2024 Vol. 57, No. 3
Article Contents

HONG Jun, ZHANG Huishan, LÜ Pengrui, Tahseenullah Khan, Yasir Shaheen Khalil, WANG Zhihua, ZHANG Haidi. 2024. Tectono–Magmatic Evolution of the Neo–Tethys Belt in Pakistan and Related Mineralization of Major Metal Mineral Deposits. Northwestern Geology, 57(3): 154-176. doi: 10.12401/j.nwg.2023117
Citation: HONG Jun, ZHANG Huishan, LÜ Pengrui, Tahseenullah Khan, Yasir Shaheen Khalil, WANG Zhihua, ZHANG Haidi. 2024. Tectono–Magmatic Evolution of the Neo–Tethys Belt in Pakistan and Related Mineralization of Major Metal Mineral Deposits. Northwestern Geology, 57(3): 154-176. doi: 10.12401/j.nwg.2023117

Tectono–Magmatic Evolution of the Neo–Tethys Belt in Pakistan and Related Mineralization of Major Metal Mineral Deposits

  • Pakistan is located in the convergent zone of the India, Eurasian and Arabian plates, an important part of the Tethys tectonic domain. It is an excellent natural laboratory for the study of deep earth system interactions and mineralization effects, as both continental collision and oceanic subduction occur in Pakistan. However, the study of tectonic evolution and mineralization in Pakistan is still not systematic, and the background and mechanism of formation of some large and super–large ore deposits in Pakistan are still unclear. The authors and collaborating team have conducted in–depth anatomical and comparative studies on different types of dominant mineral deposits in Pakistan. In this paper, the resent research progress are summarized systematically. Focusing on the key scientific issues of tectonic-magmatic evolution and mineralization response in the Neo–Tethys belt, we have analyzed the tectonic setting of the formation of major metal mineralization types such as copper, chromite, lead-zinc and carbonatite–related REE deposits and the coupling relationship with major regional geological events. The study of regional mineralization regularities in Pakistan will provide a basis for resource potential analysis and mineral exploration both domestic and abroad.

  • 加载中
  • [1] 白文吉, 杨经绥, 方青松, 等. 西藏罗布莎蛇绿岩的Os-Ir-Ru合金及其中玻安岩质包体的研究[J]. 地质学报, 2005, 79(6): 814-822 doi: 10.3321/j.issn:0001-5717.2005.06.010

    CrossRef Google Scholar

    BAI Wenji, YANG Jingsui, FANG Qingsong, et al. A Study on Os-Ir-Ru Alloy and Boninitic Inclusion in the Luobusa Ophiolite, Tibet[J]. Acta Geologica Sinica, 2005, 79(6): 814-822. doi: 10.3321/j.issn:0001-5717.2005.06.010

    CrossRef Google Scholar

    [2] 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因-质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28 (12): 1742-1761

    Google Scholar

    BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites: questioning about the rock/melt interaction metallogeny[J]. Geologcal Bulletin of China, 2009, 28 (12): 1742-1761.

    Google Scholar

    [3] 洪俊, 姚文光, 张晶, 等. 新特提斯缝合带中段豆荚状铬铁矿成矿规律对比研究[J]. 地质学报, 2015a, 89(9): 11618-1628.

    Google Scholar

    HONG Jun, YAO Wenguang, ZHANG Jing, et al. Comparative Study of Metallogenic Regularities of Chromite Deposits in the Middle of the Neotethys Suture Zone[J]. Acta Geologica Sinica, 2015a, 89(9): 1618-1628.

    Google Scholar

    [4] 洪俊, 姚文光, 计文化, 等. 巴基斯坦基性-超基性岩铬尖晶石矿物化学及铬铁矿找矿潜力分析[J]. 新疆地质, 2015b, 33(2): 251-257

    Google Scholar

    HONG Jun, YAO Wenguang, JI Wenhua, et al. Mineral Chemistry of picotites from mafic-ultramafic complexes of Pakistan and the prospecting potential[J]. Xinjiang Geology, 2015b, 33(2): 251-257.

    Google Scholar

    [5] 洪俊. 巴基斯坦构造-岩浆演化与金属成矿作用研究[D]. 北京. 中国地质科学院, 2021.

    Google Scholar

    HONG Jun. Study on the tectono-magmatic evolution and related mineralization of Pakistan [D]. Beijing: Chinese Academy of Geological Sciences, 2021.

    Google Scholar

    [6] 洪俊. 西藏罗布莎铬铁矿床铬尖晶石对比研究及成矿演化探讨[D]. 北京: 中国地质大学(北京), 2011.

    Google Scholar

    HONG Jun. Chromium spinel contrast research and metallogenic evolution of the Luobusha chromite depist, Tibet[D]. Beijing: China University of Geosciences (Beijing), 2011.

    Google Scholar

    [7] 吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦贾盖火山岩浆岩带斑岩型铜-金矿床地质特征、成矿作用及找矿潜力[J]. 地质学报, 2015, 89(9): 1629-1642 doi: 10.3969/j.issn.0001-5717.2015.09.007

    CrossRef Google Scholar

    LÜ Pengrui, YAO Wenguang, ZHANG Haidi, et al. Geological Features, Mineralization and Ore-Prospecting Potential of Porphyry Cu-Au Deposits in the Chagai Volcanoplutonic Belt, Pakistan[J]. Acta Geologica Sinica, 2015, 89(9): 1629-1642. doi: 10.3969/j.issn.0001-5717.2015.09.007

    CrossRef Google Scholar

    [8] 吕鹏瑞, 姚文光, 张辉善, 等. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 2020, 94(8): 2291-2310 doi: 10.19762/j.cnki.dizhixuebao.2020044

    CrossRef Google Scholar

    LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica, 2020, 94(8): 2291-2310. doi: 10.19762/j.cnki.dizhixuebao.2020044

    CrossRef Google Scholar

    [9] 吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦成矿地质背景、主要金属矿产类型及其特征[J]. 地质科技情报, 2016, 35(04): 150-157

    Google Scholar

    LÜ Pengrui, YAO Wenguang, ZHANG Haidi, et al. Metallogenic setting, genetic types and geological features of main metallic deposits in Pakistan[J]. Bulletin of Geological Science and Technology, 2016, 35(04): 150-157.

    Google Scholar

    [10] 吕鹏瑞, 姚文光, 张辉善, 等. 巴基斯坦及中国邻区构造单元划分及其演化[J]. 西北地质, 2017, 50(3): 126-139 doi: 10.3969/j.issn.1009-6248.2017.03.014

    CrossRef Google Scholar

    LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Tectonic Unit Division and Geological Evolution of Pakistan and Its Adjacent Regions[J]. Northwestern Geology, 2017, 50(3): 126-139. doi: 10.3969/j.issn.1009-6248.2017.03.014

    CrossRef Google Scholar

    [11] 王希斌, 周详, 郝梓国. 西藏罗布莎铬铁矿床的进一步找矿意见和建议[J]. 地质通报, 2010, 29(1): 105-114 doi: 10.3969/j.issn.1671-2552.2010.01.013

    CrossRef Google Scholar

    WANG Xibin, ZHOU Xiang, HAO Ziguo. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China [J]. Geologcal Bulletin of China, 2010, 29(1): 105-114. doi: 10.3969/j.issn.1671-2552.2010.01.013

    CrossRef Google Scholar

    [12] 王瑞, 朱弟成, 王青, 等. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 2020, 50(12): 1919-1946

    Google Scholar

    WANG Rui, ZHU Dicheng, WANG Qing, et al. Porphyry mineralization in the Tethyan orogen[J]. Science China Earth Sciences, 2020, 50(12): 1919-1946.

    Google Scholar

    [13] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627–1674.

    Google Scholar

    WU Fuyuan, WAN Bo, ZHAO Liang, et al. Tethyan geodynamics[J]. Acta Petrologica Sinica, 2020, 36(6): 1627– 1674.

    Google Scholar

    [14] 熊发挥, 杨经绥, 巴登珠, 等. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8): 2137-2163

    Google Scholar

    XIONG Fahui, YANG Jingsui, BA Dengzhu, et al. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2137-2163.

    Google Scholar

    [15] 熊发挥, 杨经绥, 刘钊. 豆荚状铬铁矿多阶段形成过程的讨论[J]. 中国地质, 2013, 40(3): 820-840.

    Google Scholar

    XIONG Fahui, YANG Jingsui, LIU Zhao. Multi-satge formation of the podiform chromitite[J]. Geology in China, 2013, 40(3): 820-839.

    Google Scholar

    [16] 杨经绥, 徐向珍, 李源, 等. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石: 蛇绿岩型金刚石分类的提出[J]. 岩石学报, 2011, 27(11): 3171-3178

    Google Scholar

    YANG Jingsui, XU Xiangzhen, LI Yuan, et al. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence [J]. Acta Petrologica Sinica, 2011, 27(11): 3171-3178.

    Google Scholar

    [17] 张洪瑞, 侯增谦.大陆碰撞带成矿作用: 年轻碰撞造山带对比研究[J].中国科学: 地球科学, 2018, 48(12): 1629–1654.

    Google Scholar

    ZHANG Hongrui, HOU Zengqian. Metallogenesis within continental sollision zones: comparisons of modern collisional orogens[J]. Scientia Sinica (Terrae), 2018, 48(12): 1629–1654.

    Google Scholar

    [18] 张洪瑞, 侯增谦, 杨志明, 等. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29: 113-133 doi: 10.3969/j.issn.0258-7106.2010.01.011

    CrossRef Google Scholar

    ZHANG Hongrui, HOU Zengqian, YANG Zhiming, et al. Metallogenesis and geodynamics of Tethyan metallogenic domain: A review[J]. Mineral Deposits, 2010, 29(1): 113-133 doi: 10.3969/j.issn.0258-7106.2010.01.011

    CrossRef Google Scholar

    [19] 张洪瑞, 侯增谦, 贾敬伍, 等. 巴基斯坦穆斯林巴赫铬铁矿矿床[J]. 矿床地质, 2013, 32 (5): 1072-1074 doi: 10.16111/j.0258-7106.2013.05.019

    CrossRef Google Scholar

    ZHANG Hongrui, HOU Zengqian, JIA Jingwu, et al. Muslim Bagh Chromite Deposit in Pakistan [J]. Mineral Deposits, 2013, 32 (5): 1072-1074. doi: 10.16111/j.0258-7106.2013.05.019

    CrossRef Google Scholar

    [20] 张辉善. 新特提斯构造域中东段沉积岩容矿铅锌成矿作用: 以青海多才玛和巴基斯坦杜达矿床为例[D]. 合肥. 中国科学技术大学, 2021.

    Google Scholar

    ZHANG Huishan. Mineralization of Sediment-hosted Lead-Zinc Deposits in the Middle-East Segment of the Neo-Tethys Tectonic Domain: Examples from the Duocaima Deposit in Qinghai, China and the Duddar Deposit in Pakistan [D].Hefei: University of Science and Technology of China, 2021.

    Google Scholar

    [21] Agard P, Omrani J, Jolivet L. Zagros orogeny: a subduction-dominated process [J]. Geological Magazine, 2011, 148: 692-725.

    Google Scholar

    [22] Aghazadeh M, Hou Z Q, Badrzadeh Z, et al. Temporal–spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U–Pb and molybdenite Re–Os geochronology [J]. Ore Geology Reviews, 2015, 70: 385-406. doi: 10.1016/j.oregeorev.2015.03.003

    CrossRef Google Scholar

    [23] Ahmad I, Hamidullah S, Jehan N. Petrology of the Shewa–Shahbaz Garhi complex, Mardan North Pakistan [J]. Geological Bulletin University of Peshawar, 1990, 23: 135-159.

    Google Scholar

    [24] Ahmad I, Khan S, Lapen T, et al. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 62: 414-424. doi: 10.1016/j.jseaes.2012.10.025

    CrossRef Google Scholar

    [25] Ahsan S N, Mallick K A. Geology and genesis of barite Deposits of Lasbela and Khuzdar districts, Balochistan, Pakistan [J]. Resource Geology, 1999, 49(2): 105-111. doi: 10.1111/j.1751-3928.1999.tb00036.x

    CrossRef Google Scholar

    [26] Ahsan S, Qureshi I. Mineral/rock resources of Lasbela and Khuzdar Districts [J]. Geological Bulletin University of Peshawar, 1997, 30: 41-51.

    Google Scholar

    [27] Arai S, Abe N. Podiform chromitite in the arc mantle: Chromitite xenoliths from the Takashima alkali basalt Southwest Japan arc [J]. Mineral Deposit, 1994, 29: 434-438. doi: 10.1007/BF01886963

    CrossRef Google Scholar

    [28] Arif M, Qasim J. Petrotectonic significance of the chemistry of chromite in the ultramafic-mafic complexes of Pakistan [J]. Journal of Asian Sciences, 2006, 27(5): 628-646.

    Google Scholar

    [29] Bell K, Simonetti A. Source of parental melts to carbonatites–critical isotopic constraints [J]. Mineralogy & Petrology, 2010, 98(1): 77–89.

    Google Scholar

    [30] Bortolotti V, Principi G. Tethyan ophiolites and Pangea break- up [J]. Island Arc, 2005, 14: 442–470. doi: 10.1111/j.1440-1738.2005.00478.x

    CrossRef Google Scholar

    [31] Burg J P. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation [J]. Earth-Sciences Reviews, 2018, 22: 197–215.

    Google Scholar

    [32] Butt K A, Arif A Z, Ahmed J, et al. Chemistry and petrography of the Sillai Patti carbonatite complex, North Pakistan [J]. Geological Bulletin University of Peshawar, 1989, 22: 197–215.

    Google Scholar

    [33] Coward M P, Butler R W H, Khan M A, et al. The tectonic history and its implications for Himalayan structure [J]. Journal of the Geological Society, London, 1987, 144: 377–391. doi: 10.1144/gsjgs.144.3.0377

    CrossRef Google Scholar

    [34] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347: 662–665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [35] Dick H J B, Bullen T. Chromain spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas [J]. Contributions to Mineralogy and Petrology, 1984, 86, 54-76. doi: 10.1007/BF00373711

    CrossRef Google Scholar

    [36] Ding N, Qasim M, Jadoon I A K, et al. The India–Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin [J]. Earth and Planetary Science Letters, 2016, 455: 49–61. doi: 10.1016/j.jpgl.2016.09.003

    CrossRef Google Scholar

    [37] DiPietro J A, Pogue K R. Tectonostratigraphic subdivisions of the Himalaya: a view from the West [J]. Tectonics, 2004, 23, TC5001.

    Google Scholar

    [38] Feng M, Song W L, Kynicky J, et al. Primary rare earth element enrichment in carbonatites: Evidence from melt inclusions in Ulgii Khiid carbonatite, Mongolia [J]. Ore Geology Reviews, 2020, 117, 103294. doi: 10.1016/j.oregeorev.2019.103294

    CrossRef Google Scholar

    [39] Fu F Q, McInnes B I A, Evans N J, et al. Thermal and exhumation history of the Parra Koh porphyry Cu-Au deposit, Pakistan: Thermochronology and inverse numerical modeling[C]. Geological Society of America-Society of Economic Geologists Joint Annual Meeting (Salt Lake City, 2005), 2006, CD-ROM:1

    Google Scholar

    [40] Gweltaz M, Herve B, Stephane G. The south Ladakh ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys [J]. Chemical Geology, 2004, 203(3-4): 207-303.

    Google Scholar

    [41] Hong J, Ji W H, Yang X Y, et al. Origin of a Miocene alkaline–carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: Petrology, geochemistry, LA–ICP–MS zircon U–Pb dating, and Hf isotope analysis [J]. Ore Geology Reviews, 2019, 107: 820-837. doi: 10.1016/j.oregeorev.2019.03.009

    CrossRef Google Scholar

    [42] Hong J, Tahseenullah K, Li W Y, et al. SHRIMP U–Pb ages, mineralogy, and geochemistry of carbonatite–alkaline complexes of the Sillai Patti and Koga areas, NW Pakistan: Implications for petrogenesis and REE mineralization [J]. Ore Geology Reviews, 2021, S0169-1368(21)00573-4.

    Google Scholar

    [43] Hoskin P, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis [J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 27–62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [44] Hou Z Q, Tian S H, Yuan Z X, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication [J]. Earth and Planetary Science Letters, 2006, 244: 234–250. doi: 10.1016/j.jpgl.2006.01.052

    CrossRef Google Scholar

    [45] Hou Z Q, Tian S H, Xie Y L, et al. The Himalayan Mianning–Dechang REE belt associated with carbonatite–alkaline complexes, eastern Indo-Asian collision zone, SW China [J]. Ore Geology Reviews, 2009, 36: 65–89. doi: 10.1016/j.oregeorev.2009.03.001

    CrossRef Google Scholar

    [46] Hou Z, Zhang H, Pan X, et al. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39 (1), 21–45.

    Google Scholar

    [47] Hou Z Q, Yang Z M, Lu Y J, et al. A genetic linkage between subduction and collision-related porphyry Cu deposits in continental collision zones [J]. Geology, 2015, 43(3): 247–250

    Google Scholar

    [48] Hou Z Q, Liu Y, Tian S H, et al. Formation of carbonatite related giant rare-earth-element deposits by the recycling of marine sediments [J]. Scientific Reports, 2015, 5: 10231. doi: 10.1038/srep10231

    CrossRef Google Scholar

    [49] Hou Z Q, Zhang H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain [J]. Ore Geology Reviews, 2015, 70: 346-384. doi: 10.1016/j.oregeorev.2014.10.026

    CrossRef Google Scholar

    [50] Hussain A, Mughal M N, Haq I, et al. Geological Map of the Garhi Hibibullah Area, District Mansehra and Parts of Muzaffarabad District, AJK (sheet no. 43 F/7) [M]. Quetta: Geological Survey of Pakistan, 2004.

    Google Scholar

    [51] Husain V, Khan H, Germann K. et al. Geochemical investigations of stratabound gunga barite deposits of khuzdar (balochistan), Pakistan [J]. Resource Geology, 2002, 52(1): 49-58. doi: 10.1111/j.1751-3928.2002.tb00116.x

    CrossRef Google Scholar

    [52] Hussain A, Zhao K D, Arif M, et al. Geochronology, mineral chemistry and genesis of REE mineralization in alkaline rocks from the Kohistan Island Arc, Pakistan [J]. Ore Geology Reviews, 2020, 126: 103749 doi: 10.1016/j.oregeorev.2020.103749

    CrossRef Google Scholar

    [53] Jia Y H, Liu Y. Factors controlling the generation and diversity of giant carbonatite-related rare earth element deposits: Insights from the Mianning–Dechang belt [J]. Ore Geology Reviews, 2020, 121: 103472. doi: 10.1016/j.oregeorev.2020.103472

    CrossRef Google Scholar

    [54] Kakar M I, Andrew C K, Khalid M, et al. Petrology of the mantle rocks from the Muslim Bagh Ophiolite, Balochistan, Pakistan [J]. Journal of Himalayan Earth Sciences, 2013, 46(2), 101-112.

    Google Scholar

    [55] Kakar M I, Andrew C K, Khalid M, et al. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology [J]. Lithos, 2014, 202-203: 190 -206. doi: 10.1016/j.lithos.2014.05.029

    CrossRef Google Scholar

    [56] Kanazawa Y, Kamitani M. Rear earth minerals and resources in the world [J]. Journal of Alloys and Compounds, 2006, 408-412: 1339-1343. doi: 10.1016/j.jallcom.2005.04.033

    CrossRef Google Scholar

    [57] Kazmi A H, Rana R A. Tectonic map of Pakistan[M]. Quetta: Geological Survey of Pakistan, 1982.

    Google Scholar

    [58] Kempe D R C, Jan M Q. An alkaline igneous province in the North-West Frontier Province, West Pakistan[J]. Geological Magazine, 1970, 107: 395–398. doi: 10.1017/S0016756800056260

    CrossRef Google Scholar

    [59] Kempe D R C, Jan M Q. The Peshawar plain alkaline igneous province, NW Pakistan [J]. Geological Bulletin University of Peshawar, 1980, 13: 71–77.

    Google Scholar

    [60] Khattak N U, Akram M, Ali N, et al. Recognition of the time and level of emplacement of the Sillai Patti carbonatite complex, Malakand Division, Northwest Pakistan: Constraints from fission-track dating[J]. Russian Geology and Geophysics, 2012, 53(8), 736–744.

    Google Scholar

    [61] Large D E. Geological parameters associated with sediment-hosted submarine exhalative Pb-Zn deposits: an empirical model for mineral exploration [J]. Geologisches Jahrbueh, 1980, 40: 59-129.

    Google Scholar

    [62] Lydon J W. Report on an examination of Zn-Pb-Ba deposits of the Lasbela-Khuzdar belt, Balochistan, Pakistan[R]. United Nations Development Programme, 1989.

    Google Scholar

    [63] Le Bas M J, Mian I, Rex D C. Age and nature of carbonatites emplacement in North Pakistan [J]. Geologische Rundschau, 1987, 76 (2): 317–323. doi: 10.1007/BF01821077

    CrossRef Google Scholar

    [64] Ling M X, Liu Y L, Williams I S, et al. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids [J]. Scientific Reports, 2013, 3: 1–8.

    Google Scholar

    [65] Liu Y, Hou Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China [J]. Journal of Asian Earth Sciences, 2017, 137: 35–79. doi: 10.1016/j.jseaes.2017.01.010

    CrossRef Google Scholar

    [66] Mehrab K, Andrew C K, Khalid M. Formation and tectonic evolution of the Cretaceous-Jurassic Muslim Bagh ophiolitic tectonic setting of ophiolites [J]. Journal of Earth Sciences, 2007, 31: 112-127.

    Google Scholar

    [67] Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys [J]. Australian Journal of Earth Sciences, 1996, 43: 605–623. doi: 10.1080/08120099608728282

    CrossRef Google Scholar

    [68] Metcalfe I. Gondwana dispersion and Asian accretion: tectonic and palaeogeo-graphic evolution of eastern Tethys [J]. Journal of Asian Earth Sciences, 2013, 66: 1–33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [69] Mian I, Le Bas M J. Feldspar solid solution series in fenites from Loe–Shilman carbonatite complex, NW Pakistan [J]. Geological Bulletin University of Peshawar, 1988, 21: 71–83.

    Google Scholar

    [70] Mouthereau F, Lacombe O, Verges J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence [J]. Tectonophysics, 2012, 532: 27-60.

    Google Scholar

    [71] Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region [J]. Earth and Planetary Science Letters, 2007, 259(1–2): 212–225.

    Google Scholar

    [72] Nelson D R, Chivas A R, Chappell B W. Geochemical and isotopic systematics in carbonatite and implications for the evolution of ocean-island sources [J]. Geochimica et Cosmochimica Acta, 1988, 52: 1–17. doi: 10.1016/0016-7037(88)90051-8

    CrossRef Google Scholar

    [73] Nicholson K N, Khan M, Mahmood K. Geochemistry of the Chagai–Raskoh arc, Pakistan: Complex arc dynamics spanning the Cretaceous to the Quaternary [J]. Lithos, 2010, 118 (3–4): 338-348.

    Google Scholar

    [74] Palin R M, Treloar P J, Searle M P, et al. U-Pb monazite ages from the Pakistan Himalaya record pre-Himalayan Ordovician orogeny and Permian continental breakup [J]. GSA Bulletin, 2018, 130 (11-12): 2047–2061.

    Google Scholar

    [75] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16: 77-94. doi: 10.1144/GSL.SP.1984.016.01.06

    CrossRef Google Scholar

    [76] Perelló J, Razique A, Schloderer J, et al. The Chagai porphyry copper belt, Baluchistan province, Pakistan [J]. Economic Geology, 2008, 103(8): 1583–1612. doi: 10.2113/gsecongeo.103.8.1583

    CrossRef Google Scholar

    [77] Powell C M A. Speculative tectonic history of Pakistan and surroundings[J]. In: Farah A, Dejong K A, eds. Geodynamics of Pakistan [M]. Quetta: Geological Survey of Pakistan, 1979, 5-24.

    Google Scholar

    [78] Ravikant V, Tanpan P, Dipankar D. Chromites from the Nidar ophiolite and Karzok complex, Transhimalaya, eastern Ladakh: their magmatic evolution [J]. Journal of Asian Earth Sciences, 2004, 24: 177-184. doi: 10.1016/j.jseaes.2003.10.005

    CrossRef Google Scholar

    [79] Rehman H U, Seno T, Yamamoto H, et al. Timing of collision of the Kohistan-Ladakh Arc with India and Asia: Debate [J]. Island Arc, 2011, 20 (3): 308-328. doi: 10.1111/j.1440-1738.2011.00774.x

    CrossRef Google Scholar

    [80] Richards J P, Şengör A M C. Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation?[J]. Geology, 2017, 45(7): 591–594.

    Google Scholar

    [81] Richards J P, Spell T, Remeh E, et al. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu-Mo-Au potential: an example from the Tethyan arcs of Central and Eastern Iran and Western Pakistan [J]. Economic Geology, 2012, 107: 295-332. doi: 10.2113/econgeo.107.2.295

    CrossRef Google Scholar

    [82] Richards J P. Tectonic, magmatic, and metallogenic evolution of the tethyan orogen: From subduction to collision [J]. Ore Geology Reviews, 2015, 70: 323–345. doi: 10.1016/j.oregeorev.2014.11.009

    CrossRef Google Scholar

    [83] Rollinson H, Adetunji J. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite: A review[J]. Gondwana Research. 2015, 27(2): 543–554.

    Google Scholar

    [84] Sengör A.M.C., Natal’in B.A., Paleotectonics of Asia: Fragments of a synthesis, In: The Tectonic Evolution of Asia[M]. Cambridge: Cambridge University Press, 1996.

    Google Scholar

    [85] Siddiqui R H, Khan M A, Jan M Q. Geochemistry and petrogenesis of the Miocene alkaline and sub-alkaline volcanic rocks from the Chagai arc, Baluchistan, Pakistan: implications for porphyry Cu-Mo-Au deposits [J]. Journal of Himalayan Earth Sciences, 2007, 40: 1-23.

    Google Scholar

    [86] Sillitoe R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3–41. doi: 10.2113/gsecongeo.105.1.3

    CrossRef Google Scholar

    [87] Simonetti A, Bell K, Viladkar S G. Isotopic data from the Amba Dongar carbonatite complex, west–central India: evidence for an enriched mantle source [J]. Chemical Geology, 1995, 122: 185-198. doi: 10.1016/0009-2541(95)00004-6

    CrossRef Google Scholar

    [88] Song Y C, Liu Y C, Hou Z Q, et al. Sediment-hosted Pb–Zn deposits in the Tethyan domain from China to Iran: Characteristics, tectonic setting, and ore controls [J]. Gondwana Research, 2019, 75: 249-281. doi: 10.1016/j.gr.2019.05.005

    CrossRef Google Scholar

    [89] Sorkhabi R, Heydari E. Asia out of Tethys: Foreword preface[J]. Tectonophysics, 2008, 451(1~ 4): 171-3178.

    Google Scholar

    [90] Thayer T P. Chromite segregation as petrogenetic indicators[J]. Geological Society of South Africa Special Publication, 1970, 1: 380~390.

    Google Scholar

    [91] Thorkelson D J, Breitsprecher K. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas [J]. Lithos, 2005, 79: 25–41. doi: 10.1016/j.lithos.2004.04.049

    CrossRef Google Scholar

    [92] Wilke F D H, O’Brien P J, Gerdes A. The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan, from U-Pb and 40Ar/39Ar ages [J]. European Journal of Mineralogy, 2010, 22: 703–719 doi: 10.1127/0935-1221/2010/0022-2051

    CrossRef Google Scholar

    [93] Woolley A R, Kjarsgaard B A. Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database [J]. Canadian Mineralogist, 2008, 46: 741–752. doi: 10.3749/canmin.46.4.741

    CrossRef Google Scholar

    [94] Xiong Y Q. Emplacement of Bela and Musilm Bagh ophiolites and significance of India-Asia collision in western Pakistan [D]. Houston: University of Houston, 2011: 1-175.

    Google Scholar

    [95] Xu C, Kynicky J, Chakhmouradian A R, et al. Trace-element modeling of the magmatic evolution of rare earth-rich carbonatite from the Miaoya deposit, central China [J]. Lithos, 2010, 118: 145–155. doi: 10.1016/j.lithos.2010.04.003

    CrossRef Google Scholar

    [96] Yang K F, Fan H R, Franco P, et al. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite [J]. Geology, 2019, 47(12): 1198-1202. doi: 10.1130/G46674.1

    CrossRef Google Scholar

    [97] Yang X Y, Lai X D, Pirajno F, et al. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, north China craton: a perspective review [J]. Precambrian Research, 2016, 288: 39–71.

    Google Scholar

    [98] Yang X Y, Sun W D, Zhang Y X, et al. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China [J]. Geochimica et Cosmochimica Acta, 2009, 73: 1417–1435. doi: 10.1016/j.gca.2008.12.003

    CrossRef Google Scholar

    [99] Yang Z M, Goldfarb R, Chang Z S. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate [J]. Economic Geology, 2016, S19, 279–300.

    Google Scholar

    [100] Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): implications for mantle–melt interaction and chromite segregation [J]. Journal of Petrology, 1996, 37, 3-21. doi: 10.1093/petrology/37.1.3

    CrossRef Google Scholar

    [101] Zhou M F, Robinson P T. Origin and tectonic environment of podiform chromite deposits [J]. Economic Geology, 1997, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259

    CrossRef Google Scholar

    [102] Zhou M F, Robinson P T, Malpas J, et al. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet [J]. Journal of Petrology, 2005, 46 (3) : 615-639.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(1410) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint