2024 Vol. 57, No. 1
Article Contents

LIN Yuheng, WANG Lili, OUYANG Yongpeng, LI Zenghua, ZENG Runling, CHEN Qi, DENG Youguo. 2024. Evaluation of Copper Mineral Resource Potential Using Concentration–Area Fractal Model and Fuzzy Evidence Weighting: A Case Study of the Jiurui Region in Jiangxi. Northwestern Geology, 57(1): 165-178. doi: 10.12401/j.nwg.2023199
Citation: LIN Yuheng, WANG Lili, OUYANG Yongpeng, LI Zenghua, ZENG Runling, CHEN Qi, DENG Youguo. 2024. Evaluation of Copper Mineral Resource Potential Using Concentration–Area Fractal Model and Fuzzy Evidence Weighting: A Case Study of the Jiurui Region in Jiangxi. Northwestern Geology, 57(1): 165-178. doi: 10.12401/j.nwg.2023199

Evaluation of Copper Mineral Resource Potential Using Concentration–Area Fractal Model and Fuzzy Evidence Weighting: A Case Study of the Jiurui Region in Jiangxi

More Information
  • The Jiurui region in Jiangxi Province, China, is one of the most significant copper mining areas in the middle and lower reaches of the Yangtze River mineralization belt, with a close relationship between granodiorite porphyry and copper mineralization. In this study, a predictive model for mineralization potential was established by combining factor analysis (FA), concentration-area (C-A) fractal method, and fuzzy weight of evidence (FWofE) based on information related to stream sediment and mineralization. ϕfactor analysis was applied to a dataset of 255 stream sediment samples containing 32 elements to identify combinations of elements (principal factors) indicative of copper mineralization. κ the principal factor scores were interpolated using the multiple inverse distance weighted (MIDW) method to create a raster map, and the C-A fractal model was employed to extract geochemical anomalies associated with copper mineralization. λ the geochemical anomaly map related to copper mineralization was integrated with geological and remote sensing interpretation data, and a predictive model was established using the fuzzy weight of evidence method. The results indicated that: known copper deposits are located within high-probability zones defined by the model and are influenced by the distribution of granodiorite porphyry and faults; in addition to the known copper deposit areas, three primary prospective areas identified within the defined regions also exhibit a high probability, meriting further exploration efforts for copper prospecting.

  • 加载中
  • [1] 陈风河, 王建兴, 董国明, 等. 模糊证据权法在承德多金属矿产资源预测中的应用[J]. 新疆有色金属, 2015, 38(2): 76-78+82

    Google Scholar

    CHEN Fenghe, WANG Jianxing, DONG Guoming, et al. Application of fuzzy weight of evidence method in prediction of polymetallic mineral resources in Chengde[J]. Xinjiang Nonferrous Metals, 2015, 38(2): 76-78+82.

    Google Scholar

    [2] 成秋明, 陈志军, Ali Khaled. 模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用[J]. 地球科学(中国地质大学学报), 2007, 32(2): 175-184

    Google Scholar

    CHENG Qiuming, CHEN Zhijun, Ali Khaled. Application of Fuzzy Weigh of Evidence Method in Mineral Resource Assessment for Gold in Zhenyuan District, Yunnan Province, China[J]. Earth Science (Journal of China University of Geosciences), 2007, 32(2): 175-184.

    Google Scholar

    [3] 邓军, 战明国, 周伟金, 等. 基于模糊证据权法的广西典型金矿矿产定量预测[J]. 地质力学学报, 2021, 27(3): 374-390

    Google Scholar

    DENG Jun, ZHAN Mingguo, ZHOU Weijin, et al. Quantitative prediction of mineral resources in typical gold deposits in Guangxi, China using a fuzzy weights of evidence method[J]. Chinese Journal of Geomechanics, 2021, 27(3): 374-390.

    Google Scholar

    [4] 董庆吉, 陈建平, 唐宇. R型因子分析在矿床成矿预测中的应用——以山东黄埠岭金矿为例[J]. 地质与勘探, 2008, 44(4): 64-68

    Google Scholar

    DONG Qingji, CHEN Jianping, TANG Yu. Application of R type Factor Analyses in Mineralization prognosis: by an example of Huangbuling Gold deposit, Shandong province[J]. Geology and Exploration, 2008, 44(4): 64-68.

    Google Scholar

    [5] 黄鑫怀, 李红利, 李增华, 等. 基于模糊证据权法的江西相山盆地火山岩型铀矿成矿潜力评价[J]. 世界核地质科学, 2023, 40(2): 226-235 doi: 10.3969/j.issn.1672-0636.2023.02.009

    CrossRef Google Scholar

    HUANG Xinghuai, LI Hongli, LI Zenghua, et al. Application of fuzzy weights of evidence method to prediction of mineralization in the volcanic-type uranium deposit in Xiangshan basin, Jiangxi[J]. World Nuclear Geology, 2023, 40(2): 226-235. doi: 10.3969/j.issn.1672-0636.2023.02.009

    CrossRef Google Scholar

    [6] 黄秀, 张钊, 陈建平, 等. 混合模糊证据权模型在河北承德煤炭资源预测中的应用[J]. 地质通报, 2010, 29(7): 1075-1081

    Google Scholar

    HUANG Xiu, ZHANG Zhao, CHEN Jianping, et al. Application of hybrid fuzzy weights of evidence model in mineral resource assessment for coal in Chengde area, Hebei, China[J]. Geological Bulletin of China, 2010, 29(7): 1075-1081.

    Google Scholar

    [7] 霍雨佳. 基于模糊证据权的川滇相邻地区铜矿预测[D]. 吉林: 吉林大学, 2023

    Google Scholar

    HUO Yujia. Prediction of Copper Minerals in Sichuan-Yunnan Adjacent Region based on Fuzzy Evidence Weight [D]. Jilin: Jilin University, 2023.

    Google Scholar

    [8] 蒋少涌, 徐耀明, 朱志勇, 等. 九瑞矿集区燕山期构造-岩浆作用及其与铜金多金属成矿关系研究[J]. 岩石学报, 2013, 29(12): 4051-4068

    Google Scholar

    JIANG Shaoyong, XU Yaoming, ZHU Zhiyong, et al. Study on Mesozoic tectonics and granitic magmatism and their relationship with Cu-Au mineralization in the Jiurui ore district, Jiangxi province[J]. Acta Petrologica Sinica, 2013, 29(12): 4051-4068.

    Google Scholar

    [9] 孔凡斌. 江西九瑞铜多金属矿深部成矿规律与找矿预测研究[D]. 南京: 南京大学, 2014

    Google Scholar

    KONG Fanbin. Deep copper polymetallic metallogenic regularities and prospecting studies of favorable locations in Jiurui region of Jiangxi province[D]. Nanjing: Nanjing University, 2014.

    Google Scholar

    [10] 李文明, 刘拓, 孙吉明, 等. 新疆北山白山地区地球化学特征及找矿远景预测[J]. 西北地质, 2021, 54(4): 42-48

    Google Scholar

    LI Wenming, LIU Tuo, SUN Jiming, et al. Geochemical Characteristics and Prospecting Prognosis in Baishan Area of Xinjiang Beishan[J]. Northwestern Geology, 2021, 54(4): 42-48.

    Google Scholar

    [11] 欧阳渊, 刘洪, 李光明, 等. 基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩−浅成低温热液型铜多金属矿为例[J].中国地质, 2023, 50(2): 303−330.

    Google Scholar

    OUYANG Yuan, LIU Hong, LI Guangming, et al. 2023. Mineral search prediction based on Random Forest algorithm: A case study on porphyry-epithermal copper polymetallic deposits in the western Gangdise meatallogenic belt[J]. Geology in China, 2023, 50(2): 303−330.

    Google Scholar

    [12] 所颖萍. 江西九瑞地区成矿时空结构与铜金成矿作用[D]. 南京: 南京大学, 2013

    Google Scholar

    SUO Yingping. The Metallogensis and space-time structure of copper and gold in Jiurui district, Jiangxi province[D]. Nanjing: Nanjing University, 2013.

    Google Scholar

    [13] 王佳营, 曾威, 张祺, 等. 模糊证据权方法在纳米比亚白岗岩型铀矿预测中的应用[J]. 地质通报, 2023, 42(8): 1318-1333

    Google Scholar

    WANG Jiaying, ZENG Wei, ZHANG Qi, et al. Application of fuzzy weights of evidence method in metallogenic prediction for alaskite-type uranium deposits in Namibia[J]. Geological Bulletin of China, 2023, 42(8): 1318-1333.

    Google Scholar

    [14] 王兆强, 张岩. 长江中下游成矿带鸡笼山矽卡岩型铜金钼矿床花岗闪长斑岩对成岩-成矿的指示: 来自地球化学和锆石U-Pb年龄的证据[J]. 地质通报, 2023, 42(9): 1480−1493.

    Google Scholar

    WANG Zhaoqiang, ZHANG Yan. Geochemistry and zircon U-Pb age of granodiorite porphyry: Constraints on diagenetic and metallogenic processes of the Jilongshan Cu-Au-Mo deposit, Middle-Lower Yangtze River Valley Metallogenic Belt, China[J]. Geological Bulletin of China, 2023, 42(9): 1480−1493.

    Google Scholar

    [15] 武进. 基于模糊证据权的找矿远景区预测方法研究与应用-以西藏米拉山为例[D]. 成都: 成都理工大学, 2017

    Google Scholar

    WU Jin. Research and application of the forecasting method based on fuzzy evidence right in the search for distant scenic spot-Mila mountain as an example[D]. Chengdu: Chengdu University of Technology, 2017.

    Google Scholar

    [16] 徐耀明. 江西九瑞矿集区燕山期岩浆岩成岩成矿作用地球化学及矿床预测研究[D]. 南京: 南京大学, 2014

    Google Scholar

    XU Yaoming. Geochemistry of late Mesozoic magmatic rocks and related mineralizations and mineral prospecting in the Jiurui district of Jiangxi province[D]. Nanjing: Nanjing University, 2014.

    Google Scholar

    [17] 薛琮一, 王嘉伟, 杨征, 等. 新疆和田布雅煤矿一带水系沉积物测量地球化学特征及找矿方向[J]. 西北地质, 2020, 53(4): 66-72

    Google Scholar

    XUE Congyi, WANG Jiawei, YANG Zheng, et al. A Review of Geochemical Characteristics and Prospecting Direction of Stream Sediment of Buya Coal Mine in Hetian, Xinjiang[J]. Northwestern Geology, 2020, 53(4): 66-72.

    Google Scholar

    [18] 张津瑞, 陈华, 任军平, 等. 矿产资源潜力评价方法对比及其发展趋势探讨[J]. 西北地质, 2023, 56(2): 292-305.

    Google Scholar

    ZHANG Jinrui, CHEN Hua, REN Junping, et al. Mineral Resource Assessment Methods Comparison and Its Development Trend Discussion[J]. Northwestern Geology, 2023, 56(2): 292-305.

    Google Scholar

    [19] 周光锋. 基于机器学习的个旧地区锡铜多金属矿成矿预测[D]. 北京: 中国地质大学(北京), 2021

    Google Scholar

    ZHOU Guangfeng. Mapping mineral prospectivity for Tin-Copper polymetallic mineralization by maschine learning methods in Gejiu, Yunnan province, China[D]. Beijing: China University of Geosciences (Beijing), 2021.

    Google Scholar

    [20] Agterberg F P. Computer Programs for Mineral Exploration[J]. Science, 1989, 245(4913): 76–81. doi: 10.1126/science.245.4913.76

    CrossRef Google Scholar

    [21] Agterberg F P, Bonham-Carter G F. Statistical applications in the earth sciences[M]. Canada: Geological Survey of Canada, 1990.

    Google Scholar

    [22] Agterberg F P, Bonharn-Carter G F. Weights of Evidence Modeling And Weighted Logistic Regression For Mineral Potential Mapping[M]. New York: Oxford University Press, 1994.

    Google Scholar

    [23] Ali K, Cheng Q M, Chen Z J. Multifractal power spectrum and singularity analysis for modelling stream sediment geochemical distribution patterns to identify anomalies related to gold mineralization in Yunnan Province, South China[J]. Geochemistry: Exploration, Environment, Analysis, 2007, 7(4): 293-301. doi: 10.1144/1467-7873/06-116

    CrossRef Google Scholar

    [24] Ayres R U, Ayres L W, Råde I. The Life Cycle of Copper, Its Co-Products and Byproducts[M]. Dordrecht: Springer Netherlands, 2003.

    Google Scholar

    [25] Carranza E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]. Boston: Elsevier, 2009.

    Google Scholar

    [26] Chauhan S, Sharma M, Arora M K, et al. Landslide Susceptibility Zonation through ratings derived from Artificial Neural Network[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(5): 340–350. doi: 10.1016/j.jag.2010.04.006

    CrossRef Google Scholar

    [27] Chen Y L, Wu W. A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis[J]. Ore Geology Reviews, 2016, 74: 26–38. doi: 10.1016/j.oregeorev.2015.11.011

    CrossRef Google Scholar

    [28] Cheng Q M. GeoData Analysis System (GeoDAS) for mineral exploration: user’s guide and exercise manual[C] .Canada: Material for the training workshop on GeoDAS held at York University, 2000.

    Google Scholar

    [29] Cheng Q M. A New Model for Quantifying Anisotropic Scale Invariance and for Decomposition of Mixing Patterns[J]. Mathematical Geology, 2004, 36(3): 345–360. doi: 10.1023/B:MATG.0000028441.62108.8a

    CrossRef Google Scholar

    [30] Cheng Q M. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China[J]. Ore Geology Reviews, 2007, 32(1–2): 314–324. doi: 10.1016/j.oregeorev.2006.10.002

    CrossRef Google Scholar

    [31] Cheng Q M. Non-Linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments[J]. Mathematical Geosciences, 2008a, 40(5): 503–532. doi: 10.1007/s11004-008-9172-6

    CrossRef Google Scholar

    [32] Cheng Q M. Modeling Local Scaling Properties for Multiscale Mapping[J]. Vadose Zone Journal, 2008b, 7(2): 525–532. doi: 10.2136/vzj2007.0034

    CrossRef Google Scholar

    [33] Cheng Q M. Multifractal interpolation method for spatial data with singularities[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2015, 115(3): 235-240. doi: 10.17159/2411-9717/2015/v115n3a9

    CrossRef Google Scholar

    [34] Cheng Q M, Agterberg F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 1999, 8(1): 27-35. doi: 10.1023/A:1021677510649

    CrossRef Google Scholar

    [35] Cheng Q M, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2): 109–130. doi: 10.1016/0375-6742(94)90013-2

    CrossRef Google Scholar

    [36] Cheng Q M, Zhang S Y. Fuzzy weights of evidence method implemented in GeoDAS GIS for information extraction and integration for prediction of point events[C]. Toronto: International Geoscience and Remote Sensing Symposium, 2002, 5: 2933-2935.

    Google Scholar

    [37] Egan J P. Signal detection theory and ROC-analysis[M]. New York: Academic Press, 1975.

    Google Scholar

    [38] Fabrigar L R, Wegener D T, MacCallum R C, et al. Evaluating the use of exploratory factor analysis in psychological research. [J]. Psychological Methods, 1999, 4(3): 272–299. doi: 10.1037/1082-989X.4.3.272

    CrossRef Google Scholar

    [39] Hassanpour S, Afzal P. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran[J]. Arabian Journal of Geosciences, 2013, 6(3): 957–970. doi: 10.1007/s12517-011-0396-2

    CrossRef Google Scholar

    [40] HUO Yujia, WANG Yongzhi, WU Qinghua, et al. Analysis method of gold reserve mineral deposit in Yunnan Province based on fuzzy evidence weight[J]. Progress in Geophysics, 2022, 37(6): 2552-2561.

    Google Scholar

    [41] Xiao F, Wang K Q, Hou W S, et al. Prospectivity Mapping for Porphyry Cu–Mo Mineralization in the Eastern Tianshan, Xinjiang, Northwestern China[J]. Natural Resources Research, 2020, 29(1): 89–113. doi: 10.1007/s11053-019-09486-5

    CrossRef Google Scholar

    [42] Yang S Y, Jang S Y, Li L, et al. Late Mesozoic magmatism of the Jiurui mineralization district in the Middle–Lower Yangtze River Metallogenic Belt, Eastern China: Precise U–Pb ages and geodynamic implications[J]. Gondwana Research, 2011, 20(4): 831-843. doi: 10.1016/j.gr.2011.03.012

    CrossRef Google Scholar

    [43] Keller C P. Geographic information systems for geoscientists: Modelling with GIS[J]. Computers & Geosciences, 1995, 21(9): 1110-1112.

    Google Scholar

    [44] Li H L, Li Z H, Ouyang Y P, et al. Application of principal component analysis and a spectrum-area fractal model to identify geochemical anomalies associated with vanadium mineralization in northeastern Jiangxi Province, South China[J]. Geochemistry: Exploration, Environment, Analysis, 2022, 22(3): 2021-090.

    Google Scholar

    [45] Mandelbrot B B. The fractal geometry of nature[M]. Deutschland: W. H. Freeman and Company, 1982.

    Google Scholar

    [46] Mudd G. M. , Jowitt S. M. Growing Global Copper Resources, Reserves and Production: Discovery Is Not the Only Control on Supply[J]. Economic Geology, 2018, 113(6): 1235-1267. doi: 10.5382/econgeo.2018.4590

    CrossRef Google Scholar

    [47] Nykänen V. Radial Basis Functional Link Nets Used as a Prospectivity Mapping Tool for Orogenic Gold Deposits Within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield[J]. Natural Resources Research, 2008, 17(1): 29-48. doi: 10.1007/s11053-008-9062-0

    CrossRef Google Scholar

    [48] Nykänen V, Lahti I, Niiranen T, et al. Receiver operating characteristics (ROC) as validation tool for prospectivity models — A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland[J]. Ore Geology Reviews, 2015, 71: 853-860. doi: 10.1016/j.oregeorev.2014.09.007

    CrossRef Google Scholar

    [49] Pan Y M, Dong P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 1999, 15(4): 177-242. doi: 10.1016/S0169-1368(99)00022-0

    CrossRef Google Scholar

    [50] Parsa M, Maghsoudi A, Yousefi M, et al. Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets[J]. Journal of African Earth Sciences, 2017, 128: 5-15. doi: 10.1016/j.jafrearsci.2016.11.021

    CrossRef Google Scholar

    [51] Porwal A, Carranza E J M, Hale M. A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping[J]. Natural Resources Research, 2006, 15(1): 1-14 . doi: 10.1007/s11053-006-9012-7

    CrossRef Google Scholar

    [52] Rossi M, Guzzetti F, Reichenbach P, et al. Optimal landslide susceptibility zonation based on multiple forecasts[J]. Geomorphology, 2010, 114(3): 129-142. doi: 10.1016/j.geomorph.2009.06.020

    CrossRef Google Scholar

    [53] Swets J A. Signal Detection Theory and ROC Analysis in Psychology and Diagnostics Psychology Press[M]. New York: Psychology Press, 2014.

    Google Scholar

    [54] Zhang D J, Agterberg F, Cheng Q M, et al. A Comparison of Modified Fuzzy Weights of Evidence, Fuzzy Weights of Evidence, and Logistic Regression for Mapping Mineral Prospectivity[J]. Mathematical Geosciences, 2014, 46(7): 869-885. doi: 10.1007/s11004-013-9496-8

    CrossRef Google Scholar

    [55] Zhang Z J, Zuo R G, Xiong Y H. A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China[J]. Science China Earth Sciences, 2016, 59(3): 556-572. doi: 10.1007/s11430-015-5178-3

    CrossRef Google Scholar

    [56] Zheng Y Y, Sun X, Gao S B, et al. Analysis of stream sediment data for exploring the Zhunuo porphyry Cu deposit, southern Tibet[J]. Journal of Geochemical Exploration, 2014, 143: 19-30. doi: 10.1016/j.gexplo.2014.02.012

    CrossRef Google Scholar

    [57] Zou K H, O’Malley A J, Mauri L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models[J]. Circulation, 2007, 115(5): 654-657. doi: 10.1161/CIRCULATIONAHA.105.594929

    CrossRef Google Scholar

    [58] Zuo R G, Carranza E J M, Cheng Q. Fractal/multifractal modelling of geochemical exploration data[J]. Journal of Geochemical Exploration, 2012, 122: 1-3. doi: 10.1016/j.gexplo.2012.09.009

    CrossRef Google Scholar

    [59] Zuo R G, Xia Q L, Zhang D J. A comparison study of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas[J]. Applied Geochemistry, 2013, 33: 165-170. doi: 10.1016/j.apgeochem.2013.02.009

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(1284) PDF downloads(67) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint