[1]
|
卜建军, 吴俊, 史冀忠, 等. 北山—巴丹吉林地区石炭纪—二叠纪构造古地理及其演化[J]. 地质科技情报, 2019, 38(6): 113−120.
Google Scholar
BU Jianjun, WU jun, SHI Jizhong, et al. Carboniferous-Permian Tectonic Paleogeograpohy of Beishan-Badain Jaran Region and its Evolution[J]. Bulletin of Geological Science and Technology, 2019, 38(6): 113−120.
Google Scholar
|
[2]
|
陈耀, 张成, 张青, 等. 内蒙古北山成矿带月牙山—老硐沟地区金多金属矿床成矿预测[J]. 西北地质, 2023, 56(2): 151−162.
Google Scholar
CHEN Yao, ZHANG Cheng, ZHANG Qing, et al. Metallogenic Regularity and Prospecting Prediction of Gold Polymetallic Deposits in Yueyashan-Laodonggou Area of Beishan Metallogenic Belt, Inner Mongolia[J]. Northwestern Geology, 2023, 56(2): 151−162.
Google Scholar
|
[3]
|
高树起, 王云峰, 王晓东, 等. 北山地区三道明水Cu-Zn矿床地质特征及矿床成因初探[J]. 岩石矿物学杂志, 2021, 40(6): 1141−1154. doi: 10.3969/j.issn.1000-6524.2021.06.007
CrossRef Google Scholar
GAO Shuqi, WANG Yunfeng, WANG Xiaodong, et al. The Geologic Feature and Genetic Mechanism of the Sandaomingshui Cu-Zn Deposit in the Beishan Area[J]. Acta Petrologica et Mineralogica, 2021, 40(6): 1141−1154. doi: 10.3969/j.issn.1000-6524.2021.06.007
CrossRef Google Scholar
|
[4]
|
龚全胜, 刘明强, 李海林, 等. 甘肃北山造山带类型及基本特征[J]. 西北地质, 2002, 39(3): 28−34. doi: 10.3969/j.issn.1009-6248.2002.01.004
CrossRef Google Scholar
GONG Quansheng, LIU Mingqiang, LI Hailin, et al. The Type and Basic Characteristics of Beishan Orogenic Belt, Gansu[J]. Northwestern Geology, 2002, 39(3): 28−34. doi: 10.3969/j.issn.1009-6248.2002.01.004
CrossRef Google Scholar
|
[5]
|
龚全胜, 刘明强, 梁明宏, 等. 北山造山带大地构造相及构造演化[J]. 西北地质, 2003, 40(1): 11−17. doi: 10.3969/j.issn.1009-6248.2003.01.002
CrossRef Google Scholar
GONG Quansheng, LIU Mingqiang, LIANG Minghong, et al. The Tectonic Facies and Tectonic Evolution of Beishan Orogenic Belt, Gansu[J]. Northwestern Geology, 2003, 40(1): 11−17. doi: 10.3969/j.issn.1009-6248.2003.01.002
CrossRef Google Scholar
|
[6]
|
郝增元, 高鉴, 王晨, 等. 北山造山带风雷山地区二长花岗岩LA-ICP-MS锆石U-Pb年龄及其构造背景[J]. 中国地质, 2020, 47(4): 1204−1219.
Google Scholar
HAO Zengyuan, GAO Jian, WANG Chen, et al. LA-ICP-MS Zircon U-Pb Dating and Tectonic Setting of the Monzogranites in the Fengleishan Area of Beishan Orogenic Belt, Inner Mongolia[J]. Geology in China, 2020, 47(4): 1204−1219.
Google Scholar
|
[7]
|
洪大卫, 王式, 谢锡林, 等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 2000, 7(2): 441−456. doi: 10.3321/j.issn:1005-2321.2000.02.012
CrossRef Google Scholar
HONG Dawei, WANG Shi, XIE Xilin, et al. Genesis of Positive εNd(t) Granitoids in the Da Hinggan Mts.-Mongolia Orogenic Belt and Growth Continental Crust[J]. Earth Science Frontiers, 2000, 7(2): 441−456. doi: 10.3321/j.issn:1005-2321.2000.02.012
CrossRef Google Scholar
|
[8]
|
刘雪亚. 甘肃北山区的钙碱系列岩浆活动及其与板块构造的关系[J]. 中国地质科学院院报, 1984, 3: 151−165.
Google Scholar
LIU Xueya. Magmatism of Galc-alkaline Series in the Beishan Region of Gansu Province and its Relation to Plate Tectonics[J]. Acta Geoscientica Sinica, 1984, 3: 151−165.
Google Scholar
|
[9]
|
柳永正, 张海平, 张永清, 等. 内蒙古中东部玛尼吐组火山岩形成时代及其大地构造环境[J]. 西北地质, 2023, 56(2): 46−60.
Google Scholar
LIU Yongzheng, ZHANG Haiping, ZHANG Yongqing, et al. Zircon U–Pb Age and Tectonic Setting of the Manitu Formation in the Middle–East Inner Mongolia, China[J]. Northwestern Geology, 2023, 56(2): 46−60.
Google Scholar
|
[10]
|
孟庆涛. 内蒙古北山地区晚奥陶—早志留世侵入岩地球化学特征及其地质意义[D]. 北京: 中国地质大学(北京), 2019.
Google Scholar
MENG Qingtao. The Geological Characteristics and Significance of Late Ordovician to Early Silurian Intrusive Rocks in Beishan Area, Nei Monggol[D]. Beijing: China University of Geosciences (Beijing), 2019.
Google Scholar
|
[11]
|
冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.
Google Scholar
RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.
Google Scholar
|
[12]
|
任云伟, 任邦方, 牛文超, 等. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物[J]. 地球科学, 2019, 44(1): 312−327.
Google Scholar
REN Yunwei, REN Bangfang, NIU Wenchao, et al. Carboniferous Volcanics from the Baishan Formation in the Hazhu Area, Inner Mongolia:Implications for the Late Paleozoic Active Continental Margin Magmatism in the Northern Beishan[J]. Earth Science, 2019, 44(1): 312−327.
Google Scholar
|
[13]
|
孙德有, 吴福元, 张艳斌, 等. 西拉木伦河—长春—延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), 2004, 34(2): 174−181.
Google Scholar
SUN Deyou, WU Fuyuan, ZHANG Yanbin, et al. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone Evidence from the Dayushan Granitic Pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2004, 34(2): 174−181.
Google Scholar
|
[14]
|
孙立新, 张家辉, 任邦方, 等. 北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J]. 岩石矿物学杂志, 2017, 36(2): 131−147. doi: 10.3969/j.issn.1000-6524.2017.02.001
CrossRef Google Scholar
SUN Lixin, ZHANG Jiahui, REN Bangfang, et al. Geochemical Characteristics and U-Pb Age of Baiyunshan Ophiolite Mélange in the Beishan Orogenic Belt and their Geological Implications[J]. Acta Petrologica et Mineralogica, 2017, 36(2): 131−147. doi: 10.3969/j.issn.1000-6524.2017.02.001
CrossRef Google Scholar
|
[15]
|
王梁, 王根厚, 雷时斌, 等. 内蒙古乌拉山大桦背岩体成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2015, 31(7): 1977−1994.
Google Scholar
WANG Liang, WANG Genhou, LEI Shibin, et al. Petrogenesis of Dahuabei Pluton from Wulasharn, Inner Mongolia:Constraints from Geochemistry, Zircon U-Pb Dating a and Sr-Nd-Hf Isotopes[J]. Acta Petrologica Sinica, 2015, 31(7): 1977−1994.
Google Scholar
|
[16]
|
王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.
Google Scholar
WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology, 2023, 56(6): 71−81.
Google Scholar
|
[17]
|
王珍珍, 刘栋, 赵志丹, 等. 冈底斯带南部桑日高分异I型花岗岩的岩石成因及其动力学意义[J]. 岩石学报, 2017, 33(8): 2479−2493.
Google Scholar
WANG Zhenzhen, LIU Dong, ZHAO Zhidan, et al. The Sangri Highly Fractionated I-type Granites in Southern Gangdese:Petrogenesis and Dynamic implication[J]. Acta Petrologica Sinica, 2017, 33(8): 2479−2493.
Google Scholar
|
[18]
|
魏民, 赵泽南, 杨建坤, 等. 内蒙古北山地区矿物的地球化学特征及其地质意义[J]. 世界有色金属, 2021, 4(6): 207−209. doi: 10.3969/j.issn.1002-5065.2021.06.098
CrossRef Google Scholar
WEI Min, ZHAO Zenan, YANG Jiankun, et al. Geochemical Characteristics and Geological Significance of Minerals in Beishan Area, Inner Mongolia[J]. World Nonferrous Metals, 2021, 4(6): 207−209. doi: 10.3969/j.issn.1002-5065.2021.06.098
CrossRef Google Scholar
|
[19]
|
吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
CrossRef Google Scholar
WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
CrossRef Google Scholar
|
[20]
|
许立权, 陈志勇, 张彤, 等. 内蒙古自治区铁矿资源潜力评价[M]. 武汉: 中国地质大学出版社, 2019.
Google Scholar
XU Liquan, CHEN Zhiyong, ZHANG Tong, et al. Evaluation of Iron Ore Resource Potential in Inner Mongolia Autonomous Region[M]. Wuhan: China University of Geosciences Press, 2019.
Google Scholar
|
[21]
|
袁禹. 北山造山带大陆地壳的形成与演化[D]. 北京: 中国地质大学(北京), 2020.
Google Scholar
YUAN Yu. The Continental Crust Formation and Evolution of the Beishan Orogenic Belt[D]. Beijing: China University of Geosciences (Beijing), 2020.
Google Scholar
|
[22]
|
袁玲玲, 王祎帆, 刘建平, 等. 湖南香花岭晚侏罗世高分异花岗岩的岩石地球化学特征: 岩石成因与稀有金属成矿效应[J]. 岩石学报, 2022, 38(7): 2113−2138. doi: 10.18654/1000-0569/2022.07.18
CrossRef Google Scholar
YUAN Lingling, WANG Yifan, LIU Jianping, et al. Petro-geochemistry of Late Jurassic highly fractio nated granites in the Xianghualing area of Hunan Province: Constraints on petrogen esis and rare-metal mineralization[J]. Acta Petrologica Sinica, 2022, 38(7): 2113−2138. doi: 10.18654/1000-0569/2022.07.18
CrossRef Google Scholar
|
[23]
|
左国朝, 张淑玲, 何国琦, 等. 北山地区早古生代板块构造特征[J]. 地质科学, 1990, 25(4): 305−314.
Google Scholar
ZUO Guochao, ZHANG Shuling, HE Guoqi, et al. Early Paleozoic Plate Tectonics in Beishan Area[J]. Chinese Journal of Geology, 1990, 25(4): 305−314.
Google Scholar
|
[24]
|
Bea F, Fershtater G B, Montero P, et al. Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia[J]. Terra Nova, 2001, 13(6): 407−412. doi: 10.1046/j.1365-3121.2001.00364.x
CrossRef Google Scholar
|
[25]
|
Bonin Bernard. A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1−2): 1−29. doi: 10.1016/j.lithos.2006.12.007
CrossRef Google Scholar
|
[26]
|
Cleven N, Lin S, Guilmette C, et al. Petrogenesis and Implications for Tectonic Setting of Cambrian Suprasubduction-zone Ophiolitic Rocks in the Central Beishan Orogenic Collage, Northwest China[J]. Journal of Asian Earth Sciences, 2015, 113: 369−390. doi: 10.1016/j.jseaes.2014.10.038
CrossRef Google Scholar
|
[27]
|
Ding Jiaxin, Han Chunming, Xiao Wenjiao, et al. Geochronology, Geochemistry and Sr-Nd Isotopes of the Granitic Rocks Associated with Tungsten Deposits in Beishan District, NW China, Central Asian Orogenic Belt: Petrogenesis, Metallogenic and Tectonic Implications[J]. Ore Geology Reviews, 2017, 89: 441−462. doi: 10.1016/j.oregeorev.2017.06.018
CrossRef Google Scholar
|
[28]
|
Du Lilin, Yang Chonghui, Derek A. Wyman, et al. Age and depositional setting of the Paleoproterozoic Gantaohe Group in Zanhuang Complex: Constraints from zircon U-Pb ages and Hf isotopes of sandstones and dacite[J]. Precambrian Research, 2016, 286: 59−100. doi: 10.1016/j.precamres.2016.09.027
CrossRef Google Scholar
|
[29]
|
Essaifi A, Samson S, Goodenough K. Geochemical and Sr-Nd isotopic constraints on the petrogenesis and geodynamic significance of the Jebilet magmatism (Variscan Belt, Morocco)[J]. Geological Magazine, 2014, 151(4): 666−691. doi: 10.1017/S0016756813000654
CrossRef Google Scholar
|
[30]
|
Frost B R, Barnes C G, Collins W J, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42: 2033−2048. doi: 10.1093/petrology/42.11.2033
CrossRef Google Scholar
|
[31]
|
Han Shuai, Li Haibing, Pan Jiawei, et al. Genesis and geodynamic process of early Cretaceous intermediate-felsic batholith within the Chem Co zone, western Qiangtang and implications for Bangong-Nujiang Tethyan Ocean subduction[J]. Gondwana Research, 2020, 82: 193−220. doi: 10.1016/j.gr.2019.11.017
CrossRef Google Scholar
|
[32]
|
Latisha A,Brengman , Christopher M. Fedo. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (~2.7 Ga) Abitibi Greenstone Belt, Canada[J]. Geochimica et Cosmochimica Acta, 2018, 227: 227−245. doi: 10.1016/j.gca.2018.02.019
CrossRef Google Scholar
|
[33]
|
Leng Chengbiao, Gao Jianfeng, Chen Wei Terry , et al. Platinum-group elements, zircon Hf-O isotopes, and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system, SW China[J]. Gondwana Research, 2018, 62: 163−177. doi: 10.1016/j.gr.2018.03.001
CrossRef Google Scholar
|
[34]
|
Li Shengrong, Sun Li, Zhang Huafeng, et al. Magma mixing genesis of the Qushui collisional granitoids, Tibet, China:Evidences from genetic mineralogy[J]. Acta Petrologica Sinica, 2006, 22(4): 884−894.
Google Scholar
|
[35]
|
Liu Yongsheng, Hu Zhaochu, Zong Keqing, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4
CrossRef Google Scholar
|
[36]
|
Morris G A, Larson P B, Hooper P R. Subduction Style Magmatism in a Non-subduction Setting: the Colville Igneous Complex, NE Washington State, USA[J]. Journal of Petrology, 2000, 41: 43−67. doi: 10.1093/petrology/41.1.43
CrossRef Google Scholar
|
[37]
|
Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37: 215−224. doi: 10.1016/0012-8252(94)90029-9
CrossRef Google Scholar
|
[38]
|
Profeta L, Ducea M N, Chapman J B, et al. Quantifying Crustal Thickness over Time in Magmatic Arcs[J]. Scientific Reports, 2015, 5: 17786. doi: 10.1038/srep17786
CrossRef Google Scholar
|
[39]
|
Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]. In: Hawkesworth C J, Norry M J (Eds.), Continental Basalts and Mantle Xenoliths. Shiva Press Limited, Cheshire, 1983, 230−249.
Google Scholar
|
[40]
|
Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956−983. doi: 10.1093/petrology/25.4.956
CrossRef Google Scholar
|
[41]
|
Song Dongfang, Xiao Wenjiao, Han Chunming, et al. Geochronological and Geochemical Study of Gneiss-schist Complexes and Associated Granitoids, Beishan Orogen, Southern Altaids[J]. International Geology Review, 2013a, 55: 1705−1727. doi: 10.1080/00206814.2013.792515
CrossRef Google Scholar
|
[42]
|
Song Dongfang, Xiao Wenjiao, Han Chunming, et al. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-grade Complexes[J]. Precambrian Research, 2013b, 227: 368−388. doi: 10.1016/j.precamres.2012.06.011
CrossRef Google Scholar
|
[43]
|
Tan Fucheng, Hua Kong, Biao Liu, et al. In Situ U-Pb Dating and Trace Element Analysis of Garnet in the Tongshanling Cu Polymetallic Deposit, South China[J]. Minerals, 2023, 13(2): 187 doi: 10.3390/min13020187
CrossRef Google Scholar
|
[44]
|
Xiao Wenjiao, Mao Qigui, Windley B F, et al. Paleozoic Multiple Accretionary and CollIsional Processes of the Beishan Orogenic Collage[J]. American Journal of Science, 2010, 310(10): 1553−1594. doi: 10.2475/10.2010.12
CrossRef Google Scholar
|