taofa, XIE Guiqing, et al. Metallogeny in middle-lower yangtze river ore belt: advances and problems remained[J]. Mineral Deposits,2020,39(4):547−558.

    Google Scholar

    [17] 沈保丰, 陆松年, 于恩泽, 等. 某区磁铁矿床中钠质交代作用的特征及其找矿意义[J]. 地质科学, 1977, 12(3): 263−274.

    Google Scholar

    SHEN Baofeng, LU Songnian, YU Enze, et al. The characteristics of sodium metasomatism in magnetite deposits of a certain region and its prospecting significance[J]. Chinese Journal of Geology(Scientia Geologica Sinica),1977,12(3):263−274.

    Google Scholar

    [18] 孙天琦. 邯邢地区白涧矽卡岩型铁矿成因矿物学研究[D]. 石家庄: 河北地质大学, 2018.

    Google Scholar

    SUN Tianqi. Genetic mineralogy study on Baijian skarn iron deposit in Hanxing area[D]. Shijiazhuang: Hebei Geology University, 2018.

    Google Scholar

    [19] 文广. 邯邢地区矽卡岩富铁矿床形成机理及关键控制因素[D]. 北京: 中国地质大学, 2017.

    Google Scholar

    WEN Guang. The mechanisms and key factors in forming high-grade iron skarn deposits in Handan-Xingtai district, North China Craton[D]. Beijing: China University of Geosciences, 2017.

    Google Scholar

    [20] 魏宏飞. 邯郸西石门矽卡岩型铁矿地质特征及矿床成因[D]. 石家庄: 石家庄经济学院, 2011.

    Google Scholar

    WEI Hongfei. Geological characteristics and genesis of Xishimen skarn iron deposit in Handan[D]. Shijiazhuang: Shijiazhuang University of Economics, 2011.

    Google Scholar

    [21] 王艳娟. 河北邯郸符山铁矿矿床学特征及其对华北克拉通演化的记录[D]. 北京: 中国地质大学(北京), 2012.

    Google Scholar

    WANG Yanjuan. The characteristics of Fushan iron deposit, Handan, Hebei Provience, China, and its implication to the North China craton evolution[D]. Beijing: China University of Geosciences (Beijing), 2012.

    Google Scholar

    [22] 王艳娟, 胡援越, 申俊峰, 等. 太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J]. 现代地质, 2011, 25(5): 846−852.

    Google Scholar

    WANG Yanjuan, HU Yuanyue, SHEN Junfeng, et al. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in Beiming river iron deposits, Southern Taihang Mountains[J]. Geoscience,2011,25(5):846−852.

    Google Scholar

    [23] 息朝庄, 杜高峰, 戴塔根, 等. 冀南符山铁矿床成因研究: 来自流体包裹体和H、O、S同位素证据[J]. 矿物岩石地球化学通报, 2022, 41(4): 837−848.

    Google Scholar

    XI Chaozhuang, DU Gaofeng, DAI Tagen, et al. Genesis of the Fushan iron deposit in the southern Hebei: Evidences from studies of fluid inclusions and H, O, S isotopes[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2022,41(4):837−848.

    Google Scholar

    [24] 徐文炘, 陈民扬. 武安、涉县地区接触交代型铁矿硫同位素研究[J]. 矿产与地质, 1987(01): 83−91.

    Google Scholar

    XU Wenxin,CHEN Minyang. Study on sulfur isotope of contact metasomatic iron ore in Wu’an and Shexian areas[J]. Mineral Resources and Geology,1987(01):83−91.

    Google Scholar

    [25] 赵一鸣. 中国主要富铁矿床类型及地质特征[J]. 矿床地质, 2013, 32(4): 686−705. doi: 10.3969/j.issn.0258-7106.2013.04.004

    CrossRef Google Scholar

    ZHAO Yiming. Main genetic types and geological characteristics of iron rich ore deposits in China[J]. Mineral Deposits,2013,32(4):686−705. doi: 10.3969/j.issn.0258-7106.2013.04.004

    CrossRef Google Scholar

    [26] 章百明, 马国玺, 毕伏科, 等. 河北主要成矿区带与岩浆作用有关的矿床成矿系列及成矿模式[J]. 华北地质矿产杂志, 1996, (3): 19−21+27−28.

    Google Scholar

    ZHANG Baiming, MA Guoxi, BI Fuke, et al. Magmatism associated metallogenic series and metallogenic model of the main metallogenic zones in Hebei[J]. North China Journal of Geology and Mineral Resources,1996,(3):19−21+27−28.

    Google Scholar

    [27] 张海东, 刘建朝, 刘淑文, 等. 太行山南段平顺地区矽卡岩铁矿地质特征及成矿模式探讨[J]. 矿物岩石, 2009, 29(3): 53−59.

    Google Scholar

    ZHANG Haidong, LIU Jianchao, LIU Shuwen, et al. Geological characteristics and metallogenic model of skarn iron deposits in Pingshun area, sourthern Taihang mountains[J]. Mineralogy and Petrology,2009,29(3):53−59.

    Google Scholar

    [28] 郑建民, 毛景文, 陈懋弘, 等. 冀南邯郸—邢台地区矽卡岩铁矿的地质特征及成矿模式[J]. 地质通报, 2007, 26(2): 150−154. doi: 10.3969/j.issn.1671-2552.2007.02.005

    CrossRef Google Scholar

    ZHENG Jianmin, MAO Jingwen, CHEN Maohong, et al. Geological characteristics and metallogenic model of skarn iron deposits in the Handan-Xingtai area, southern Hebei, China[J]. Geological Bulletin of China,2007,26(2):150−154. doi: 10.3969/j.issn.1671-2552.2007.02.005

    CrossRef Google Scholar

    [29] 周涛发, 范裕, 袁峰, 等. 安徽庐枞盆地泥河铁矿床与膏盐层的成因联系及矿床成矿模式[J]. 地质学报, 2014, 88(04): 562−573.

    Google Scholar

    ZHOU Taofa,FAN Jan,YUAN Feng,et al. The genetic relationship between the Nihe iron deposit and the gypsum salt layer and the metallogenic model of the deposit in the Luzong Basin,Anhui Province[J]. Acta Geologica Sinica,2014,88(04):562−573.

    Google Scholar

    [30] 朱乔乔, 谢桂青, 王建, 等. 含膏盐地层与矽卡岩型铁矿的关系: 以湖北金山店铁矿为例[J]. 地质学报, 2013, 87(9): 1419−1429.

    Google Scholar

    ZHU Qiaoqiao, XIE Guiqing, WANG Jian, et al. The relationship between the evaporate and skarn-type iron deposit: a case study of the Jinshandian iron skarn deposit in Hubei[J]. Acta Geologica Sinica,2013,87(9):1419−1429.

    Google Scholar

    [31] 朱乔乔, 李伟, 张志远, 等. 多元稳定同位素组合示踪含膏盐地层参与湖北金山店矽卡岩型铁矿成矿作用[J]. 地质学报, 2016, 90(2): 361−375. doi: 10.3969/j.issn.0001-5717.2016.02.012

    CrossRef Google Scholar

    ZHU Qiaoqiao, LI Wei, ZHANG Zhiyuan, et al. Tracing incursion of the evaporites into Jinshandian skarn Fe deposit, Hubei Province, by combination of multiple stable isotopes[J]. Acta Geologica Sinica,2016,90(2):361−375. doi: 10.3969/j.issn.0001-5717.2016.02.012

    CrossRef Google Scholar

    [32] 朱乔乔. 湖北金山店矽卡岩型铁矿成矿作用[D]. 北京: 中国地质科学院, 2016.

    Google Scholar

    ZHU Qiaoqiao. Mineralization of skarn type iron ore in Jinshandian, Hubei Province[D]. Beijing: Chinese Academy of Geological Sciences, 2016.

    Google Scholar

    [33] 赵瑞. 冀鲁皖若干内生矿床的硫同位素研究[J]. 岩石学报, 1986, 2(1): 26−32.

    Google Scholar

    ZHAO Rui. Sulfur isotopes study of some endogenic ore deposits in Hebei. Shandong and Anhui provinces[J]. Acta Petrologica Sinica,1986,2(1):26−32.

    Google Scholar

    [34] 赵书梅, 王金河, 孔令海. 钠长石化与接触交代(矽卡岩)型铁矿成矿关系的探讨——邯邢式铁矿为例[J]. 矿产与地质, 2011, 25(6): 491−494.

    Google Scholar

    ZHAO Shumei, WANG Jinhe, KONG Linghai. Albitization and mineralization mechanism of contact metasomatic iron ore (skarns)-Taking Han-Xing type iron ore as an example[J]. Mineral Resources and Geology,2011,25(6):491−494.

    Google Scholar

    [35] Barton M D, Johnson D A. Evaporitic-source model for ingeous-related fe oxide-(REE-CU-AU-U) mineralization[J]. Geology, 1996, 24(3).

    Google Scholar

    [36] Chen H Y. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan[J]. Ore Geology Reviews,2013,51:74−78. doi: 10.1016/j.oregeorev.2012.12.002

    CrossRef Google Scholar

    [37] Cao Y T, LIU Chenglin, CHEN Yongzhi, et al. Characteristics of copper mineralization in the Kuqa Foreland basin, and origin, enrichment and distribution of copper[J]. Acta Geologica Sinica,2010,84(12):1791−1804.

    Google Scholar

    [38] Deng X, Li J, Wen G. U-Pb Geochronology of hydrothermal zircons from the early cretaceous Iron Skarn deposits in the Handan-Xingtai district, North China Craton[J]. Econmoic Geology. 2015, 110(8): 2159-2180.

    Google Scholar

    [39] Einaudi M T, Hedenquist J W, Inan E E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments[J]. Society of Economic Geologists, 2003.

    Google Scholar

    [40] Eugster H P, Chou I. A model for the deposition of cornwall-type magnetite deposits[J]. Economic Geology,1979,74(4):763−774.

    Google Scholar

    [41] Hryciuk M, Bedard J H, Minarik W. Evaporite assimilation window triggers sulfide immiscibility. Goldschmidt 2012 Conference Abstracts, 1864.

    Google Scholar

    [42] Liang H, Sun W, Su W. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Economic Geology,2009,104(4):587−596.

    Google Scholar

    [43] Li W, Audetat A, Zhang J. The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: Evidence from LA-ICP-MS analysis of fluid inclusions[J]. Ore Geology Reviews,2015,67:264−278.

    Google Scholar

    [44] Lehmann J, Arndt N, Windley B, et al. Field Relationships and Geochemical Constraints on the Emplacement of the Jinchuan Intrusion and its Ni-Cu-PGE Sulfide Deposit, Gansu, China[J]. Economic Geology,2007,102(1):75−94. doi: 10.2113/gsecongeo.102.1.75

    CrossRef Google Scholar

    [45] Li Wei, Xie Guiqing, Mao Jingwen, et al. Mineralogy fluid inclusion and stable isotope studies of the Chengchao deposit Hubei province eastern China: Implications for the formation of high-grade Fe skarn deposits[J]. Economic Geology,2019,114:325−352. doi: 10.5382/econgeo.2019.4633

    CrossRef Google Scholar

    [46] Meinert L D, Dipple G M, Nicolescu S. World skarn deposits[J]. Economic Geology 100th Anniversary Volume, 2005: 299−336.

    Google Scholar

    [47] Nabelek P I, Bedard J H, Hryciuk M, et al. Short-duration contact metamorphism of calcareous sedimentary rocks by Neoproterozoic Franklin gabbro sills and dykes on Victoria Island, Canada[J]. Metamorphic Geology,2013,31(2):205−220.

    Google Scholar

    [48] Ohomoto H, Rye R O. Isotopes of sulfur and carbon[J]. Geochemistry of Hydrothermal Ore Deposits,1979,10:509−576.

    Google Scholar

    [49] Pokrovski, Gleb S, Dubrovinsky. The S3Ion Is Stable in Geological Fluids at Elevated Temperatures and Pressures[J]. Science, 2011.

    Google Scholar

    [50] Xie G Q, Mao J W, Zhu Q Q, et al. Geochemical constraints on Cu–Fe and Fe skarn deposits in the Edong district, Middle–Lower Yangtze River metallogenic belt, China[J]. Ore Geology Reviews,2015,64:425−444.

    Google Scholar

    [51] Webster J. The exsolution of magmatic hydrosaline chloride liquids[J]. Chemical Geology,2004,210(1−4):33−48.

    Google Scholar

    [52] Wen G, Bi S J, Li J W. Role of evaporitic sulfates in iron skarn mineralization: a fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton[J]. Mineralium Deposita,2017,52(4):1−20.

    Google Scholar

    [53] Yi Sun, Long Xiao, Dan Zhu, et al. Geochemical geochronological and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Qicun intrusive complex from the Handan–Xingtai district: Implications for the mechanism of lithospheric thinning of the North China Craton[J]. Ore Geology Reviews,2014,57:363−374. doi: 10.1016/j.oregeorev.2013.09.007

    CrossRef Google Scholar

    [54] Zhou T F, Fan Yu, Yuan Feng, et al. The metallogenic model of Nihe iron deposit in Lu-Zong basin and genetic relationship between Gypsum-Salt layer and deposit[J]. Acta Geologica Sinica,2014,88(4):562−573.

    Google Scholar

    [55] Zhao B M, Liu Yongbin, Lin Xiaoxing, et al. Geological and geophysical characteristics and prospecting direction of iron orein Xingtai-Handan[J]. Progress in Geophysics,2014,29(6):2838−2842.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(4)

Article Metrics

Article views(713) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint