2024 Vol. 57, No. 2
Article Contents

LIU Gang, JIA Jun, ZHANG Ge, HONG Bo, DONG Ying, PEI Ying, XUE Qiang, GAO Bo. 2024. Characteristics and Initiation Mechanism of the Liquefied Mudflow Caused by Jishishan Earthquake in Gansu Province and Its Enlightenment on Risk Assessment of Secondary Earthquake Disasters in the Upper Yellow River Basin. Northwestern Geology, 57(2): 220-229. doi: 10.12401/j.nwg.2024015
Citation: LIU Gang, JIA Jun, ZHANG Ge, HONG Bo, DONG Ying, PEI Ying, XUE Qiang, GAO Bo. 2024. Characteristics and Initiation Mechanism of the Liquefied Mudflow Caused by Jishishan Earthquake in Gansu Province and Its Enlightenment on Risk Assessment of Secondary Earthquake Disasters in the Upper Yellow River Basin. Northwestern Geology, 57(2): 220-229. doi: 10.12401/j.nwg.2024015

Characteristics and Initiation Mechanism of the Liquefied Mudflow Caused by Jishishan Earthquake in Gansu Province and Its Enlightenment on Risk Assessment of Secondary Earthquake Disasters in the Upper Yellow River Basin

More Information
  • At 23:59:30 Beijing time on December 18, 2023, an Ms 6.2 shallow earthquake occurred in Jishishan County, Linxia Prefecture, Gansu Province. The earthquake triggered a coseismic giant mudflow in Zhongchuan Township, Minhe County, Qinghai Province, resulting in a catastrophic event. Research methods such as on-site investigation, drone photogrammetry, sampling, and experimental testing were adopted to analyze the development characteristics and causes of this mudflow hazard. The results indicate that: ① The mudflow has typical planar characteristics of valley-type debris flow, with clear boundaries between the formation area, the circulation area, and the accumulation area. The main source of the mudflow is the piedmont pluvial silty clay. ② Earthquake provides initial momentum, while melting snow, winter irrigation of farmland, and low temperature freezing raise the local groundwater level, which are the main triggering factors of the mudflow. The topographic slope provides subsequent kinetic energy, and the geological lithology provides condition for vibrational liquefaction, which are the inherent causes of the mudflow. ③ There are lateral and bottom scraping effects in the process of mudflow transportation, especially in the three flow direction changing areas, where lateral scraping and local accumulation are significant. Eventually, it quickly flows into Jintian Village and Caotan Village at the mouth of the gully. The results obtained can provide ideas and theoretical basis for the risk assessment of secondary disasters caused by earthquakes in the Guanting Basin and even the sedimentary basins in the upper reaches of the Yellow River.

  • 加载中
  • [1] 白铭学, 张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察, 1990, 186): 15.

    Google Scholar

    BAI Mingxue, ZHANG Sumin. Landslide induced by liquefaction of loessial soil during earthquake of high intensity[J]. Geotechnical Investigation and Surveying, 1990, 186): 15.

    Google Scholar

    [2] 陈博, 宋闯, 陈毅, 等. 2023年甘肃积石山Ms6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J/OL]. 武汉大学学报(信息科学版), 2024: 1−16.

    Google Scholar

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake[J/OL]. Geomatics and Information Science of Wuhan University, 2024: 1−16.

    Google Scholar

    [3] 陈秀清, 白福, 于燕燕. 甘肃省泥石流发育特征、成因分析及其危害[J]. 西北地质, 2014, 47(3): 205–210.

    Google Scholar

    CHEN Xiuqing, BAI Fu, YU Yanyan. Development Characteristics, Causes and Hazard Analysis of Debris Flow in Gansu Province[J]. Northwestern Geology, 2014, 47(3): 205–210.

    Google Scholar

    [4] 李为乐, 许强, 李雨森, 等. 2023年积石山Ms6.2级地震同震地质灾害初步分析[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 33−45+90.

    Google Scholar

    LI Weile, XU Qiang, LI Yusen, et al. Preliminary Analysis of the Coseismic Geohazards Induced by the 2023 Jishishan Ms 6.2 Earthquake[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1): 33−45+90.

    Google Scholar

    [5] 刘恢先. 唐山大地震震害[M]. 北京: 地震出版社, 1989.

    Google Scholar

    [6] 孙萍萍, 张茂省, 贾俊, 等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(3): 96–107.

    Google Scholar

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Geo-hazards Research and Investigation in the Loess Regions of Western China[J]. Northwestern Geology, 2022, 55(3): 96–107.

    Google Scholar

    [7] 铁永波, 张宪政, 曹佳文, 等. 积石山Ms6.2级和泸定Ms6.8级地震地质灾害发育规律对比[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 9−21+59

    Google Scholar

    TIE Yongbo, ZHANG Xianzheng, CAO Jiawen, et al. Comparative research of characteristics of geological hazards induced by Jishishan (Ms 6.2) and Luding (Ms 6.8) earthquakes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1): 9−21+59.

    Google Scholar

    [8] 万飞鹏, 杨为民, 邱占林, 等. 甘肃岷县纳古呢沟滑坡-泥石流灾害链成灾机制及其演化[J]. 中国地质, 2023, 50(3): 911−925.

    Google Scholar

    WAN Feipeng, YANG Weimin, QIU Zhanlin, et al. Disaster mechanism and evolution of Nagune Gully landslide-debris flow disaster chain in Minxian County, Gansu Province[J]. Geology in China, , 2023, 50(3): 911−925.

    Google Scholar

    [9] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 421): 119. doi: 10.11779/CJGE202001001

    CrossRef Google Scholar

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 421): 119. doi: 10.11779/CJGE202001001

    CrossRef Google Scholar

    [10] 王立朝, 侯圣山, 董英, 等. 甘肃积石山Ms 6.2级地震的同震地质灾害基本特征及风险防控建议[J/OL]. 中国地质灾害与防治学报, 2024: 1−11.

    Google Scholar

    WANG Lichao, HOU Shengshan, DONG Ying, et al. Basic characteristics of co-seismic geological hazards induced by Jishishan Ms 6.2 earthquake and suggestions for their risk control[J/OL]. The Chinese Journal of Geological Hazard and Control, 2024: 1–11.

    Google Scholar

    [11] 王新刚, 刘凯, 连宝琴, 等. 黄土-泥岩滑坡诱发因素及形成机理研究进展[J]. 西北大学学报(自然科学版), 2021, 51(3): 404–413.

    Google Scholar

    WANG Xingang, LIU Kai, LIAN Baoqin, et al. Recent advance in understanding inducing factors and formation mechanism of loess-mudstone landslides[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 404–413.

    Google Scholar

    [12] 王运生, 赵波, 吉锋, 等. 2023年甘肃积石山Ms6.2级地震震害异常的启示[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 1−8.

    Google Scholar

    WANG Yunsheng, ZHAO Bo, JI Feng, et al. Preliminary insights into hazards triggered by the 2023 JishishanMs 6.2 earthquake, Gansu Province[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(1): 1−8.

    Google Scholar

    [13] 夏正楷, 杨晓燕, 叶茂林. 青海喇家遗址史前灾难事件[J]. 科学通报, 2003, 4811): 12001204. doi: 10.1360/csb2003-48-11-1200

    CrossRef Google Scholar

    XIA Zhengkai, YANG Xiaoyan, YE Maolin. Prehistoric disasters at Lajia Site, Qinghai, China[J]. Chinese Science Bulletin, 2003, 4811): 12001204. doi: 10.1360/csb2003-48-11-1200

    CrossRef Google Scholar

    [14] 辛鸿博, 周锡元. 关于软弱粉质粘土地震液化或震陷的判别标准[J]. 世界地震工程, 2011, 2701): 153156.

    Google Scholar

    XIN Hongbo, ZHOU Xiyuan. On liquefaction criteria of low plasticity fine soils[J]. World Earthquake Engineering, 2011, 2701): 153156.

    Google Scholar

    [15] 许强, 彭大雷, 范宣梅, 等. 甘肃积石山6.2级地震触发青海中川乡液化型滑坡-泥流特征与成因机理[J/OL]. 武汉大学学报(信息科学版), 2024: 1−18.

    Google Scholar

    XU Qiang, PENG Dalei, FAN Xuanmei, et al. Preliminary Study on the Characteristics and Initiation Mechanism of Zhongchuan Town Flowslide Triggered by Jishishan Ms 6.2 Earthquake in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2024: 1−18.

    Google Scholar

    [16] 徐岳仁, 窦爱霞, 李智敏, 等. 2023年12月18日甘肃积石山Ms6.2地震触发次生灾害快速评估[J/OL]. 地震, 2024: 1−7.

    Google Scholar

    XU Yueren, DOU Aixia, LI Zhimin, et al. Rapid assessment of coseismic hazards induced by Jishishan Ms6.2 earthquake on December 18, 2023 in Gansu Province, Northwest China[]. Earthguake, 2024: 1−7.

    Google Scholar

    [17] 袁晓铭, 曹振中, 孙锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 286): 12881296. doi: 10.3321/j.issn:1000-6915.2009.06.026

    CrossRef Google Scholar

    YUAN Xiaoming, CAO Zhenzhong, SUN Rui, et al. Preliminary research on liquefaction characteristics of Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 286): 12881296. doi: 10.3321/j.issn:1000-6915.2009.06.026

    CrossRef Google Scholar

    [18] 于国强,张茂省,胡炜.天水市“7.25”群发性山洪地质灾害发育特征及成因分析[J].西北地质, 2014, 47(3): 185−191.

    Google Scholar

    YU Guoqiang, ZHANG Maosheng, HU Wei. Analysis on the Development Characteristics and Hydrodynamic Conditions for the Massive Debris Flow in Tianshui[J]. Northwestern Geology, 2014, 47(3): 185−191.

    Google Scholar

    [19] 张小虎, 夏正楷. 青海官亭盆地黄河二级阶地的结构分析[J]. 水土保持研究, 2005, 124): 3334. doi: 10.3969/j.issn.1005-3409.2005.04.009

    CrossRef Google Scholar

    ZHANG Xiaohu, XIA Zhengkai. Analysis of Geomorphologic Structure of Second Terrace in Guanting Basin in Qinghai Province[J]. Research of Soil and Water Conservation, 2005, 124): 3334. doi: 10.3969/j.issn.1005-3409.2005.04.009

    CrossRef Google Scholar

    [20] 赵丽梅, 李隽辉. “砂涌”大救援[N]. 中国青年报, 2023-12-22(001).

    Google Scholar

    [21] 中华人民共和国国土资源部. 滑坡崩塌泥石流灾害调查规范(1∶50000): DZ/T 0261-2014[M]. 中国标准出版社, 2014-09-22.

    Google Scholar

    [22] 中华人民共和国建设部. 岩土工程勘察规范: GB50021-2001[M]. 北京: 中国建筑工业出版社, 2002.

    Google Scholar

    [23] 中华人民共和国住房和城乡建设部. 构筑物抗震设计规范: GB50191-2012 建筑规范[M]. 北京: 中国计划出版社, 2012.

    Google Scholar

    [24] Ku Chihsheng, Lee Derher, Wu Jianhong. Evaluation of soil liquefaction in the Chi-Chi Taiwan earthquake using CPT[J]. Soil Dynamics and Earthquake Engineering, 2004, 249–10): 659673.

    Google Scholar

    [25] Plafker George. Tectonics of the March 27, 1964 Alaska Earthquake[J]. US Geological Survey Professional Paper, 1969, 5431): 174.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1802) PDF downloads(234) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint