2024 Vol. 57, No. 6
Article Contents

CHU Hongyi, YANG Bo, WEI Dongqi, LI Wenhong, HUANG Zhaohuan, ZHANG Mingshuang, QIAO Gang. 2024. Research on InSAR Surface Deformation and Soil Hydrothermal Process in Permafrost. Northwestern Geology, 57(6): 244-254. doi: 10.12401/j.nwg.2024001
Citation: CHU Hongyi, YANG Bo, WEI Dongqi, LI Wenhong, HUANG Zhaohuan, ZHANG Mingshuang, QIAO Gang. 2024. Research on InSAR Surface Deformation and Soil Hydrothermal Process in Permafrost. Northwestern Geology, 57(6): 244-254. doi: 10.12401/j.nwg.2024001

Research on InSAR Surface Deformation and Soil Hydrothermal Process in Permafrost

  • Surface deformation is an important feature reflecting the freeze-thaw process of active layer. To study the correlation between surface deformation and active layer hydrothermal processes, SBAS-InSAR technique was used to continuously monitor the surface deformation in the permafrost area of Yeniugou in Qilian Mountains in recent 5a, and the relationship between surface deformation and soil hydrothermal process was studied based on field observation data. The results indicate that the surface deformation caused by freeze-thaw process and hydraulic erosion is the most significant, and the surface deformation exhibits obvious seasonal characteristics. The cumulative surface deformation caused by freeze-thaw process is relatively small, and the interannual amplitude of frost heave and melt subsidence is about 10~20 mm; The cumulative surface deformation caused by hydraulic erosion is relatively large, with an interannual surface deformation exceeding 50 mm. Field observation data shows a slight downward trend in soil temperature in the active layer, with an increase in depth and duration of the negative temperature isotherm, and a gradual advance in the freezing front intersection date. The surface deformation has a good correlation with soil temperature and soil moisture, in areas where soil moisture enriched, the correlation is stronger, with correlation coefficients of −0.522 and −0.415 (P<0.001), respectively. The changes in soil moisture content in soil moisture rich areas also have a more significant impact on the amplitude of surface frost heave and thaw settlement, and there is a good linear relationship. This article quantitatively describes the relationship between surface deformation of active layers and soil hydrothermal processes, which has reference significance for monitoring and studying the freeze-thaw parameters of large-scale active layers.

  • 加载中
  • [1] 陈玉兴, 江利明, 梁林林, 等. 基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2441−2454.

    Google Scholar

    CHEN Yuxing, JIANG Liming, LIANG Linlin, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset[J]. Chinese Journal of Geophysics,2019,62(7):2441−2454.

    Google Scholar

    [2] 杜冉, 彭小清, 金浩东, 等. 祁连山俄博岭地区热融洼地与冻胀草丘活动层融化深度差异性对比研究[J]. 冰川冻土, 2022, 44(1): 188−202.

    Google Scholar

    DU Ran, PENG Xiaoqing, JIN Haodong, et al. Comparative study on active layer depth differences between hummocks and thermokarst depressions in the Eboling area of the Qilian Mountains[J]. Journal of Glaciology and Geocryology,2022,44(1):188−202.

    Google Scholar

    [3] 范鹏, 王硕, 张正加, 等. 高分辨率时序InSAR技术在青藏输电杆塔精细形变监测中的应用[J]. 测绘通报, 2021(3): 118−122.

    Google Scholar

    FAN Peng, WANG Shuo, ZHANG Zhengjia, et al. Deformation monitoring of Qinghai-Tibei transmission tower using high resolution time-series InSAR technology[J]. Bulletin of Surveying and Mapping,2021(3):118−122.

    Google Scholar

    [4] 冯旻譞, 齐琦, 董英, 等. 利用Sentinel-1A数据监测大西安2019~2022年大西安地表形变[J]. 西北地质, 2023, 56(3): 178−185.

    Google Scholar

    FENG Minxuan, QI Qi, DONG Ying, et al. Monitoring Surface Deformation in Xi’an City from 2019 to 2022 Based on Sentinel-1A Data[J]. Northwestern Geology,2023,56(3):178−185.

    Google Scholar

    [5] 郭怀军.祁连山及邻区第四纪地质与地貌研究[D].西安: 西北大学, 2017.

    Google Scholar

    GUO Huaijun.An investigation on Quaternary geology and geomorphology of Qilian Mountains and its adjacent areas[D].Xi’an:NorthWest University, 2017.

    Google Scholar

    [6] 逯中香, 樊彦国, 李国胜. 利用时序InSAR技术监测青藏铁路沿线地表形变[J]. 测绘通报, 2022(3): 138−142+156.

    Google Scholar

    LU Zhongxiang, FAN Yanguo, LI Guosheng. Monitoring of surface deformation along the Qinghai-Xizang Railway with the time series InSAR technology[J]. Bulletin of surveying and mapping,2022(3):138−142+156.

    Google Scholar

    [7] 马晶晶, 王佩, 邓钰婧, 等. 青海湖流域高寒草甸季节冻土土壤温湿变化特征[J]. 土壤, 2022, 54(3): 619−628.

    Google Scholar

    MA Jingjing, WANG Pei, DENG Yujing, et al. Characteristics of Seasonal Frozen Soil Temperature and Moisture Changes in Alpine Meadow in Qinghai Lake Watershed[J]. Soils,2022,54(3):619−628.

    Google Scholar

    [8] 马素辉, 牟翠翠, 郭红, 等. 祁连山黑河上游多年冻土区不同植被类型土壤有机碳密度分布特征[J]. 冰川冻土, 2018, 40(3): 426−433.

    Google Scholar

    MA Suhui, MU Cuicui, GUO Hong, et al. Distribution features of permafrost organic carbon density on different vegetation types in the upper reaches of Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology,2018,40(3):426−433.

    Google Scholar

    [9] 王庆锋, 金会军, 张廷军, 等. 祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J]. 科学通报, 2016, 61(24): 2742−2756. doi: 10.1360/N972015-01237

    CrossRef Google Scholar

    WANG Qingfeng, JIN Huijun, ZHANG Tingjun, et al. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains[J]. Chinese Science Bulletin,2016,61(24):2742−2756. doi: 10.1360/N972015-01237

    CrossRef Google Scholar

    [10] 王燕燕, 于海洋. 九寨沟M_S7.0级地震三维同震形变场提取[J]. 测绘科学, 2019, 44(5): 8−13.

    Google Scholar

    WANG Yanyan, YU Haiyang. Extraction of 3D coseismic deformation field of Jiuzhaigou MS7.0 earthquake[J]. Science of Surveying and Mapping,2019,44(5):8−13.

    Google Scholar

    [11] 王志伟, 岳广阳, 吴晓东. 青藏高原多年冻土区不同高寒草地类型地表形变特征[J]. 生态学报, 2021, 41(6): 2398−2407.

    Google Scholar

    WANG Zhiwei, YUE Guangyang, WU Xiaodong. Ground surface deformation characteristics of different alpine-grassland types in the permafrost zones of Qinghai-Xizang Plateau[J]. Acta Ecologica Sinica,2021,41(6):2398−2407.

    Google Scholar

    [12] 吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅰ): 多年冻土分布[J]. 冰川冻土, 2007, 29(3): 418−425.

    Google Scholar

    WU Jichun, SHENG Yu, YU Hui, et al. Permafrost in the Middle-East Section of Qilian Mountains(Ⅰ): Distribution of permafrost[J]. Journal of Glaciology and Geocryology,2007,29(3):418−425.

    Google Scholar

    [13] 吴青柏, 张中琼, 刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 2021, 29(2): 342−352.

    Google Scholar

    WU Qingbai, ZHANG Zhongqiong, LIU Ge. Relationships between climate warming and engineering stability of permafrost on Qinghai-Xizang plateau[J]. Journal of Engineering Geology,2021,29(2):342−352.

    Google Scholar

    [14] 张林梵. 基于时序InSAR的黄土滑坡隐患早期识别以白鹿塬西南区为例[J]. 西北地质, 2023, 56(3): 250−257. doi: 10.12401/j.nwg.2023086

    CrossRef Google Scholar

    ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR:A Case Study of Southwest Bailuyuan[J]. Northwestern Geology,2023,56(3):250−257. doi: 10.12401/j.nwg.2023086

    CrossRef Google Scholar

    [15] 张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27−38. doi: 10.3969/j.issn.1001-7410.2012.01.03

    CrossRef Google Scholar

    ZHANG Tingjun. Progress in global permafrost and climate change studies[J]. Quaternary Sciences,2012,32(1):27−38. doi: 10.3969/j.issn.1001-7410.2012.01.03

    CrossRef Google Scholar

    [16] Cao B, Gruber S, Zhang T, et al. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China[J]. Journal of Geophysical Research: Earth Surface,2017,122(3):574−591. doi: 10.1002/2016JF004018

    CrossRef Google Scholar

    [17] Cao B, Zhang T J, Peng X Q, et al. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China[J]. Journal of Geophysical Research: Atmospheres,2018,123(15):7935−7949. doi: 10.1029/2018JD028442

    CrossRef Google Scholar

    [18] Che T, Li X, Liu S, et al. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China[J]. Earth System Science Data,2019,11:1483−1499. doi: 10.5194/essd-11-1483-2019

    CrossRef Google Scholar

    [19] Chen J, Wu Y, O’Connor M, et al. Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR[J]. Remote Sensing of Environment,2020,248:112007. doi: 10.1016/j.rse.2020.112007

    CrossRef Google Scholar

    [20] Chen J, Wu T, Liu L, et al. Increased water content in the active layer revealed by regional-scale InSAR and independent component analysis on the central Qinghai-Xizang Plateau[J]. Geophysical Research Letters, 2022a, 49(15).

    Google Scholar

    [21] Chen J, Wu T, Zou D, et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Xizang Plateau[J]. Remote Sensing of Environment,2022b,268:112778. doi: 10.1016/j.rse.2021.112778

    CrossRef Google Scholar

    [22] Cheng G, Li X, Zhao W, et al. Integrated study of the water–ecosystem–economy in the Heihe River Basin[J]. National Science Review,2014,1(3):413−428. doi: 10.1093/nsr/nwu017

    CrossRef Google Scholar

    [23] Daout S, Doin M P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Xizang Plateau[J]. Geophtsical Research Letters,2017,44(2):901−909. doi: 10.1002/2016GL070781

    CrossRef Google Scholar

    [24] Gao X, Lin K, Liu M, et al. Dynamic changes in permafrost distribution over China and their potential influencing factors under climate warming[J]. Science of The Total Environment,2023,874:162624. doi: 10.1016/j.scitotenv.2023.162624

    CrossRef Google Scholar

    [25] Han P, Huang C, Liang S, et al. Variation characteristics and quantitative study of permafrost degradation in the upper reaches of Heihe River, China[J]. Journal of Hydrology,2022,610:127942. doi: 10.1016/j.jhydrol.2022.127942

    CrossRef Google Scholar

    [26] Liu Lin, Schaefer K, Zhang Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research: Earth Surface,2012,117(F1):F01005.

    Google Scholar

    [27] Liu S, Li X, Xu Z, et al. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal,2018,17:180072.

    Google Scholar

    [28] Liu S, Che T, Xu Z, et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Dashalong station, 2020)[DB/OL]. National Xizang Plateau Data Center,2021.

    Google Scholar

    [29] Li Z, Zhao R, Hu J, et al. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils[J]. Scientific Reports,2015,5:15542. doi: 10.1038/srep15542

    CrossRef Google Scholar

    [30] Peng X, Zhang T, Frauenfeld, et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1):251-266.

    Google Scholar

    [31] Sun W, Zhang T, Gary, et al. Observed permafrost thawing and disappearance near the altitudinal limit of permafrost in the Qilian Mountains[J]. Advances in Climate Change Research,2022,13:642−650.

    Google Scholar

    [32] Wang Chao, Zhang Zhengjia, Zhang Hong, et al. Active Layer Thickness Retrieval of Qinghai-Xizang Permafrost Using the TerraSAR-X InSAR Technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4403−4413. doi: 10.1109/JSTARS.2018.2873219

    CrossRef Google Scholar

    [33] Wang Q, Zhang T, Jin H, et al. Observational study on the active layer freeze–thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Xizang Plateau[J]. Quaternary International,2017,440:13−22. doi: 10.1016/j.quaint.2016.08.027

    CrossRef Google Scholar

    [34] Wang L, Philip Marzahn, Monique Bernier, et al. Sentinel-1 InSAR measurements of deformation over discontinuous permafrost terrain, Northern Quebec, Canada[J]. Remote Sensing of Environment,2020,248:111965. doi: 10.1016/j.rse.2020.111965

    CrossRef Google Scholar

    [35] You Q, Cai Z, Pepin N, et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences[J]. Earth-Science Reviews,2021,217:103625. doi: 10.1016/j.earscirev.2021.103625

    CrossRef Google Scholar

    [36] Zhao L, Zou D, Hu G, et al. Changing climate and the permafrost environment on the Qinghai-Xizang Plateau[J]. Permafrost Periglac Process,2020,31:396−405. doi: 10.1002/ppp.2056

    CrossRef Google Scholar

    [37] Zhang Xuefei, Zhang Hong, Wang Chao, et al. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai-Xizang Plateau using Sentinel-1 data[J]. Remote Sensing,2019,11:1000. doi: 10.3390/rs11091000

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(578) PDF downloads(101) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint