2024 Vol. 57, No. 1
Article Contents

LIU Yong, ZHANG Wen, WEI Liangshuai. 2024. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River. Northwestern Geology, 57(1): 44-54. doi: 10.12401/j.nwg.2023136
Citation: LIU Yong, ZHANG Wen, WEI Liangshuai. 2024. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River. Northwestern Geology, 57(1): 44-54. doi: 10.12401/j.nwg.2023136

Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River

More Information
  • Rock glaciers are a type of ice-marginal landforms with creep-slip characteristics formed by gravity and freeze-thaw based on ice and rock mixtures, and they have a large distribution in the Qinghai-Tibet Plateau and Tianshan Mountains in China. Monitoring studies in recent years have found that a significant acceleration process of creep slip on the surface of rock glaciers has occurred under the influence of climate warming, and the risk of forming mudflows or landslides has increased. The Qinghai-Tibet Plateau is a sensitive area of global warming, and the geological disasters caused by climate warming have received wide attention. In view of this, this paper analyzes and discusses the development characteristics and potential disaster mechanisms of rock glaciers on both sides of the Sangri-Jiacha Gorge in the middle reaches of the Yarlung Zangbo River using field measurements, remote sensing interpretation and theoretical analysis. The results show that the formation and development of rock glaciers are related to the topography, climate and solar radiation of the nurturing environment, and that they are prone to form mudflows or landslides threatening the downstream under the effect of rising temperature, short-duration heavy rainfall or strong earthquakes, mainly manifested by the instability of the constituent materials of the downstream section of rock glaciers.

  • 加载中
  • [1] 丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(03): 209-216.

    Google Scholar

    CONG Kai, LI Ruidong, BI Yuanhong. Benefit evaluation of debris flow control engineering based on FLO-2D Model [J]. Northwestern Geology, 2019, 52 (03): 209-2016.

    Google Scholar

    [2] 郭志明. 雅鲁藏布江流域石冰川编目及空间分布特征研究[D]. 昆明: 云南大学, 2019

    Google Scholar

    GUO Zhiming. Study on the cataloguing and spatial distribution characteristics of rock glaciers in the Yarlung Tsangpo River basin [D]. Kunming: Yunnan University, 2019.

    Google Scholar

    [3] 刘耕年, 熊黑钢, 崔之久, 等. 天山石冰川的形态与发育条件[J]. 地理科学, 1995(3): 226-233+297 doi: 10.13249/j.cnki.sgs.1995.03.004

    CrossRef Google Scholar

    LIU Gengnian, XIONG Heigang, CIU Zhijiu, et al. Morphology and development conditions of rock glaciers in the Tianshan Mountains[J]. Geoscience, 1995(3): 226-233+297. doi: 10.13249/j.cnki.sgs.1995.03.004

    CrossRef Google Scholar

    [4] 刘勇. 内外动力耦合下雅鲁藏布江贡嘎-加查河段的成灾机制研究[D]. 成都: 成都理工大学, 2021

    Google Scholar

    LIU Yong. Study on the disaster mechanism of the Yarlung Tsangpo River Gongga-Jiacha section under the coupling of internal and external dynamics [D]. Chengdu: Chengdu University of Technology, 2021.

    Google Scholar

    [5] 马腾霄, 杨文光, 朱利东, 等. 雅鲁藏布江中游地貌参数特征及其构造地貌意义[J]. 成都理工大学学报(自然科学版), 2022, 49(4): 502−512.

    Google Scholar

    MA Tengxiao, YANG Wenguang, ZHU Lidong, et al. Geomorphic parameters and their tectonic geomorphic significance in the middle reaches of Yarlung Zangbo River, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(4): 502−512.

    Google Scholar

    [6] 王运生, 刘勇, 罗永红, 等. 深切峡谷斜坡地震动响应研究[M]. 北京: 科学出版社, 2019

    Google Scholar

    WANG Yunsheng, LIU Yong, LUO Yonghong, et al. Study on ground vibration response of deep-cut canyon slopes [M]. Beijing: Science Press, 2019.

    Google Scholar

    [7] 吴中海, 张永双, 胡道功, 等. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨[J]. 地质学报, 2007(10): 1328-1337+1449-1450.

    Google Scholar

    WU Zhonghai, ZHANG Yongshuang, HU Daogong, et al. Exploration of Quaternary normal fault activity and its mechanism in the Woka graben, Sangri County, Tibet[J]. Journal of Geology, 2007(10): 1328-1337+1449-1450.

    Google Scholar

    [8] 徐瑾昊. 基于深度学习的石冰川遥感识别研究[D]. 西安: 西北大学, 2020

    Google Scholar

    XU Jinhao. Research on remote sensing identification of rock glaciers based on deep learning[D]. Xi’an: Northwestern University, 2020.

    Google Scholar

    [9] 杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(01): 1-10

    Google Scholar

    YANG Yaoxian, HU Zeyong, LU Fuquan, et al. Progress of climate change and its environmental impact on Qinghai-Tibet Plateau in the past 60 years[J]. Highland Meteorology, 2022, 41(01): 1-10.

    Google Scholar

    [10] 张升林, 江在雄. 1915年西藏桑日7.0级地震[J]. 东北地震研究, 1991(01): 131-132

    Google Scholar

    ZHANG Shenglin, JIANG Zaixiong. The magnitude 7.0 earthquake in Sangri, Tibet, 1915[J]. Northeast Earthquake Research, 1991(01): 131-132.

    Google Scholar

    [11] 朱诚. 现代冰缘地貌研究[M]. 南京: 江苏科学技术出版社, 1994

    Google Scholar

    ZHU Cheng. Studies on modern ice margin landforms[M]. Nanjing: Jiangsu Science and Technology Press, 1994.

    Google Scholar

    [12] 周敖日格勒, 王英, 唐菊兴, 等. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响[J]. 西北地质, 2022, 55(03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023

    CrossRef Google Scholar

    ZHOUAORIGELE, WANG Ying, TANG Juxing, et al. Early miocene exhumation history in the eastern porphyry copper belt and its influence on the spatial and temporal distribution of Oligocene- Miocene porphyry deposits[J]. Northwestern Geology, 2022, 55 (03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023

    CrossRef Google Scholar

    [13] Buchli T, Kosa A, Limpach P, et al. Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland [J]. Permafrost and Periglacial Processes, 2018, 29(1): 3-20. doi: 10.1002/ppp.1968

    CrossRef Google Scholar

    [14] Brencher G, Handwerger A, Munroe J. InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA [J]. Cryosphere, 2021, 15(10): 4823-4844. doi: 10.5194/tc-15-4823-2021

    CrossRef Google Scholar

    [15] Benn D I, Ballantyne C K. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast form indices[J]. Sedimentary Geology, 1994, 91(1-4): 215-227. doi: 10.1016/0037-0738(94)90130-9

    CrossRef Google Scholar

    [16] Barsch D. Rock glaciers- Indicators for the Present and Former Geoecology in High Mountain Environments [J]. Springer-Verlag, Berlin, 1996, 269-271.

    Google Scholar

    [17] Brozovic N, Burbank D W, Meigs A J. Climatic limits on landscape development in the Northwestern Himalaya[J]. Science, 1997, 276(5312): 571-574. doi: 10.1126/science.276.5312.571

    CrossRef Google Scholar

    [18] Corte A. The hydrological significance of rock glaciers[J]. Journal of Glaciology, 1976, 17(75): 157-158. doi: 10.3189/S0022143000030859

    CrossRef Google Scholar

    [19] Cicoira A, Marcer M, Gartner-Roer I, et al. A general theory of rock glacier creep based on in-situ and remote sensing observations[J]. Permafrost and Periglacial Processes, 2020, 32(1): 139-153.

    Google Scholar

    [20] Eriksen H, Rouyet L, Lauknes T R, et al. Recent Acceleration of a Rock Glacier Complex, Adept, Norway, Documented by 62 Years of Remote Sensing Observations[J]. Geophysical Research Letters, 2018, 45(16): 8314-8323. doi: 10.1029/2018GL077605

    CrossRef Google Scholar

    [21] Fey C, Krainer K. Analyses of UAV and GNSS based flow velocity variations of the rock glacier Lazaun (Ötztal Alps, South Tyrol, Italy) [J]. Geomorphology, 2020, 365: 107261. doi: 10.1016/j.geomorph.2020.107261

    CrossRef Google Scholar

    [22] Haeberli W, Hallet B, Arenson L, et al. Permafrost creep and rock glacier dynamics [J]. Permafrost and Periglacial Processes, 2006, 17(3): 189-214. doi: 10.1002/ppp.561

    CrossRef Google Scholar

    [23] Jankea J R, Bellisarioa A C, Ferrandobl F A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile [J]. Geomorphology, 2015, 98-121.

    Google Scholar

    [24] Jones D B, Harrison S, Anderson K, et al. Mountain rock glaciers contain globally significant waterstores [J]. Scientific Reports, 2018, 8 (1): 28-34. doi: 10.1038/s41598-017-18341-7

    CrossRef Google Scholar

    [25] Müller J, Vieli A, Gartner-Roer I. Rock glaciers on the run - understanding rock glacier landform evolution and recent changes from numerical flow modeling[J]. Cryosphere, 2016, 10(6): 2865-2886. doi: 10.5194/tc-10-2865-2016

    CrossRef Google Scholar

    [26] Onaca A, Ardelean F, Urdea P, et al. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors [J]. Geomorphology, 2017, 293(B): 391-404.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(1)

Article Metrics

Article views(617) PDF downloads(21) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint