2024 Vol. 57, No. 4
Article Contents

MENG Wuyi, ZHANG Zhen, GAO Yongbao, WEI Liyong, JIA Bin, ZHENG Xin, LIU Ningbo. 2024. Material Composition and Geological Significance of the Newly Discovered Wangzhuang Gold Deposit in South Qinling. Northwestern Geology, 57(4): 157-169. doi: 10.12401/j.nwg.2023178
Citation: MENG Wuyi, ZHANG Zhen, GAO Yongbao, WEI Liyong, JIA Bin, ZHENG Xin, LIU Ningbo. 2024. Material Composition and Geological Significance of the Newly Discovered Wangzhuang Gold Deposit in South Qinling. Northwestern Geology, 57(4): 157-169. doi: 10.12401/j.nwg.2023178

Material Composition and Geological Significance of the Newly Discovered Wangzhuang Gold Deposit in South Qinling

More Information
  • The Wangzhuang gold deposit is a newly discovered deposit in South Qinling in 2021. The ore type is a fine disseminated type. The ore body is controlled by both structure and stratum, and it is produced in an interlayer fracture zone. The main metallic minerals of the Wangzhuang gold deposit are arsenopyrite and pyrite, According to microscopic identification and electron probe analysis, the gold is mainly invisible gold in arsenopyrite and arsenian pyrite, and no natural gold is found. Based on the field work, the Wangzhuang gold deposit can be divided into four ore-forming stages: I, the early ore-forming-stage of pyrite quartz veins; II, the main stage of arsenopyrite, pyrite, and quartz veins; III, quartz veins with a small amount of polymetallic sulfide stage; IV, late carbonate stage. The pyrite in different stages has different characteristics of trace elements: stage I pyrite is poor in As and Au, rich in Fe and S; the pyrite of stage II and III are characterized by high As, Au, low S and Fe, and there is a positive correlation between Au and As in pyrite of this stage. The average Co/Ni ratio of pyrite in the Wangzhuang gold deposit is 2.03 and the median is 1.34, indicating that pyrite formed in the ore-forming master stage has the addition of magmatic fluid. In addition, there are two gold-bearing areas in the range of Co/Ni < 1 and 1.2 < Co/Ni < 2.5, indicating that there may be mineralization of two different fluids. Based on the geological and mineral fabric characteristics of the deposit, it is preliminarily concluded that there is multi-stage mineralization in the Wangzhuang gold deposit.

  • 加载中
  • [1] 陈懋弘, 毛景文, 陈振宇, 等. 滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J]. 矿床地质, 2009, 28(5): 539-557.

    Google Scholar

    CHEN Maohong, MAO Jingwen, CHEN Zhenyu, et al. Mineralogical study on arsenic-pyrite and arsenopyrite in Carlin-type gold deposits in Yunnan-Qian-Guangxi "Golden Triangle" [J]. Mineral Deposits, 2009, 28(5): 539-557.

    Google Scholar

    [2] 陈衍景. 初论浅成作用和热液矿床成因分类[J]. 地学前缘, 2010a, 17(2): 27-34

    Google Scholar

    CHEN Yanjing. Preliminary discussion on the genetic classification of epigenesis and hydrothermal deposit [J]. Earth Science Frontiers, 2010, 17(2): 27-34.

    Google Scholar

    [3] 陈衍景. 秦岭印支期构造背景、岩浆活动及成矿作用[J]. 中国地质, 2010b, 37(4): 854-865 doi: 10.3969/j.issn.1000-3657.2010.04.003

    CrossRef Google Scholar

    CHEN Yanjing. The Indosinian tectonic setting, magmatism and mineralization of Qinling Mountains [J]. Geology in China, 2010, 37(4): 854-865. doi: 10.3969/j.issn.1000-3657.2010.04.003

    CrossRef Google Scholar

    [4] 陈龙龙, 唐利, 沈彦谋, 等. 秦岭造山带栾川Mo-W矿集区和柞水–山阳Cu-Mo矿集区斑岩型矿床成矿差异性对比[J]. 西北地质, 2024, 57(2): 67−89.

    Google Scholar

    CHEN Longlong, TANG Li, SHEN Yanmou, et al. Comparison on Metallogenic Differences of Porphyry Deposits between Luanchuan Mo-W and Zhashui-Shanyang Cu-Mo Ore-clusters in Qinling Orogenic Belt: Constraints of Magmatic Source and Metallogenic Conditions[J]. Northwestern Geology, 2024, 57(2): 67−89.

    Google Scholar

    [5] 杜玉良, 汤中立, 蔡克勤, 等. 秦岭—祁连造山带印支-燕山期构造与大型-超大型矿床的形成关系[J]. 矿床地质, 2003, 22 (1): 65-71 doi: 10.3969/j.issn.0258-7106.2003.01.007

    CrossRef Google Scholar

    DU Yuliang, TANG Zhongli, CAI Keqin, et al. The relationship between the Indosinian-Yanshanian structure and the formation of large and super-large deposits in the Qinling-Qilian orogenic belt [J]. Mineral Deposits, 2003, 22(1): 65-71. doi: 10.3969/j.issn.0258-7106.2003.01.007

    CrossRef Google Scholar

    [6] 葛战林, 顾雪祥, 章永梅, 等. 南秦岭柞水−山阳矿集区金盆梁金矿床载金硫化物矿物学特征及成矿指示[J]. 西北地质, 2023, 56(5): 278−293.

    Google Scholar

    GE Zhanlin, GU Xuexiang, ZHANG Yongmei, et al. Mineralogical Characteristics and Metallogenic Indication of Gold−Bearing Sulfides in the Jinpenliang Gold Deposit, Zhashui−Shanyang Ore Cluster Area, South Qinling[J]. Northwestern Geology, 2023, 56(5): 278−293.

    Google Scholar

    [7] 刘新会, 刘爽, 杨登美, 等. 中秦岭金龙山金矿床地质特征及找矿方向[J]. 西北地质, 2008, 41(1): 81−89.

    Google Scholar

    LIU Xinhui, LIU Shuang;YANG Dengmei, et al . Geological Characteristics and Ore-Searching Direction of Jinlongshan Gold Deposit, Mid-Qinling[J]. Northwestern Geology, 2008, 41(1): 81−89.

    Google Scholar

    [8] 孟五一, 刘家军, 魏立勇, 等. 陕西旬阳地区小河金矿硫铅同位素组成及地质意义[J]. 现代地质, 2021, 35(6): 1587-1596 doi: 10.19657/j.geoscience.1000-8527.2021.115

    CrossRef Google Scholar

    MENG Wuyi, LIU Jiajun, WEI Liyong, et al. Sulfur and lead isotope composition and geological significance of Xiaohe gold deposit in Xunyang area, Shaanxi Province [J]. Geoscience, 2021, 35(6): 1587-1596. doi: 10.19657/j.geoscience.1000-8527.2021.115

    CrossRef Google Scholar

    [9] 冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.

    Google Scholar

    RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.

    Google Scholar

    [10] 沙亚洲, 王菊婵, 康清清, 等. 南秦岭旬阳烂木沟地区下志留统金矿地质特征及控矿因素浅析[J]. 西北地质, 2013, 46(2): 99−110.

    Google Scholar

    SHA Yazhou, WANG Juchan, KANG Qingqing, et al. Analysis on Geological Characteristics and Ore-controlling Factors of Silurian Gold Mine in South Qinling the Xunyang Lanmugou Area[J]. Northwestern Geology, 2013, 46(2): 99−110.

    Google Scholar

    [11] 唐永忠, 朱增伍, 吴昊, 等. 南秦岭镇旬盆地微细浸染型金矿矿化特征与成矿动力学机制[J]. 矿产勘查, 2016, 7(2): 307-315 doi: 10.3969/j.issn.1674-7801.2016.02.009

    CrossRef Google Scholar

    TANG Yongzhong, ZHU Zengwu, WU Hao, et al. Sulfur and Lead isotopic composition of Xiaohe Gold deposit in Xunyang Area of Shaanxi Province and its Geological Significance Mineralization characteristics and metallogenic dynamics of fine disseminated gold deposit in Zhenxi Basin, Southern Qinling [J]. Mineral Exploration, 2016, 7(2): 307-315. doi: 10.3969/j.issn.1674-7801.2016.02.009

    CrossRef Google Scholar

    [12] 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48−62.

    Google Scholar

    WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48−62.

    Google Scholar

    [13] 谢才富, 熊成云, 胡宁, 等. 东秦岭造山带“两阶段双带”区域成矿模式[J]. 地质科技情报, 2004, 23(2): 77-81

    Google Scholar

    XIE Caifu, XIONG Chengyun, HU Ning, et al. Regional metallogenic model of "two stages and two belts" in East Qinling orogenic belt [J]. Bulletin of Geological Science and Technology, 2004, 23(2): 77-81.

    Google Scholar

    [14] 徐林刚, 郑伟. 南秦岭旬阳盆地志留纪黑色岩系与Pb-Zn矿床成矿的关系[J]. 地质学报, 2021, 95(6): 1854-1867 doi: 10.3969/j.issn.0001-5717.2021.06.013

    CrossRef Google Scholar

    XU Lingang, ZHENG Wei. Relationship between Silurian black rock series and metallogenesis of Pb-Zn deposits in Xunyang Basin, South Qinling [J]. Acta Geologica Sinica, 2021, 95(6): 1854-1867. doi: 10.3969/j.issn.0001-5717.2021.06.013

    CrossRef Google Scholar

    [15] 薛春纪, 刘淑文, 冯永忠, 等. 南秦岭旬阳盆地下古生界热水沉积成矿地球化学[J]. 地质通报, 2005, 24(10): 53-60 doi: 10.3969/j.issn.1671-2552.2005.10.009

    CrossRef Google Scholar

    XUE Chunji, LIU Shuwen, FENG Yongzhong, et al. Geochemistry of Lower Paleozoic hydrothermal sedimentary mineralization in Xunyang Basin, South Qinling [J]. Geological Bulletin of China, 2005, 24(10): 53-60. doi: 10.3969/j.issn.1671-2552.2005.10.009

    CrossRef Google Scholar

    [16] 杨荣生, 陈衍景, 谢景林. 甘肃阳山金矿床含砷黄铁矿及毒砂的XPS研究[J]. 岩石学报, 2009, 25(11): 2791-2800

    Google Scholar

    YANG Rongsheng, CHEN Yanjing, XIE Jinglin. XPS study on arsenic-bearing pyrite and arsenopyrite in Yangshan gold Deposit, Gansu Province [J]. Acta Petrologica Sinica, 2009, 25(11): 2791-2800.

    Google Scholar

    [17] 姚书振, 丁振举, 周宗桂, 等. 秦岭造山带金属成矿系统[J]. 地球科学: 中国地质大学学报, 2002, 27(5): 599-605.

    Google Scholar

    YAO Shuzhen, DING Zhenju, ZHOU Zonggui, et al. Metal metallogenic system of Qinling orogenic belt [J]. Journal of Earth Science, 2002, 27(5): 6.

    Google Scholar

    [18] 张国伟. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001

    Google Scholar

    ZHANG Guowei. Qinling orogenic belt and continental dynamics [M]. Beijing: Science Press, 2001.

    Google Scholar

    [19] 邹海洋, 陈松岭, 胡祥, 等. 淋湘金矿地球化学特征[J]. 中南工业大学学报(自然科学版), 2001, (2): 111-114

    Google Scholar

    ZHOU Haiyang, CHEN Songling, HU Xiang, et al. Geochemical characteristics of Linxiang gold deposit [J]. Journal of Central South University(Science and Technology), 2001, (2): 111-114.

    Google Scholar

    [20] Bowell R J, Baumann M, Gingrich M, et al. The occurrence of gold at the Getchell mine, Nevada[J]. Journal of Geochemical Exploration, 1999, 67(1–3): 127-143. doi: 10.1016/S0375-6742(99)00062-X

    CrossRef Google Scholar

    [21] Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems - Evidences from southern tuscany pyritic deposits[J]. Mineralium Deposita, 1979, 14(3): 353-374.

    Google Scholar

    [22] Chen F, Deng J, Wang Q, et al. LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes[J]. Ore Geology Reviews, 2020, (117): 103309.

    Google Scholar

    [23] Cline J S, Hofstra A H, Muntean J L, et al. Carlin-Type Gold Deposits in NevadaCritical Geologic Characteristics and Viable Models[M]. One Hundredth Anniversary Volume, 2005.

    Google Scholar

    [24] Cook N J, Ciobanu C L and Mao J W. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China)[J]. Chemical Geology, 264(1-4): 101-121.

    Google Scholar

    [25] Ma Y, Zhu L, Lu R, et al. Geology and in-situ sulfur and lead isotope analyses of the Jinlongshan Carlin-type gold deposit in the Southern Qinling Orogen, China: Implications for metal sources and ore genesis - ScienceDirect[J]. Ore Geology Reviews, 2020, 126(0)103777.

    Google Scholar

    [26] Martin, Reich, And, et al. Solubility of gold in arsenian pyrite[J]. Geochimica Et Cosmochimica Acta, 2005, 69(11): 2781-2796. doi: 10.1016/j.gca.2005.01.011

    CrossRef Google Scholar

    [27] Zhang J, Deng J, Chen H Y, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process[J]. Gondwana Research, 2014, 26 (2): 557-575. doi: 10.1016/j.gr.2013.11.003

    CrossRef Google Scholar

    [28] Zhang Y, Tang H S, Chen Y J, et al. Ore geology, fluid inclusion and isotope geochemistry of the Xunyang Hg-Sb orefield, Qinling Orogen, Central China[J]. Geological Journal, 2014, 49(4-5): 463-481. doi: 10.1002/gj.2560

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(225) PDF downloads(63) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint