2023 Vol. 56, No. 4
Article Contents

WANG Xiaoyong, XU Youning, ZHAO Zhenhong, WU Shaobo, DAI Junning. 2023. Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area. Northwestern Geology, 56(4): 162-168. doi: 10.12401/j.nwg.2023130
Citation: WANG Xiaoyong, XU Youning, ZHAO Zhenhong, WU Shaobo, DAI Junning. 2023. Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area. Northwestern Geology, 56(4): 162-168. doi: 10.12401/j.nwg.2023130

Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area

  • The sulfate concentration of the water body in the Ziyang stone coal mining area exceeds the standard, and the pollution is becoming more and more serious. Identifying the source of sulfate pollution is extremely important for the prevention of pollution and the guarantee of drinking water safety. The production mechanism of acid wastewater was analyzed and identified using sulfate and oxygen stable isotopes. The results show that the sulfate produced by the sulfide oxidation of stone coal was the main source of sulfate in acid wastewater. Calculated by the IsoSource mass conservation model, the contribution rate of acid wastewater to groundwater sulfate is about 36.5%. The application of multiple isotopes provides a new approach for the comprehensive identification of sulfate sources in acid wastewater and the quantitative study of its impacts on groundwater and provides a scientific basis for mine development and ecological environmental protection and restoration.

  • 加载中
  • [1] 丁坤, 王瑞廷, 刘凯, 等. 南秦岭柞水-山阳矿集区龙头沟金矿床硫化物微量元素和硫同位素地球化学特征[J]. 地质与勘探, 2021, 57(5): 969-980.

    Google Scholar

    DING Kun, WANG Ruiting, LIU Kai, et al. Sulfide trace elements and sulfur isotope geochemistry of the Longtougou gold deposit, Zhashui - Shanyang ore district, South Qinling[J]. Geology and Exploration, 2021, 57( 5) : 0969 - 0980.

    Google Scholar

    [2] 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011

    Google Scholar

    GU Weizu. Isotope hydrology[M]. Beijing: Science Press, 2011

    Google Scholar

    [3] 顾慰祖, 林曾平, 费光灿, 等. 环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J]. 水科学进展, 2000, 11(01): 14-20

    Google Scholar

    GU Weizu, LIN Zengping, FEI Guangchan, et al. The use of environmental sulphur isotopes in the study of the Cambrian-Ordovician aquifer system in the south of Datong[J]. Advances in Water Science, 2000, 11(01): 14-20.

    Google Scholar

    [4] 胡德银, 张宏德, 王化锋等. 浅议安康石煤地质特征及“十二五”开发设想[J]. 科技信息, 2011, (23): 45-47 doi: 10.3969/j.issn.1001-9960.2011.23.030

    CrossRef Google Scholar

    HU Deyin, ZHANG Hongde, WANG Huafeng, et al. Yee Shallow AnKang Stone Coal Geological Features and " Second Five " Development Vision[J], SCIENCE & TECHNOLOGY INFORMATION, 2011, (23): 45-47. doi: 10.3969/j.issn.1001-9960.2011.23.030

    CrossRef Google Scholar

    [5] 庞振甲, 成欢, 冀月飞. 陕西省略阳县陶家沟地区地质地球物理特征及找矿预测[J]. 西北地质, 2022, 55(1): 93-100

    Google Scholar

    PANG Zhenjia, CHENG Huan, JI Yuefei. Geophysical Characteristics and Prospecting Prediction of Taojiagou Area in Lueyang County, Shaanxi Province[J]. Northwestern Geology, 2022, 55(1): 93-100.

    Google Scholar

    [6] 邱述兰. 利用多同位素($ \delta {}^{34}{\text{S}} $, $ \delta {}^{15}{\text{N}} $, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}} $和$ \delta {}^{13}{{\text{C}}_{DIC}} $)方法示踪岩溶农业区地下水中硝酸盐和硫酸盐的污染[D]. 重庆: 西南大学, 2012

    Google Scholar

    QIU Shulan. Use of multiple environmental isotopes($ \delta {}^{34}{\text{S}} $, $ \delta {}^{15}{\text{N}} $, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}} $and $ \delta {}^{13}{{\text{C}}_{DIC}} $)to trace sulfate and nitrate contaminations of karst groundwater in an agricultural area-A case from Wingmuguan Subterranean Stream System[D]. Chongqing: Southwest University, 2012

    Google Scholar

    [7] 徐友宁, 张江华, 何芳, 等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139

    Google Scholar

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.

    Google Scholar

    [8] 张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 54(1): 185-195

    Google Scholar

    ZHANG Jun, YIN Lihe, GU Xiaofan, et al. Study on the Relationship Between Groundwater and Surface Water in Xinjiang Kongque River Basin Using Isotopes and Hydrochemistry method[J]. Northwestern Geology, 2021, 54(1): 185-195.

    Google Scholar

    [9] 张卫国, 侯恩科, 李军, 等. 陕南石煤及煤灰中磷元素的迁移规律[J]. 西安科技大学学报, 2021, 41(02): 316-322

    Google Scholar

    ZHANG Weiguo, HOU Enke, LI Jun, et al. Migration law of Phosphorus in stone coal and coal ash in southern Shaanxi province[J]. Journal of Xi’an University of Science and Technology, 2021, 41( 2): 316-322.

    Google Scholar

    [10] 张亚丽, 张志敏, 张继军, 等. 安康西部农田土壤硒形态及农作物富硒特征[J]. 西北地质, 2021, 54(3): 229-235

    Google Scholar

    ZHANG Yali, ZHANG Zhimin, ZHANG Jijun, et al. Soil Selenium Speciation in Cropland of Western Ankang and the Characteristics of Crop Selenium Enrichment[J]. Northwestern Geology, 2021, 54(3): 229-235.

    Google Scholar

    [11] Balci N, Iii W, Mayer B, et al. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite[J]. Geochimica Et Cosmochimica Acta, 2007, 71(15), 3796-3811. doi: 10.1016/j.gca.2007.04.017

    CrossRef Google Scholar

    [12] Banfield J F, Nealson K H, Lovley D R. Geomicrobiology: Interactions between microbes and minerals[J]. Mineralogical Magazine, 1998, 62(5), 725-726.

    Google Scholar

    [13] Bottrell S, Tellam J, Bartlett R, et al. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK[J]. Applied Geochemistry, 2008, 23(8), 2382-2394. doi: 10.1016/j.apgeochem.2008.03.012

    CrossRef Google Scholar

    [14] Everdingen R O V, Krouse H R. Isotope composition of sulphates generated by bacterial and abiological oxidation[J]. Nature, 1985, 315(6018): 395-396. doi: 10.1038/315395a0

    CrossRef Google Scholar

    [15] Jezierski P, Szynkiewicz A, Jedrysek M O. Natural and Anthropogenic Origin Sulphate in an Mountainous Groundwater System: S and O Isotope Evidences[J]. Water Air & Soil Pollution, 2006, 173(1/4): 81-101.

    Google Scholar

    [16] Laura V . Fertilizer characterization: isotopic data (N, S, O, C, and Sr). [J]. Environmental Science & Technology, 2004, 38(12): 3254. DOI:doi:10.1021/es0348187.

    CrossRef Google Scholar

    [17] Lewis J S , Krouse H R . Isotopic composition of sulfur and sulfate produced by oxidation of FeS[J]. Earth and Planetary Science Letters, 1969, 5(6): 425-428.

    Google Scholar

    [18] Mingyu W , Sheng H , Bianfang C , et al. A review of processing technologies for vanadium extraction from stone coal[J]. Mineral Processing & Extractive Metallurgy, 2018: 1-9.

    Google Scholar

    [19] Qibo H , Xiaoqun Q , Qiyong Y , et al. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using δ13CDIC and δ34S in karst area, northern China[J]. Environmental Earth Sciences, 2016, 75(1): 1-10. doi: 10.1007/s12665-015-4873-x

    CrossRef Google Scholar

    [20] Schippers A , Sand W . Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur[J]. Applied & Environmental Microbiology, 1999, 65(1): 319.

    Google Scholar

    [21] Stempvoort D R V, Krouse H R . Controls of δ18O in sulphate: Review of experimental data and application to specific environments[J]. Environmental Geochemistry of Sulfide Oxidation, 1994.

    Google Scholar

    [22] Taylor B E , Wheeler M C , Nordstrom D K . Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation[J]. Nature, 1984, 308(5959): 538-541. doi: 10.1038/308538a0

    CrossRef Google Scholar

    [23] Tuttle M L W , Breit G N , Cozzarelli I M . Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA[J]. Chemical Geology, 2009, 265(3-4): 455-467. doi: 10.1016/j.chemgeo.2009.05.009

    CrossRef Google Scholar

    [24] Wang X , Zhang Y, Liu T, et al. Phase Transformation and Dissolution Behavior of Pyrite in the Roasting-Sulfuric Acid Leaching Process of Vanadium-Bearing Stone Coal[J]. Minerals, 2020, 10(6): 526-535 doi: 10.3390/min10060526

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(650) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint