Citation: | XU Kangkang, XIE Wei, LIU Xiaoyang, ZHAO Xiaobo, GU Yanjing. 2024. Zircon U-Pb Age, Geochemistry and Geological Significance of the Basic-Acidic Rocks in the Ubendian Belt, Tanzania. Northwestern Geology, 57(3): 209-222. doi: 10.12401/j.nwg.2023147 |
The Ubendian Belt, which is situated on Tanzania’s southwest border, has undergone a multi-stage tectonic evolution history. Compared with other stages, there has been comparatively little research on the Mesoproterozoic Mag Matism, which restricts the study on the Mesoproterozoic tectonic evolution history of Ubendian Belt. Based on this, the Mesoproterozoic gabbro and syenite are selected for petrological, geochronology and geochemistry studies. The results show that the crystallization ages of the gabbro and syenogranite are (1433±9) Ma and (1428±11) Ma, respectively, indicating they are Mesoproterozoic. The gabbro is characterized by high content of TiO2(2.6%) and Ti/Y ratio (601), enriched in LREE with (La/Yb)N of 4.85, and slightly positive Eu ano Malies (δEu=1.02). The LILEs (Rb, Ba, Sr, K) are enriched and HFSEs (Nb, Ta, Zr) are depleted, the geochemical features of the gabbro are consistent with continental flood basalts (CFB), indicating that it May be the production of a low degree partial melting of the enriched continental lithospheric Mantle. The syenites have high contents of SiO2 (71.59%~75.08%), they are characterized by enrichment in LREE with (La/Yb)N of 22.86~28.51, significant negative Eu ano Malies (δEu=0.12~0.34). Their values of Ga/Al are high (Ga/Al×104=2.98~3.11) and the content of Zr+Nb+Ce+Y is much larger than 350×10−6, indicating that they are A-type granites. The lower Mg# values (6~10) and Sr/Y ratios (0.17~0.65), indicating that they are the production of partial melting of basaltic rocks in the middle-lower crust. Both of the gabbro and syenite originated within an intra-plate rifting enviroment, which is consistent with the global tectonic regime of the Columbia Supercontinent rifting event.
[1] | 陈雪峰, 刘希军, 许继峰, 等. 桂西那坡基性岩地球化学: 峨眉山地幔柱与古特提斯俯冲相互作用的证据[J]. 大地构造与成矿学, 2016, 40(3): 545-562 CHEN Xuefeng, LIU Xijun, XU Jifeng, et al. Geochemistry of Mafic Rocks in the Napo Area, Western Guangxi, South China: Evidence for Interaction Between the Emeishan Mantle Plume and Paleotethyan Subduction[J]. Geotectonica et Metallogenia, 2016, 40(3): 545-562. |
[2] | 孙凯, 刘晓阳, 何胜飞, 等.坦桑尼亚水系沉积物地球化学特征及金资源前景[J]. 地质通报, 2023, 42(8): 1258−1275. SUN Kai, LIU Xiaoyang, HE Shengfei, et al. Geochemical characteristics of stream sediment in Tanzania and prospective analysis of gold resources[J]. Geological Bulletin of China, 2023, 42(8): 1258−1275. |
[3] | 王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. 华北地质, 2022, 45(1): 101-110 WANG Jie, LIU Xiaoyang, REN Junping, et al. Precambrian mineralization in Tanzania[J]. North China Geology, 2022, 45(1): 101-110. |
[4] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604 doi: 10.3321/j.issn:0023-074X.2004.16.002 WU Yuanbao, ZHENG Yongfei. Genetic mineralogy of zircons and its constraints to the age of U-Pb geochronology[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 |
[5] | 徐义刚, 王焰, 位荀, 等. 与地幔柱有关的成矿作用及其主控因素[J]. 岩石学报, 2013, 29(10): 3307-3322 XU Yigang, WANG Yan, WEI Xun, et al. Mantle plume-related mineralization and their principal controlling factors[J]. Acta Petrologica Sinica, 2013, 29(10): 3307-3322. |
[6] | 张健, 李怀坤, 张传林, 等. 塔里木克拉通东北缘 Columbia 超大陆裂解事件: 库鲁克塔格地区辉绿岩床的地球化学, 锆石 U-Pb 年代学和 Hf-O 同位素证据[J]. 地学前缘, 2018, 25(6): 106-123 ZHANG Jian, LI Huaikun, ZHANG Chuanlin, et al. New evidence for the breakup of the Columbia supercontinent from the northeastern margin of Tarim Craton: rock geochemistry, zircon U-Pb geochronology and Hf-O isotopic compositions of the ca. 1.55 Ga diabase sills in the Kuruktag area[J]. Earth Science Frontier, 2018, 25(6): 106-123. |
[7] | 张招崇, 王福生, 范蔚茗, 等. 峨眉山玄武岩研究中的一些问题的讨论[J]. 岩石矿物学杂志, 2001, 20(3): 239-246 doi: 10.3969/j.issn.1000-6524.2001.03.005 ZHANG Zhaochong, WANG Fusheng, FAN Weiming, et al. A Discussion on Some Problems Concerning the Study of the Emeishan Basalts[J]. Acta Petrologica ET Mineralogica, 2001, 20(3): 239-246. doi: 10.3969/j.issn.1000-6524.2001.03.005 |
[8] | 周佐民, 李勇, 刘晓阳, 等. 苏丹红海州新元古代A型花岗岩的地球化学特征及构造意义[J]. 华北地质, 2023, 46(1): 71-86 ZHOU Zuomin, LI Yong, LIU Xiaoyang, et al. Geochemical characteristics and tectonic implications of the Neoproterozoic A-type granites in Red Sea State, Sudan[J]. North China Geology, 2023, 46(1): 71-86. |
[9] | Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53(3-4): 303-323. doi: 10.1016/0009-2541(85)90076-2 |
[10] | Belousova E, Griffin W L, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to mineralogy and petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 |
[11] | Biyashev M, Pentelkov V, Emelyanov S, et al. Sitalike: Geological Map Quarter Degree Sheet 170[M]. Geological Survey of Tanzania, Dodoma, 1977. |
[12] | Boniface N, Schenk V, Appel P. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry[J]. Precambrian Research, 2012, 192: 16-33. |
[13] | Boniface N, Schenk V. Neoproterozoic eclogites in the PaleoproterozoicUbendian Belt of Tanzania: evidence for a Pan-African suture between the Bang-weulu Block and the Tanzania Craton[J]. Precambrian Research, 2012, 208: 72-89. |
[14] | Boniface N, Schenk V, Appel P. Mesoproterozoic high-grade metamorphism in pelitic rocks of the northwestern Ubendian Belt: Implication for the extension of the Kibaran intra-continental basins to Tanzania[J]. Precambrian Research, 2014, 249: 215-228. doi: 10.1016/j.precamres.2014.05.010 |
[15] | Boniface N, Appel P. Stenian-Tonian and Ediacaran metamorphic imprints in the southern Paleoproterozoic Ubendian Belt, Tanzania: Constraints from in situ monazite ages[J]. Journal of African Earth Sciences, 2017, 133: 25-35. doi: 10.1016/j.jafrearsci.2017.05.005 |
[16] | Boven A, Theunissen K, Skylarov E, et al. Timing of exhumation of a high-pressure mafic granulite terrane of the Paleoproterozoic Ubende belt (West Tanzania)[J]. Precambrian Research, 1999, 93: 119-137. doi: 10.1016/S0301-9268(98)00101-6 |
[17] | Cai Y, Wang Y, Cawood P A, et al. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008 |
[18] | Chusi L, Nicholas T A, Tang Q Y, et al. Trace element indiscrimination diagrams[J]. Lithos, 2015, 232: 76-83. doi: 10.1016/j.lithos.2015.06.022 |
[19] | Daly M C, Klerkx J, Nanyaro J T. Early Proterozoic terranes and strike-slip accretion in the Ubendian Belt of southwest Tanzania[J]. Terra Cognita, 1985, 5: 257. |
[20] | Daly M C. Crustal shear zones in Central Africa: a kinematic approach toProterozoic Tectonics[J]. Episodes, 1988, 11(1): 5-11. doi: 10.18814/epiiugs/1988/v11i1/003 |
[21] | DePaolo D J, Daley E E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension[J]. Chemical Geology, 2000, 169(1-2): 157-185. doi: 10.1016/S0009-2541(00)00261-8 |
[22] | Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Bulletin, 2011, 123(3-4): 387-411. |
[23] | Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 1992, 20, 641–644. |
[24] | Elburg M, Goldberg A. Age and geochemistry of Karoo dolerite dykes from northeast Botswana[J]. Journal of African Earth Sciences, 2000, 31(3-4): 539-554. doi: 10.1016/S0899-5362(00)80006-8 |
[25] | Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of petrology, 2001, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033 |
[26] | Griffiths R W, Campbell I H. Stirring and structure in mantle starting plumes[J]. Earth and Planetary Science Letters, 1990, 99(1-2): 66-78. doi: 10.1016/0012-821X(90)90071-5 |
[27] | Hoffman P F. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 1988, 16(1): 543-603. |
[28] | Huppert H E, Sparks R S J. The generation of granitic magmas by intrusion of basalt into continental crust[J]. Jour Petrol, 1988, 29(3): 599-624. doi: 10.1093/petrology/29.3.599 |
[29] | Kampunzu A B, Tombale A R, Zhai M, et al. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton[J]. Lithos, 2003, 71(2-4): 431-460. doi: 10.1016/S0024-4937(03)00125-7 |
[30] | Kazimoto E O, Schenk V, Berndt J. Neoarchean and Paleoproterozoic crust formation in the Ubendian Belt of Tanzania: Insights from zircon geochronology and geochemistry[J]. Precambrian Research, 2014, 252: 119-144. doi: 10.1016/j.precamres.2014.06.020 |
[31] | King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology. 1997, 38, 371–391. |
[32] | Klerkx J, Liégeois J P, Lavreau J, et al. Crustal evolution of the northern Kibaran Belt, eastern and central Africa. Proterozic Lithospheric Evolution, 1987, 17: 217-233. |
[33] | Kokonyangi J, Kampunzu, A B, Poujol M, et al. Petrology and geochronology of Mesoproterozoic mafic-intermediate plutonic rocks from Mitwaba (DR Congo): implications for the evolution of the Kibaran Belt in central Africa[J]. Geological Magazine, 2005, 142(1): 109~130. doi: 10.1017/S0016756804009951 |
[34] | Lawley C J M, Selby D, Condon D J, et al. Lithogeochemistry, geochronology and geodynamic setting of the Lupa Terrane, Tanzania: implications for the extent of the Archean Tanzanian Craton[J]. Precambrian Research, 2013, 231: 174-193. doi: 10.1016/j.precamres.2013.02.012 |
[35] | Lenoir J L, Liégeois J P, Theunissen K, et al. The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure[J]. Journal of African Earth Sciences, 1994, 19(3): 169-184. doi: 10.1016/0899-5362(94)90059-0 |
[36] | Liu S, Hu R Z, Gao S, et al. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China[J]. Lithos, 2008, 106, 365-379. doi: 10.1016/j.lithos.2008.09.004 |
[37] | Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 1979, 11(7): 468. |
[38] | Ludwig K R. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel[M]. Geochronological Center, Special Publication No. 4, Berkeley, 2003, 25-32. |
[39] | Manya S, Kobayashi K, Maboko M A H, et al. Ion microprobe zircon U–Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton[J]. Journal of African Earth Sciences, 2006, 45(3): 355-366. doi: 10.1016/j.jafrearsci.2006.03.004 |
[40] | Mcconnell R B. Outline of the geology of Ufipa and Ubende[M]. Tanganyika Geological Survey, Dodoma, 1950, 1-62. |
[41] | Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0 |
[42] | Niu Y, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108(B4): 1-18. |
[43] | Niu Y L. The origin of alkaline lavas[J]. Science, 2008, 320(5878): 883-884. doi: 10.1126/science.1158378 |
[44] | Patiño Douce A E, Beard J S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 1995, 36, 707-738. |
[45] | Pearce J A. Immobile element fingerprinting of ophiolites[J]. Elements, 2014, 10(2): 101-108. doi: 10.2113/gselements.10.2.101 |
[46] | Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891 |
[47] | Ring U, Kröner A, Toulkeridis T. Palaeoproterozoic granulite-facies metamorphism and granitoid intrusions in the Ubendian-Usagaran Orogen of northern Malawi, east-central Africa[J]. Precambrian Research, 1997, 85(1-2): 27-51. doi: 10.1016/S0301-9268(97)00028-4 |
[48] | Rogers J J W, Santosh M, Yoshida A M. Mesoproterozoic Supercontinent (Call f or papers)[J]. Gondwana Research, 2000, (4): 590~591. |
[49] | Smirnov V, Pentelkov V, Tolochko V, et al. Geology and Minerals of the Central Part of the Wstern Resource Division, Dodoma, Tanzania[R]. Unpublished report of the geological mapping, 1973, 1-333. |
[50] | Stendal H, Frei R, Muhongo S, et al. Gold potential of the Mpanda Mineral Field, SW Tanzania: evaluation based on geological, lead isotopic and aeromagnetic data[J]. Journal of African Earth Sciences, 2004, 38(5): 437-447. doi: 10.1016/j.jafrearsci.2004.04.005 |
[51] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[52] | Sutton J, Watson J, James T C. A study of the metamorphic rocks of Karema and Kungwe Bay, Western Tanganyika[M]. Tanganyika Geological Survey , Bulletin, 1954, 22. |
[53] | Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97, 261-280. doi: 10.1086/629302 |
[54] | Tack L, Wingate M T D, De Waele B, et al. The 1375Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Research, 2010, 180(1-2): 63-84. |
[55] | Theunissen K, Lenoir J L, Liégois J P, et al. Major Pan-African imprint in the Ubendian Belt of SW Tanzania: U-Pb zircon geochronology and structural context[J]. Comptes-rendus del Académie des Sciences de Paris, 1992, 314, 1355-1362. |
[56] | Thomas R, Jacobs J, Aelburg M, et al. New U-Pb-Hf zircon isotope data for the Paleoproterozoic Ubendian belt in the Chimala area, SW Tanzania[J]. Geoscience Frontiers, 2019, 10(6), 1993-2006. doi: 10.1016/j.gsf.2018.05.010 |
[57] | Tulibonywa T, Manya S, Torssander P, et al. Geochemistry of the Palaeoproterozoic volcanic and associated potassic granitic rocks of the Ngualla area of the Ubendian Belt, SW Tanzania[J]. Journal of African Earth Sciences, 2017, 129: 291-306. doi: 10.1016/j.jafrearsci.2017.01.022 |
[58] | Wang X, Lv X, Cao X, et al. Palaeo-Mesoproterozoic magmatic and metamorphic events from the Kuluketage block, northeast Tarim Craton: geochronology, geochemistry and implications for evolution of Columbia[J]. Geological Journal, 2018, 53(1): 120-138. doi: 10.1002/gj.2881 |
[59] | Wang Y J, Zhang A M, Fan W M, et al. Origin of paleosubduction-modifified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence[J]. Lithos, 2013, 160, 37-54. |
[60] | Watkins J, Clemens J, Treloar P. Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 2007, 154, 91-110. |
[61] | Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to mineralogy and petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202 |
[62] | Wilson M. Igneous Petrogenesis[M]. Springer Netherlands, London, 1989, 22. |
[63] | Wu C Z, Santosh M, Chen Y J, et al. Geochronology and geochemistry of Early Mesoproterozoic meta-diabase sills from Quruqtagh in the northeastern Tarim Craton: implications for breakup of the Columbia supercontinent[J]. Precambrian Research, 2014, 241: 29-43. doi: 10.1016/j.precamres.2013.11.007 |
[64] | Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187, 143–173. doi: 10.1016/S0009-2541(02)00018-9 |
[65] | Xu Y, Chung S L, Jahn B, M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58(3-4): 145-168. |
[66] | Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr–Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1): 1-19. doi: 10.1007/s00410-005-0030-y |
(a) Simplified geological maps of Mbeya, Tanzania and (b) the Ubendian Belt
(a) Microscope photographs of the gabbro and (b) syenogranite in Ubendian Belt
(a, c) Cathodoluminescence (CL) images and (b, d) U-Pb concordia diagrams for representative zircons from gabbro and syenogranite
TAS classification diagram for the different rocks in the Ubendian Belt
(a) Chondrite-normalized REE patterns and (b) primitive mantle-normalized trace element spider diagram for different rocks in the Ubendian Belt
(a) Nb/Yb vs. Th/Yb and (b) Zr/Y vs. (La/Sm)N diagrams for the mafic rocks in the Ubendian Belt
(a) Ti/100-Zr-3Y, (b) 2Nb-Zr/4-Y , (c) Yb/Ta-Y/Nb and (d) Sc/Nb-Y/Nb tectonic discrimination diagrams for the gabbro and syenogranites in the Ubendian Belt