2023 Vol. 56, No. 4
Article Contents

CHEN Huaqing, ZHANG Tianliang, GONG Huishan, XU Youning, ZHOU Jianwei. 2023. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water. Northwestern Geology, 56(4): 141-151. doi: 10.12401/j.nwg.2023129
Citation: CHEN Huaqing, ZHANG Tianliang, GONG Huishan, XU Youning, ZHOU Jianwei. 2023. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water. Northwestern Geology, 56(4): 141-151. doi: 10.12401/j.nwg.2023129

Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water

More Information
  • Acid mine drainage (AMD) is a difficult point in the prevention and control of environmental pollution in sulfide ore deposits, has attracted the attention of scholars at home and abroad. Numerous scholars have studied secondary minerals in AMD in different mining areas. In order to understand the formation and evolution of secondary minerals in AMD, it provides scientific basis for AMD pollution prevention and control. This paper briefly reviews the types of secondary minerals, the formation order of secondary minerals, and the formation, characteristics, environmental hazards and significance of secondary minerals in aluminum phase in AMD under different environments. There are currently three main types of secondary minerals associated with AMD, including: iron−phase secondary minerals, aluminum−phase secondary minerals and other−phase secondary minerals. The pH, Eh and temperature in AMD have a controlling effect on the formation of secondary minerals. Fe− and Al−phase secondary minerals have strong adsorption capacity for several metals in AMD, which can achieve a certain degree of water self−purification. At present, due to the high formation conditions of AMD and unstable mineral phases, there are limited research results on aluminum−phase secondary minerals and “acidic white water” in AMD. Therefore, the study of aluminum−phase secondary minerals and “acidic white water” can better analyze the formation and evolution mechanism of acidic sulfonated water and acidic white water in rivers in the stone coal mines area of Haoping river basin from the perspective of prevention and control, as well as the geochemical process of heavy metal adsorption by aluminum−phase secondary minerals.

  • 加载中
  • [1] 栾兆坤. 水中铝的形态及其形态研究方法[J]. 环境化学, 1987(01): 46-56

    Google Scholar

    LUAN Zhaokun. The speciation and speciation study of aluminum in water[J]. Environmental Chemistry, 1987(01): 46-56.

    Google Scholar

    [2] 刘奇缘, 陈炳辉, 周永章等. 粤北大宝山槽对坑酸性矿山废水中不同沉积层次生矿物研究[J]. 地球与环境, 2017, 45(03): 259-266

    Google Scholar

    LIU Qiyuan, CHEN Binghui, ZHOU Yongzhang, et al. A study on secondary minerals in different sediments of Caoduikeng acid mine drainage, Dabaoshan mine, North Guangdong province, China[J]. Earth and Environment, 2017, 45(03): 259-266.

    Google Scholar

    [3] 王武名, 鲁安怀, 王长秋等. 尾矿酸浸液制备氢氧化铁过程中施威特曼石的形成与转变[J]. 岩石矿物学杂志, 2009, 28(06): 581-586

    Google Scholar

    WANG Wuming, LU Anhuai, WANG Changqiu, et al. The formation and transformation of schwertmannite during the preparation of ferric hydroxide with acid leaching filtrate of tailings[J]. Acta Petrologica Et Mineralogica, 2009, 28(06): 581-586.

    Google Scholar

    [4] 吴亚坤, 谢臣臣, 孙魁等. 神府矿区不同含水层水力联系的水化学证据[J/OL]. 西北地质, 2023: 1−12. doi: 10.12401/j. nwg. 2023010

    Google Scholar

    WU Yakun, XIE Chenchen, SUN Kui, et al. Hydrochemical evidence for hydraulic connection of different aquifers in Shenfu mining area[J/OL]. Northwestern Geology,2023: 1-12. doi: 10.12401/j.nwg.2023010

    Google Scholar

    [5] 徐友宁, 张江华, 何芳等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139

    Google Scholar

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.

    Google Scholar

    [6] 徐友宁, 陈华清, 柯海玲, 等. 蒿坪河流域石煤矿区河流铝的白色污染及其成因分析. 西北地质, 2023, 56(4): 128–140.

    Google Scholar

    XU Youning, CHEN Huaqing, KE Hailing, et al. Analysis of White Pollution of River Aluminum in Stone CoalMining Area in Haoping River Basin and Its Causes. Northwestern Geology, 2023, 56(4): 128–140.

    Google Scholar

    [7] 周立祥. 酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J]. 地学前缘, 2008, 15(6): 74-82

    Google Scholar

    ZHOU Lixiang. Biogenic iron oxyhydrosulfate and iron oxyhydroxide occurring in acid mine drainage and their environmental engineering implications[J]. Earth Science Frontiers, 2008, 15(6): 74-82.

    Google Scholar

    [8] 邹琦, 陈莹, 刘奇缘等. 广东大宝山铁龙AMD中赭色沉积物的含铁次生矿物研究[J]. 高校地质学报, 2017, 23(03): 442-451

    Google Scholar

    ZOU Qi, CHEN Ying, LIU Qiyuan, et al. Study on iron-bearing secondary minerals of ochre precipitates in the Tielong acid mine drainage, Dabaoshan mine, Guangdong province[J]. Geological Journal of China Universities, 2017, 23(03): 442-451.

    Google Scholar

    [9] Adams F, Hajek B F. Effects of Solution Sulfate, Hydroxide, and Potassium Concentrations on the Crystallization of Alunite, Basaluminite, and Gibbsite from Dilute Aluminum Solutions[J]. Soil Science Society of America Journal, 1978, 126(3): 169-173.

    Google Scholar

    [10] Alpers C N, Blowes D W, Nordstrom D K , et al. Secondary Minerals and Acid Mine-Water Chemistry. [M]. 1994.

    Google Scholar

    [11] Alpers C N, Rye R O, Nordstrom D K , et al. Chemical, Crystallographic, and Isotopic Properties of Alunite and Jarosite from Acid Hypersaline Australian Lakes [J], Chemical Geology, 1992, 96(1-2): 203-226. doi: 10.1016/0009-2541(92)90129-S

    CrossRef Google Scholar

    [12] Anthony J W, McLean W J. Jurbanite, A New Post-Mine Aluminum Sulfate Mineral from San Manuel, Arizona [J], American Mineralogist, 1976, 61: 1-4.

    Google Scholar

    [13] Ash S H, Felegy E W, Kennedy D O, et al. Acid Mine Drainage Problems: Anthracite Region of Pennsylvania [M]. Technical Report Archive & Image Library, 1951.

    Google Scholar

    [14] Ball, P. The crystal structure of sodium sulfate decahydrate, Na2SO4·10H2O.[J]. Acta Crystallographica Section C: Crystal Structure Communications, 1989,45(3), 363-365.

    Google Scholar

    [15] Bannister F A, Hollingworth S E. Two Bew British Minerals[J]. Nature, 1948a, 162(4119): 565-565.

    Google Scholar

    [16] Bao Y, Guo C, Lu G, et al. Role of Microbial Activity in Fe(III) Hydroxysulfate Mineral Transformations in An Acid Mine Drainage-Impacted Site from the Dabaoshan Mine[J]. Science of the Total Environment, 2018, 616: 647-657.

    Google Scholar

    [17] Barton P. The acid mine drainage. In Sulfur in the Environment[M]. 1978.

    Google Scholar

    [18] Basallote M D, Canovas C R, Olias M, et al. Mineralogically-Induced Metal Partitioning during the Evaporative Precipitation of Efflorescent Sulfate Salts from Acid Mine Drainage[J]. Chemical Geology, 2019, 530: 119-339.

    Google Scholar

    [19] Bassett H, Goodwin T H. The basic aluminium sulphates[J]. Quarterly Journal of the Chemical Society of London, 1949, 2239-2279.

    Google Scholar

    [20] Bertsch P, Parker B. Aqueous Polynuclear Aluminum Species[J]. Environmental Chemistry of Aluminum, 1996, 117-168.

    Google Scholar

    [21] Beukes G J, Schoch A E, De Bruiyn H, et al. A New Occurrence of the Hydrated Aluminium Sulphate Zaherite, from Pofadder, South Africa[J]. Mineralogical Magazine, 1984, 48(346): 131-135. doi: 10.1180/minmag.1984.048.346.18

    CrossRef Google Scholar

    [22] Bigham J M, Nordstrom D K. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 351–403. doi: 10.2138/rmg.2000.40.7

    CrossRef Google Scholar

    [23] Brown Jr G E, Calas G. Environmental Mineralogy–Understanding Element Behavior in Ecosystems[J]. Comptes Rendus Geoscience, 2011, 343(2-3): 90-112. doi: 10.1016/j.crte.2010.12.005

    CrossRef Google Scholar

    [24] Cala-Rivero V, Arranz-González J C, Rodríguez-Gómez V, et al. A Preliminary Study of the Formation of Efflorescent Sulfate Salts in Abandoned Mining Areas with a View to Their Harvesting and Subsequent Recovery of Copper[J]. Minerals Engineering, 2018, 129: 37-40. doi: 10.1016/j.mineng.2018.09.014

    CrossRef Google Scholar

    [25] Candeias C, Ávila P F, EF da Silva, et al. Acid Mine Drainage from the Panasqueira Mine and its Influence on Zêzere River(Central Portugal)[J]. Journal of African Earth Sciences, 2014, 99: 705-712. doi: 10.1016/j.jafrearsci.2013.10.006

    CrossRef Google Scholar

    [26] Caraballo M A, Wanty R B, Verplanck P L, et al. Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale[J]. Chemical Geology, 2019, 519: 1–10. doi: 10.1016/j.chemgeo.2019.04.013

    CrossRef Google Scholar

    [27] Carbone C, Dinelli E, Marescotti P, et al. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests[J]. Journal of Geochemical Exploration, 2013, 132: 188-200. doi: 10.1016/j.gexplo.2013.07.001

    CrossRef Google Scholar

    [28] Carrero S, Pérez-López R, Fernandez-Martinez A, et al. The potential role of aluminum hydroxysulphates in the removal of contaminants in acid mine drainage[J]. Chemical Geology, 2015, 417: 414–423. doi: 10.1016/j.chemgeo.2015.10.020

    CrossRef Google Scholar

    [29] Casey W H, Rustad J R, Spiccia L. Minerals as molecules—Use of aqueous oxide and hydroxide clusters to understand geochemical reactions[J]. Chemistry–A European Journal, 2009, 15(18): 4496-4515. doi: 10.1002/chem.200802636

    CrossRef Google Scholar

    [30] Chen Z W, Zhong X, Zheng M Y, et al. Indicator species drive the key ecological functions of microbiota in a river impacted by acid mine drainage generated by rare earth elements mining in South China[J]. Environmental Microbiology, 2022, 24(2): 919-937. doi: 10.1111/1462-2920.15501

    CrossRef Google Scholar

    [31] Charles Roberson, John Hem. Form and Stability of Aluminum Hydroxide Complexes in Dilute Solution[D]. USGS,1967.

    Google Scholar

    [32] Clayton T. Hydrobasaluminite and basaluminite from Chickerell, Dorset[J]. Mineralogical Magazine, 1980, 43(331): 931-937. doi: 10.1180/minmag.1980.043.331.18

    CrossRef Google Scholar

    [33] Cory N, Buffam I, Laudon H, et al. Landscape control of stream water aluminum in a boreal catchment during spring flood[J]. Environmental Science & Technology, 2006, 40(11): 3494-3500.

    Google Scholar

    [34] Cravotta III C A, Brady K B C, Rose A W, et al. Frequency distribution of the pH of coal-mine drainage in Pennsylvania[C]US Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting: US Geological Survey Water-Resources Investigations Report. 1999, 99: 313-324.

    Google Scholar

    [35] Cunningham K M. Water-quality data for Doughty Springs, Delta County, Colorado, 1903-1994, with emphasis on sulfur redox species[R]. US Geological Survey Water-Resources Investigations Report. 1996.

    Google Scholar

    [36] Du J Y, Sabatini D A, Butler E C. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere, 2014, 101: 21–27. doi: 10.1016/j.chemosphere.2013.12.027

    CrossRef Google Scholar

    [37] De Bruiyn H, Schoch A E, Beukes G J, et al. Note on cell parameters of zaherite[J]. Mineralogical Magazine, 1985, 49(350): 145− 146.

    Google Scholar

    [38] Ehlmann B L, Swayze G A, Milliken R E, et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters[J]. American Mineralogist, 2016, 101(7): 1527− 1542.

    Google Scholar

    [39] España J S, Pamo E L, Pastor E S, et al. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt[J]. Aquatic Geochemistry, 2006, 12: 269-298. doi: 10.1007/s10498-005-6246-7

    CrossRef Google Scholar

    [40] España J S, Wang K, Falagán C, et al. Microbially mediated aluminosilicate formation in acidic anaerobic environments: A cell-scale chemical perspective[J]. Geobiology, 2018, 16(1): 88-103. doi: 10.1111/gbi.12269

    CrossRef Google Scholar

    [41] Farkas L, Pertlik F. Crystal structure determinations of felsöbányaite and basaluminite, Al4 (SO4)(OH)10·4H2O[J]. Acta Mineralogica-Petrographica, Szeged. 1997, 38: 5-15.

    Google Scholar

    [42] Farrand W H, Glotch T D, Rice Jr J W, et al. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region[J]. Icarus, 2009, 204(2): 478-488. doi: 10.1016/j.icarus.2009.07.014

    CrossRef Google Scholar

    [43] Frondel C. Meta-aluminite, a new mineral from Temple Mountain, Utah[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1968, 53(5-6): 717-721.

    Google Scholar

    [44] Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum flocs in polluted streams[J]. Science, 2002, 297(5590): 2245-2247. doi: 10.1126/science.1076505

    CrossRef Google Scholar

    [45] Headden, W.P. The Doughty Springs, a group of radium-bearing springs, Delta County, Colorado[J]. American Journal of Science, 1905,19, 297-309

    Google Scholar

    [46] Hemley J J, Hostetler P B, Gude A J, et al. Some stability relations of alunite[J]. Economic Geology, 1969, 64(6): 599-612. doi: 10.2113/gsecongeo.64.6.599

    CrossRef Google Scholar

    [47] Hicks W S, Bowman G M, Fitzpatrick R W. Effect of season and landscape position on the aluminium geochemistry of tropical acid sulfate soil leachate[J]. Soil Research, 2009, 47(2): 137-153. doi: 10.1071/SR06106

    CrossRef Google Scholar

    [48] Jambor J L, Puziewicz J. New mineral names[J]. American Mineralogist, 1990, 75(3-4): 431-438.

    Google Scholar

    [49] Johansson G. The crystal structures of [Al2(OH)2(H2O)8](SO4)4·2H2O and [Al2(OH)2(H2O)8](SeO4)2·2H2O[J]. Acta Chemica Scandinavica, 1962, 16: 403-420. doi: 10.3891/acta.chem.scand.16-0403

    CrossRef Google Scholar

    [50] Johansson G. On the crystal structure of the basic sulfate 13Al2O3·6SO4·xH2O[J]. Ark. Kemi, 1963, 20: 321-342.

    Google Scholar

    [51] Jones A M, Collins R N, Waite T D. Mineral species control of aluminum solubility in sulfate-rich acidic waters[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 965-977. doi: 10.1016/j.gca.2010.12.001

    CrossRef Google Scholar

    [52] Kefeni K K, Msagati T M, Mamba B B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage[J]. Chemical Engineering Journal, 2015, 276: 222-231. doi: 10.1016/j.cej.2015.04.066

    CrossRef Google Scholar

    [53] Liu Q, Chen B, Haderlein S, et al. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China[J]. Ecotoxicology and Environmental Safety, 2018, 155: 50-58. doi: 10.1016/j.ecoenv.2018.02.017

    CrossRef Google Scholar

    [54] Long D T, Fegan N E, McKee J D, et al. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia[J]. Chemical Geology, 1992, 96(1-2): 183-202. doi: 10.1016/0009-2541(92)90128-R

    CrossRef Google Scholar

    [55] Lozano A, Fernández-Martínez A, Ayora C, et al. Local structure and ageing of basaluminite at different pH values and sulphate concentrations[J]. Chemical Geology, 2018, 496: 25-33. doi: 10.1016/j.chemgeo.2018.08.002

    CrossRef Google Scholar

    [56] Lu C, Yang B, Cui X, et al. Characteristics and Environmental Response of White Secondary Mineral Precipitate in the Acid Mine Drainage From Jinduicheng Mine, Shaanxi, China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1012-1021. doi: 10.1007/s00128-021-03355-9

    CrossRef Google Scholar

    [57] Lükewille A, Van Breemen N. Aluminium precipitates from groundwater of an aquifer affected by acid atmospheric deposition in the Senne, Northern Germany[J]. Water, Air, and Soil Pollution, 1992, 63: 411-416. doi: 10.1007/BF00475506

    CrossRef Google Scholar

    [58] Maza S N, Collo G, Astini R A, et al. Holocene ochreous lacustrine sediments within the Famatina Belt, NW Argentina: A natural case for fossil damming of an acid drainage system[J]. Journal of South American Earth Sciences, 2014, 52: 149-165. doi: 10.1016/j.jsames.2014.02.010

    CrossRef Google Scholar

    [59] Michael G S, John A W. The role of secondary minerals in remediation of acid mine drainage by Portland cement[J]. Journal of hazardous materials, 2019, 367: 267-276. doi: 10.1016/j.jhazmat.2018.12.035

    CrossRef Google Scholar

    [60] Munk L A, Faure G, Pride D E, et al. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado[J]. Applied Geochemistry, 2002, 17(4): 421-430. doi: 10.1016/S0883-2927(01)00098-1

    CrossRef Google Scholar

    [61] Newman C P, Mccrea K W, Zimmerman J, et al. Geochemistry, mineralogy, and acid-generating behaviour of efflorescent sulphate salts in underground mines in Nevada, USA[J]. Geochemistry: Exploration, Environment, Analysis, 2019, 19(4): 317−329.

    Google Scholar

    [62] Nordstrom D K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[J]. Acid Sulfate Weathering, 1982a, 10: 37-56.

    Google Scholar

    [63] Nordstrom D K. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K[J]. Geochimica et Cosmochimica Acta, 1982b, 46(4): 681-692. doi: 10.1016/0016-7037(82)90168-5

    CrossRef Google Scholar

    [64] Nordstrom D K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters[J]. Applied Geochemistry. 2011, 26: 1777–1791

    Google Scholar

    [65] Nordstrom D K, Alpers C N. Geochemistry of Acid Mine Waters in The Environmental Geochemistry of mineral deposits Part B[J]. Reviews in Economic geology–Society of economic geologists, Inc, 1999, 6A: 133-160.

    Google Scholar

    [66] Nordstrom D K, Ball J W. The geochemical behavior of aluminum in acidified surface waters[J]. Science, 1986, 232(4746): 54-56. doi: 10.1126/science.232.4746.54

    CrossRef Google Scholar

    [67] Nordstrom D K, Ball J W, Roberson C E, et al. The effect of sulfate on aluminum concentrations in natural waters: II. Field occurrences and identification of aluminum hydroxysulfate precipitates[C]//Geol. Soc. Am. Program Abstr. 1984, 16(6): 611.

    Google Scholar

    [68] Raymahashay B C. A geochemical study of rock alteration by hot springs in the Paint Pot Hill area, Yellowstone Park[J]. Geochimica et Cosmochimica Acta, 1968, 32(5): 499-522. doi: 10.1016/0016-7037(68)90042-2

    CrossRef Google Scholar

    [69] Rose A W, Cravotta III C A. Geochemistry of coal mine drainage[J]. Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania, 1998, 1: 1-22.

    Google Scholar

    [70] Ruotsala A P, Babcock L L. Zaherite, a new hydrated aluminum sulfate[J]. American Mineralogist, 1977, 62(11−12): 1125− 1128.

    Google Scholar

    [71] Sienkiewicz E, Gąsiorowski M. The evolution of a mining lake-From acidity to natural neutralization[J]. Science of the Total Environment, 2016, 557: 343-354.

    Google Scholar

    [72] Singh S S. The formation and coexistence of gibbsite, boehmite, alumina and alunite at room temperature[J]. Canadian Journal of Soil Science, 1982, 62(2): 327-332. doi: 10.4141/cjss82-036

    CrossRef Google Scholar

    [73] Theobald Jr P K, Lakin H W, Hawkins D B. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado[J]. Geochimica et Cosmochimica Acta, 1963, 27(2): 121-132. doi: 10.1016/0016-7037(63)90053-X

    CrossRef Google Scholar

    [74] Topal M, Öbek E, Arslan Topal E I. Phycoremediation of precious metals by cladophora fracta from mine gallery waters causing environmental contamination[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105: 134-138. doi: 10.1007/s00128-020-02879-w

    CrossRef Google Scholar

    [75] Väänänen M, Kupiainen L, Rämö J, et al. Speciation and coagulation performance of novel coagulant–Aluminium formate[J]. Separation and Purification Technology, 2012, 86: 242-247. doi: 10.1016/j.seppur.2011.11.010

    CrossRef Google Scholar

    [76] Valente T, Grande J A, De La Torre M L, et al. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain)[J]. Applied Geochemistry, 2013, 39: 11-25. doi: 10.1016/j.apgeochem.2013.09.014

    CrossRef Google Scholar

    [77] Verplanck, P.L., Nordstrom, D.K., Taylor, H.E, et al. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation.[J]. Applied Geochemistry, 2004,19, 1339-1354

    Google Scholar

    [78] Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7: 409-433. doi: 10.1007/s11051-005-6931-x

    CrossRef Google Scholar

    [79] Weiser H B, Milligan W O, Purcell W R. Composition of floc formed at pH values below 5.5[J]. Ind Eng Chem, 1941, 33: 669-672. doi: 10.1021/ie50377a029

    CrossRef Google Scholar

    [80] Zhang Z, Wang L, Zhou B, et al. Adsorption performance and mechanism of synthetic schwertmannite to remove low-concentration fluorine in water[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1191-1201. doi: 10.1007/s00128-021-03147-1

    CrossRef Google Scholar

    [81] Zodrow E L, Mccandlish K. Hydrated sulfates in the Sydney coalfield, Cape Breton, Nova Scotia[J]. The Canadian Mineralogist, 1978, 16(1): 17-22.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(967) PDF downloads(42) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint