2024 Vol. 57, No. 2
Article Contents

ZENG Guoping, WANG Jianxiong, XIANG Wenshuai, ZHANG Zicheng, JIANG Junsheng, XIANG Peng. 2024. The Augaro Arc-type Granite in the Nubia Shield, Western Eritrea: Petrogenesis and Implications for Neoproterozoic Geodynamic Evolution of the East African Orogen. Northwestern Geology, 57(2): 159-173. doi: 10.12401/j.nwg.2023144
Citation: ZENG Guoping, WANG Jianxiong, XIANG Wenshuai, ZHANG Zicheng, JIANG Junsheng, XIANG Peng. 2024. The Augaro Arc-type Granite in the Nubia Shield, Western Eritrea: Petrogenesis and Implications for Neoproterozoic Geodynamic Evolution of the East African Orogen. Northwestern Geology, 57(2): 159-173. doi: 10.12401/j.nwg.2023144

The Augaro Arc-type Granite in the Nubia Shield, Western Eritrea: Petrogenesis and Implications for Neoproterozoic Geodynamic Evolution of the East African Orogen

More Information
  • The East African orogen is a collisional collage belt of East Gondwana and West Gondwana. A deep study of the evolution of the orogenic belt is of great significance for understanding the supercontinent cycles. Zircon LA-ICP MS U–Pb ages and Hf isotopic compositions, whole rock major and trace elements and Sr-Nd isotopic compositions of the Meraf granite within the Augaro, west Eritrea, are reported in this paper to study the petrogenesis and implications for the Neoproterozoic tectonic evolution of the East African orogenic belt. LA-ICPMS zircon U-Pb dating of the Meraf granite yields magmatic crystallization age of (875±6) Ma. The Meraf granite has geochemistry patterns resembling those of Arc-type granite, with high-SiO2, calc-alkaline and peraluminous, and enriched in LREE and LILE such as Ba, Rb, K, relatively depleted in HREE and HFSE such as Ta, Nb, Ti, with weak Eu negative anomalies (δEu= 0.70-0.91). Combined with the positive εHf (t) (7.7~9.9), low initial 87Sr/86Sr (0.70200~0.70273), and remarkable εNd(t) values (4.85~6.06), the Meraf granite is supposed to be the product of partial melting of the mantle wedge triggered by dehydration of the subducting oceanic plate. Together with widespread Neoproterozoic arc-type granites in the East African orogen, the break-up of Supercontinent and formation of Mozambique oceanic are believed to predate the 875Ma.

  • 加载中
  • [1] 曹强, 杨增海, 秦秀峰, 等. 东部非洲厄立特里亚Augaro金矿区特征及找矿预测[J]. 矿产勘查, 2020, 11(10): 2239-2253

    Google Scholar

    CAO Qiang, YANG Zenghai, QIN Xiufeng, et al. Characteristics and prospecting prediction of Augaro gold deposit in Eritrea, East Africa[J]. Mineral Exploration, 2020, 11(10): 2239-2253.

    Google Scholar

    [2] 过磊, 李建星, 郭琳, 等. 南阿尔金茫崖碱长花岗岩锆石U-Pb定年及岩石成因研究[J]. 西北地质, 2019, 52(01): 1-13

    Google Scholar

    GUO Lei, LI Jianxing, GUO Lin, et al. Zircon U-Pb Dating and Petrogenesis of Alkali-feldspar Granite in Mangnai Area, South Altun, NW China[J]. Northwestern Geology, 2019, 52(1): 1-13.

    Google Scholar

    [3] 姜军胜, 胡鹏, 向文帅, 等. 埃塞俄比亚西部布雷地区类埃达克岩年代学、地球化学及对区域构造演化的指示[J]. 地质学报, 2021, 95(4): 1260-1272 doi: 10.3969/j.issn.0001-5717.2021.04.021

    CrossRef Google Scholar

    JIANG Junsheng, HU Peng, XIANG Wenshuai, et al. Geochronology, geochemistry and its implication for regional tectonic evolution of adakite- like rockinthe Bure area, western Ethiopia[J]. Acta Geologica Sinica, 2021, 95(4): 1260-1272. doi: 10.3969/j.issn.0001-5717.2021.04.021

    CrossRef Google Scholar

    [4] 柳永正, 张海平, 张永清, 等. 内蒙古中东部玛尼吐组火山岩形成时代及其大地构造环境[J]. 西北地质, 2023, 56(2): 46−60.

    Google Scholar

    LIU Yongzheng, ZHANG Haiping, ZHANG Yongqing, et al. Zircon U–Pb Age and Tectonic Setting of the Manitu Formation in the Middle–East Inner Mongolia, China[J]. Northwestern Geology, 2023, 56(2): 46−60.

    Google Scholar

    [5] 王强, 赵振华, 熊小林. 桐柏--大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, (4): 297-306

    Google Scholar

    WANG Qiang, ZHAO Zhenhua, XIONG Xiaolin. The ascertainment of late-yanshanian A-type granite in Tongbai-Dabie Orogenic Belt[J]. Acta Petrologica et Mineralogica, 2000, (4): 297-306.

    Google Scholar

    [6] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007a, 23(2): 185-220

    Google Scholar

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007a, 23(2): 185-220.

    Google Scholar

    [7] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007b, 23(6): 1217-1238

    Google Scholar

    WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.

    Google Scholar

    [8] 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(02): 92-108

    Google Scholar

    WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92-108.

    Google Scholar

    [9] 向文帅, 赵凯, 张紫程. 厄立特里亚Augaro金矿床碳氢氧硫同位素特征及其成因意义[J]. 地质学报, 2021, 95(04): 1284-1291

    Google Scholar

    XIANG Wenshuai, ZHAO Kai, ZHANG Zicheng. 2021. Studies on C- H- O- S isotopes of Eritrea Augaro gold deposit and its implications for gold genesis[J]. Acta Geologica Sinica, 95(4): 1284-1291.

    Google Scholar

    [10] 熊小林, J. Adam, T. H. Green, 等. 变质玄武岩部分熔体微量元素特征及埃达克熔体产生条件[J]. 中国科学(D辑: 地球科学), 2005, (09): 41-50

    Google Scholar

    XIONG Xiaolin, Adam J, Green T H, et al. Characteristics of trace elements in partial melt of metabasalt and the conditions for the generation of Adak melt[J]. Science in China Ser. D Earth Sciences, 2005, (09): 41-50.

    Google Scholar

    [11] 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.

    Google Scholar

    XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.

    Google Scholar

    [12] 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, (03): 113-124

    Google Scholar

    XU Baoliang, YAN Guohan, ZHANG Chen. Petrological Subdivision and Source Material of A-type Granites[J]. Earth Science Frontiers, 1998, (03): 113-124.

    Google Scholar

    [13] 曾国平, 王建雄, 向文帅, 等. 厄立特里亚中部Adi Keyh A型流纹岩成因及地质意义[J]. 华南地质, 2022, (01): 157-173 doi: 10.3969/j.issn.2097-0013.2022.01.012

    CrossRef Google Scholar

    ZENG Guoping, WANG Jianxiong, XIANG Wenshuai, et al. Petrogenesis and Geological Significance of the Adi Keyh A-type Rhyolite in Central Eritrea[J]. South China Geology, 2022.38(1): 157-173. doi: 10.3969/j.issn.2097-0013.2022.01.012

    CrossRef Google Scholar

    [14] 查显锋, 计文化, 辜平阳, 等. 阿拉伯地盾地质构造演化与关键地质矿产问题浅析[J]. 西北地质, 2023, 56(5): 204-213.

    Google Scholar

    ZHA Xianfeng, JI Wenhua, GU Pingyang, et al. Tectonic Evolution and Key Geological Mineral Issues of Arabian Shield[J]. Northwestern Geology, 2023, 56(5): 204−213.

    Google Scholar

    [15] 赵凯, 姚华舟, 王建雄, 等. 厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 地球科学, 2020, 45(01): 156-167

    Google Scholar

    ZHAO Kai, YAO Huazhou, WANG Jianxiong, et al. Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea[J]. Earth Science, 2020, 45(1): 156-167.

    Google Scholar

    [16] 郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报, 2003, (16): 1705-1720

    Google Scholar

    ZHENG Yongfei. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin, 2003, (16): 1705-1720.

    Google Scholar

    [17] Alpha-exploration. Aburna (Hill 52 Central Areas) Drill Results May 2023. 2023https://alpha-exploration.com/project/kerkasha-eritrea/

    Google Scholar

    [18] Andersson U B, Ghebreab W, Teklay M. Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 2006, 44(1): 45-65. doi: 10.1016/j.jafrearsci.2005.11.006

    CrossRef Google Scholar

    [19] Blades M L, Collins A S, Foden J, et al. Age and hafnium isotopic evolution of the Didesa and Kemashi domains, western Ethiopia[J]. Precambrian Research, 2015, 270267-284.

    Google Scholar

    [20] Chappell B W, Bryant C J, Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153142−153.

    Google Scholar

    [21] Chappell B W, White A J R, Allen C M. Two contrasting granite types; 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x

    CrossRef Google Scholar

    [22] Chappell B W, White A J R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 1-26.

    Google Scholar

    [23] Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [24] Chung S, Liu D, Ji J, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 311021-1024.

    Google Scholar

    [25] Clemens J D. S-type granitic magmas; petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61(1-2): 1-18. doi: 10.1016/S0012-8252(02)00107-1

    CrossRef Google Scholar

    [26] Collins W J, Huang H, Jiang X. Water-fluxed crustal melting produces Cordilleran batholiths[J]. Geology, 2016, 44(2): 143-146. doi: 10.1130/G37398.1

    CrossRef Google Scholar

    [27] Gamaleldien H, Li Z, Abu Anbar M, et al. Geochronological and isotopic constraints on Neoproterozoic crustal growth in the Egyptian Nubian Shield: Review and synthesis[J]. Earth-Science Reviews, 2022, 235: 104244. doi: 10.1016/j.earscirev.2022.104244

    CrossRef Google Scholar

    [28] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3): 237-269.

    Google Scholar

    [29] Hoskin P W O. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica Et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006

    CrossRef Google Scholar

    [30] Hu Z, Liu Y, Gao S, et al. A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 7850-57. doi: 10.1016/j.sab.2012.09.007

    CrossRef Google Scholar

    [31] Hu Z, Liu Y, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192-1203. doi: 10.1039/b803934h

    CrossRef Google Scholar

    [32] Johnson P R, Andresen A, Collins A S, et al. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 2011, 61(3): 167-232. doi: 10.1016/j.jafrearsci.2011.07.003

    CrossRef Google Scholar

    [33] Kay S M, Mpodozis C, Ramos V A, et al. Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the Central Andes (28 to 33 degrees S)[J]. Special Paper - Geological Society of America, 1991, 265113-137.

    Google Scholar

    [34] Kröner A, Linnebacher P, Stern R J, et al. Evolution of Pan-African island arc assemblages in the southern Red Sea Hills, Sudan, and in southwestern Arabia as exemplified by geochemistry and geochronology[J]. Precambrian Research, 1991, 53(1): 99-118.

    Google Scholar

    [35] Rudnick L R, Gao S. Composition of the continental crust[M]. Elsevier: In: Treatise on Geochemistry, 2003: 1−64.

    Google Scholar

    [36] Lee C A, Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393266-274. doi: 10.1016/j.jpgl.2014.02.044

    CrossRef Google Scholar

    [37] Li X, El-Rahman Y A, Anbar M A, et al. Old Continental Crust Underlying Juvenile Oceanic Arc: Evidence From Northern Arabian-Nubian Shield, Egypt[J]. Geophysical Research Letters, 2018, 45(7): 1-8.

    Google Scholar

    [38] Lindsay J F, Korsch R J, Wilford J R. Timing the breakup of a Proterozoic supercontinent: Evidence from Australian intracratonic basins[J]. Geology, 1987, 15(11): 1061-1064. doi: 10.1130/0091-7613(1987)15<1061:TTBOAP>2.0.CO;2

    CrossRef Google Scholar

    [39] Litvinovsky B A, Jahn B, Zanvilevich A N, et al. Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas[J]. Chemical Geology, 2002, 189(1): 105-133.

    Google Scholar

    [40] Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [41] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America, 1979, 11(7): 468.

    Google Scholar

    [42] Ludwig K R. Isoplot/Ex, a geochronological toolkit for Microsoft Excel, Version 3.00. Berkeley Geochronology Center, Berkeley, Ca, 2004.

    Google Scholar

    [43] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [44] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1): 1-24.

    Google Scholar

    [45] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3): 215-224.

    Google Scholar

    [46] Nevsun Resources Ltd. Preliminary Regional Geology Augaro-Tokombia-Maikokah Area Gash-Barka District[J].Southwestern Eritrea, 2004.

    Google Scholar

    [47] Nelson B K, DePaolo D J. Rapid production of continental crust 1.7 to 1.9 by ago: Nd isotopic evidence from the basement of the North American midcontinent[J]. Geological Society of America Bulletin, 1985, 96, 746-754. doi: 10.1130/0016-7606(1985)96<746:RPOCCT>2.0.CO;2

    CrossRef Google Scholar

    [48] Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    [49] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [50] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [51] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust; the Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    [52] Schiano P, Monzier M, Eissen J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 2010, 160(2): 297-312. doi: 10.1007/s00410-009-0478-2

    CrossRef Google Scholar

    [53] Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9

    CrossRef Google Scholar

    [54] Stern R J, Johnson P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis[J]. Earth-Science Reviews, 2010, 101(1-2): 29-67. doi: 10.1016/j.earscirev.2010.01.002

    CrossRef Google Scholar

    [55] Stern R J. ARC Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 319-351. doi: 10.1146/annurev.ea.22.050194.001535

    CrossRef Google Scholar

    [56] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [57] Taylor S R, Mclennan S M. The composition and evolution of the continental crust; rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series a: Mathematical and Physical Sciences, 1981, 301(1461): 381-399.

    Google Scholar

    [58] Teklay M, Haile T, Kröner A, et al. A Back-arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea[J]. Gondwana Research, 2003, 6(4): 629-640. doi: 10.1016/S1342-937X(05)71012-1

    CrossRef Google Scholar

    [59] Teklay M, Kröner A, Mezger K. Enrichment from plume interaction in the generation of Neoproterozoic arc rocks in northern Eritrea: implications for crustal accretion in the southern Arabian-Nubian Shield[J]. Chemical Geology, 2002, 184(1): 167-184.

    Google Scholar

    [60] Teklay M. Neoproterozoic arc-back-arc system analog to modern arc-back-arc systems; evidence from tholeiite-boninite association, serpentinite mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian Shield[J]. Precambrian Research, 2006, 145(1-2): 81-92. doi: 10.1016/j.precamres.2005.11.015

    CrossRef Google Scholar

    [61] Teklay M. Petrology, Geochemistry and Geochronology of Neoproterozoic Magmatic Arc Rocks from Eritrea: Implications for Crustal Evolution in the Southern Nubian Shield[R]. Asmara, Eritrea: Department of Mines-Ministry of Energy Mines and Water Resources-State of Eritrea, 1997.

    Google Scholar

    [62] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica Et Cosmochimica Acta, 1999, 63(3-4): 533-556. doi: 10.1016/S0016-7037(98)00274-9

    CrossRef Google Scholar

    [63] Villaros A, Stevens G, Buick I S. Tracking S-type granite from source to emplacement: Clues from garnet in the Cape Granite Suite[J]. Lithos, 2009, 112(3): 217-235.

    Google Scholar

    [64] Wang Q, Xu J, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China; implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    [65] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [66] Whalen J B. Geochemistry of an Island-Arc Plutonic Suite: the Uasilau-Yau Yau Intrusive Complex, New Britain, P. N. G[J]. Journal of Petrology, 1985, 26(3): 603-632. doi: 10.1093/petrology/26.3.603

    CrossRef Google Scholar

    [67] Woldehaimanot B. Tectonic setting and geochemical characterisation of Neoproterozoic volcanics and granitoids from the Adobha Belt, northern Eritrea[J]. Journal of African Earth Sciences, 2000, 30(4): 817-831. doi: 10.1016/S0899-5362(00)00054-3

    CrossRef Google Scholar

    [68] Woldemichael B W, Kimura J, Dunkley D J, et al. SHRIMP U–Pb zircon geochronology and Sr–Nd isotopic systematic of the Neoproterozoic Ghimbi-Nedjo mafic to intermediate intrusions of Western Ethiopia: a record of passive margin magmatism at 855 Ma?[J]. International Journal of Earth Sciences, 2010, 99(8): 1773-1790. doi: 10.1007/s00531-009-0481-x

    CrossRef Google Scholar

    [69] Yang J, Wu F, Chung S, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1-2): 89-106. doi: 10.1016/j.lithos.2005.10.002

    CrossRef Google Scholar

    [70] Zheng Y. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4): 1223-1254. doi: 10.1016/j.gsf.2019.02.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1039) PDF downloads(108) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint