2023 Vol. 56, No. 5
Article Contents

XU Kangkang, SUN Kai, WU Xingyuan. 2023. Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes. Northwestern Geology, 56(5): 20-34. doi: 10.12401/j.nwg.2023116
Citation: XU Kangkang, SUN Kai, WU Xingyuan. 2023. Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes. Northwestern Geology, 56(5): 20-34. doi: 10.12401/j.nwg.2023116

Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes

  • The study of mafic–intermediate and felsic magmatism related to Neoproterozoic rift in the Lufilian Arc is of great significance for understanding the crustal growth and secular evolution of the region. Studies have shown that there are a large number of Neoproterozoic mafic rocks which are related to rifting in the Lufilan arc, but a few of related intermediate and felsic magmatism are discovered. A Neoproterozoic quartz monzonite with a zircon U–Pb age of 707.1±3.0 Ma was first discovered and reported in the Lufilian Arc. The pluton is characterized by relatively low MgO (0.46%~0.76%), CaO (1.63%~1.76%), K2O (0.49%~0.56%), Mg# values (8~13) and Sr/Y ratios (1.14~2.50), as well as high Al2O3 content (15.61%~16.02%). REE–normalized patterns show enrichment in LREE with (La/Yb)N of 6.64~7.86 and their primitive mantle-normalized trace element patterns are characterized by depletion of LILEs (Rb, Ba, Sr, K) and P, Ti, Zr and enrichment of HFSEs (Nb, Ta, Hf). They have a low initial 87Sr/86Sr ratios (0.7058~0.7060) with positive εNd(t) values (1.89~2.03) and their zircon εHf(t) values range from 1.30 to 5.67, their isotopic data are similar to those of the Neoproterozoic mafic intrusions in the Solwezi region, suggesting that the quartz monzonite were generated by partial melting of newly emplaced mafic lower crust. In combination with the studies of geochronology and petrogenesis, it is concluded that the Lufilian Arc experienced a multi–stage crustal growth in the Neoproterozoic, the late intrusive mantle magma heated the mafic rocks emplaced in the lower crust at early stage, resulting in partial melting and reworking the early crust.

  • 加载中
  • [1] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    Google Scholar

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    Google Scholar

    [2] 陆松年. 新元古时期Rodinia超大陆研究进展述评[J]. 地质论评, 1998, 44(5): 489-495.

    Google Scholar

    LU Songnian. A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent[J]. Geological Review, 1988, 44(5): 489-495.

    Google Scholar

    [3] 任云伟, 张家辉, 田辉, 等. 天镇-怀安地区新太古代末二长花岗岩的成因及动力背景[J]. 华北地质. 2022, 45(2): 76-86.

    Google Scholar

    REN Yunwei, ZHANG Jiahui, TIAN Hui, et al. Petrogenesis and geodynamic settings of monzonitic granite at the end of the Neoarchean in Tianzhen-Huai'an area[J]. North China Geology, 2022, 45(2): 76-86.

    Google Scholar

    [4] 徐焱, 张世红. 塔里木克拉通在Rodinia中的位置——研究进展与问题[J]. 地质调查与研究, 2020, 43(2): 169-176.

    Google Scholar

    XU Yan, ZHANG Shihong. The position of Tarim Craton in Rodinia:advances and problems[J]. Geological Survey and Research, 2020, 43(2): 169-176.

    Google Scholar

    [5] 许康康, 孙凯, 何胜飞, 等. 非洲中部新元古代Lufilian弧地区地质特征、成矿时代及构造演化历史[J]. 地质与勘探, 2021a, 57(03): 676-692.

    Google Scholar

    XU Kangkang, SUN Kai, HE Shengfei, et al. Geological Characteristics and Metallogenic Age and Tectonic Evolution Histroy of Neoproterozoic Lufilian Arc in Central Africa[J]. Geology and Prospecting, 2021a, 57(03): 676-692.

    Google Scholar

    [6] 许康康, 孙凯, 何胜飞, 等. 赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J]. 华北地质, 2021b, 44(03): 1-3.

    Google Scholar

    XU Kangkang, SUN Kai, HE Shengfei, et al. Detrital zircon U-Pb dating of the garnet mica schist and its geological implications in the Solwezi area, Northwestern Zambia[J]. North China Geology, 2021b, 44(03): 1-3.

    Google Scholar

    [7] Annen C, Blundy J D, Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3): 505-539. doi: 10.1093/petrology/egi084

    CrossRef Google Scholar

    [8] Armstrong R A, Master S, Robb L J. Geochronology of the Nchanga granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 32-40. doi: 10.1016/j.jafrearsci.2005.08.012

    CrossRef Google Scholar

    [9] Arth J G, Hanson G N. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths[J]. Contributions to Mineralogy and Petrology, 1972, 37(2): 161-174. doi: 10.1007/BF00371074

    CrossRef Google Scholar

    [10] Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53, 303-323. doi: 10.1016/0009-2541(85)90076-2

    CrossRef Google Scholar

    [11] Barron J W. Stratigraphy, metamorphism, and tectonic history of the Solwezi area, Northwest Province, Zambia: Integrating geological field observations and airborne geophysics in the interpretation of regional geology[D]. Colorado School of Mines, Golden, CO. , USA, 2003: 1−233.

    Google Scholar

    [12] Batumike M J, Kampunzu A B, Cailteux J H. Petrology and geochemistry of the Neoproterozoic Nguba and Kundelungu Groups, Katangan Supergroup, southeast Congo: Implications for provenance, paleoweathering and geotectonic setting[J]. Journal of African Earth Sciences, 2006, 44(1): 97-115. doi: 10.1016/j.jafrearsci.2005.11.007

    CrossRef Google Scholar

    [13] Batumike M J, Cailteux J L H, Kampunzu A B. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt[J]. Gondwana Research, 2007, 11(3): 432-447. doi: 10.1016/j.gr.2006.04.012

    CrossRef Google Scholar

    [14] Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    CrossRef Google Scholar

    [15] Belousova E, Griffin W L, O'Reilly S Y, Fisher N L. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143, 602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [16] Cai Y, Wang Y, Cawood P A, Zhang Y Z, Zhang A M. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008

    CrossRef Google Scholar

    [17] Cailteux J. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization[J]. Journal of African Earth Sciences, 1994, 19(4): 279-301. doi: 10.1016/0899-5362(94)90015-9

    CrossRef Google Scholar

    [18] Cailteux J L H, Kampunzu A B, Lerouge C, Kaputo A K, Milesi J P. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 134-158. doi: 10.1016/j.jafrearsci.2005.08.001

    CrossRef Google Scholar

    [19] Cailteux J L H, Kampunzu A B, Lerouge C. The Neoproterozoic Mwashya–Kansuki sedimentary rock succession in the Central African Copperbelt, its Cu–Co mineralisation, and regional correlations[J]. Gondwana Research, 2007, 11(3): 414-431. doi: 10.1016/j.gr.2006.04.016

    CrossRef Google Scholar

    [20] Cailteux J , Putter T D. The Neoproterozoic Katanga Supergroup (D. R. Congo): State-of-the-art and revisions of the lithostratigraphy, sedimentary basin and geodynamic evolution[J]. Journal of African Earth Sciences, 2019, 150: 522-531. doi: 10.1016/j.jafrearsci.2018.07.020

    CrossRef Google Scholar

    [21] Cantagrel J M, Didier J, Gourgaud A. Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism[J]. Physics of the earth and planetary interiors, 1984, 35(1-3): 63-76. doi: 10.1016/0031-9201(84)90034-7

    CrossRef Google Scholar

    [22] Carmichael I S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99 W) Mexico[J]. Contributions to Mineralogy and Petrology, 2002, 143(6): 641-663. doi: 10.1007/s00410-002-0370-9

    CrossRef Google Scholar

    [23] Cawood P A, Hawkesworth C J, Dhuime B. The continental record and the generation of continental crust[J]. Bulletin, 2013, 125(1-2): 14-32.

    Google Scholar

    [24] Clemens A. The granulite–granite connection[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Dordrecht, Kluwer, 1990: 25–36.

    Google Scholar

    [25] Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2-4): 287-306. doi: 10.1016/0012-821X(87)90227-5

    CrossRef Google Scholar

    [26] Condie K C. Episodic continental growth and supercontinents: a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163(1-4): 97-108. doi: 10.1016/S0012-821X(98)00178-2

    CrossRef Google Scholar

    [27] Condie K C, Kröner A. The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 23(2): 394-402. doi: 10.1016/j.gr.2011.09.011

    CrossRef Google Scholar

    [28] De Swardt A M J, Gerrard P, Simpson J. Major zones of transcurrent dislocation and superposition of orogenic belts in part of Central Africa[J]. Geological Society of America BulletinBull, 1965, 76(1): . 89-1. doi: 10.1130/0016-7606(1965)76[89:MZOTDA]2.0.CO;2

    CrossRef Google Scholar

    [29] Dirks P H G M, Sithole T A. Eclogites in the Makuti gneisses of Zimbabwe: implications for the tectonic evolution of the Zambezi Belt in southern Africa[J]. Journal of Metamorphic Geology, 1999, 17(6): 593-612. doi: 10.1046/j.1525-1314.1999.00215.x

    CrossRef Google Scholar

    [30] Eglinger A, André-Mayer A S, Vanderhaeghe O. Geochemical signatures of uranium oxides in the Lufilian belt: from unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle[J]. Ore Geology Reviews, 2013, 54: 197-213. doi: 10.1016/j.oregeorev.2013.04.003

    CrossRef Google Scholar

    [31] El Desouky H A, Muchez P, Cailteux J. Two Cu–Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo[J]. Ore Geology Reviews, 2009, 36(4): 315-332. doi: 10.1016/j.oregeorev.2009.07.003

    CrossRef Google Scholar

    [32] Flierdt T V D, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U, Friedrichsen H. Lower crustal melting and the role of open-system processes in the genesis of syn-orogenic quartz diorite-granite-leucogranite associations: constraints from Sr-Nd-O isotopes from the Bandombaai Complex, Namibia. Lithos, 2003, 67, 205–226. doi: 10.1016/S0024-4937(03)00016-1

    CrossRef Google Scholar

    [33] Gao S, Rudnick R L, Yuan H , Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [34] Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [35] Griffin W L, Wang X, Jackson S E, Pearson NJ, O’Reilly S Y, Xu X S, Zhou X M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8

    CrossRef Google Scholar

    [36] Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145(5): 515-533. doi: 10.1007/s00410-003-0448-z

    CrossRef Google Scholar

    [37] Hanson R E, Wardlaw M S, Wilson T J, Mwale G. U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: Constraints on pan-African deformation, plutonism, and transcurrent shearing in central Zambia[J]. Precambrian Reserch, 1993, 63: 189-209. doi: 10.1016/0301-9268(93)90033-X

    CrossRef Google Scholar

    [38] Hitzman M W, Selley D, Bull S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history[J]. Economic Geology, 2010, 105(3): 627-639. doi: 10.2113/gsecongeo.105.3.627

    CrossRef Google Scholar

    [39] Johnson S P, Rivers T, De Waele B. A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south–central Africa: implications for Rodinia and Gondwana[J]. Journal of the Geological Society, 2005, 162(3): 433-450. doi: 10.1144/0016-764904-028

    CrossRef Google Scholar

    [40] Jung S, Hoernes S, Mezger K. Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia)[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 551-566. doi: 10.1007/s00410-002-0366-5

    CrossRef Google Scholar

    [41] Kampunzu A B, Cailteux J. Tectonic evolution of the Lufilian Arc (Central Africa Copperbelt) during Neoproterozoic Pan African orogenesis[J]. Gondwana Research, 1999, 2(3): 401-421. doi: 10.1016/S1342-937X(05)70279-3

    CrossRef Google Scholar

    [42] Kampunzu A B, Tembo F, Matheis G, Kapenda D, Huntsman-Mapila P. Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan Basin, Central Africa: Implications for Rodinia break-up[J]. Gondwana Research, 2000, 3(2): 125-153. doi: 10.1016/S1342-937X(05)70093-9

    CrossRef Google Scholar

    [43] Kampunzu A B, Cailteux J L H, Kamona A F, Intiomale M M, Melcher F. Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 2009, 35(3-4): 263-297. doi: 10.1016/j.oregeorev.2009.02.003

    CrossRef Google Scholar

    [44] Katongo C, Koeberl C, Reimold W U, Mubu S. Remote sensing, field studies, petrography, and geochemistry of rocks in central Zambia: no evidence of a meteoritic impact in the area of the Lukanga Swamp[J]. Journal of African Earth Sciences, 2002, 35(3): 365-384. doi: 10.1016/S0899-5362(02)00150-1

    CrossRef Google Scholar

    [45] Katongo C, Koller F, Kloetzli U, Koeberl C, Tembo F, De Waele B. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian–Zambezi belt, Zambia: Implications for tectonic setting and regional correlation[J]. Journal of African Earth Sciences, 2004, 40(5): 219-244. doi: 10.1016/j.jafrearsci.2004.12.007

    CrossRef Google Scholar

    [46] Kemp A I S, Hawkesworth C J, Collins W J, Gray C M, Blevin P L. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 2009, 284(3-4): 455-466. doi: 10.1016/j.jpgl.2009.05.011

    CrossRef Google Scholar

    [47] Key R M, Liyungu A K, Njamu F M, Somwe V, Banda J, Mosley P N, Armstrong R A. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization[J]. Journal of African Earth Sciences, 2001, 33(3-4): 503-528. doi: 10.1016/S0899-5362(01)00098-7

    CrossRef Google Scholar

    [48] Kushiro I. The system forsterite-diopside-silica with and without water at high pressures[J]. American Journal of Science, 1969, 267(A): 269-294.

    Google Scholar

    [49] Liu S, Hu R Z, Gao S, Feng C, Qi Y Q, Wang T, Feng G Y, Coulson I M. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China[J]. Lithos, 2008, 106, 365-379. doi: 10.1016/j.lithos.2008.09.004

    CrossRef Google Scholar

    [50] Ludwig K R. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel[M]. Geochronological Center, Special Publication No. 4, Berkeley, 2003: 25-32.

    Google Scholar

    [51] Master S, Rainaud C, Armstrong R A, Phillips D, Robb L J. . Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution[J]. Journal of African Earth Sciences, 2005, 42(1-5): 41-60. doi: 10.1016/j.jafrearsci.2005.08.005

    CrossRef Google Scholar

    [52] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37, 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [53] Muchez P, Vanderhaeghen P, El Desouky H, Schneider J, Boy A, Dewaele S, Cailteux J. Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2008, 43(5): 575-589. doi: 10.1007/s00126-008-0183-5

    CrossRef Google Scholar

    [54] Naydenov K V, Lehmann J, Saalmann K, Milani L, Kinnaird J A, Charlesworth G, Rankin W. New constraints on the Pan-African Orogeny in Central Zambia: A structural and geochronological study of the Hook Batholith and the Mwembeshi Zone[J]. Tectonophysics, 2014, 637: 80-105. doi: 10.1016/j.tecto.2014.09.010

    CrossRef Google Scholar

    [55] Parman S W, Grove T L. Harzburgite melting with and without H2O: Experimental data and predictive modeling[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2).

    Google Scholar

    [56] Patchett P J, Kouvo O, Hedge C E , Tatsumoto M. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 279-297. doi: 10.1007/BF00398923

    CrossRef Google Scholar

    [57] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru[J]. Journal of petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    [58] Porada H. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil[J]. Precambrian Research, 1989, 44(2): 103-136. doi: 10.1016/0301-9268(89)90078-8

    CrossRef Google Scholar

    [59] Porada H, Berhorst V. Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of African Earth Sciences, 2000, 30(3): 727-771. doi: 10.1016/S0899-5362(00)00049-X

    CrossRef Google Scholar

    [60] Rainaud C, Master S, Armstrong R A, Phillips D, Robb L J. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications[J]. Journal of African Earth Sciences, 2005, 42(1-5): 1-31. doi: 10.1016/j.jafrearsci.2005.08.006

    CrossRef Google Scholar

    [61] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [62] Roberts M P, Clemens J D. Origin of high-potassium, talc-alkaline, I-type granitoids[J]. Geology, 1993, 21, 825-828.

    Google Scholar

    [63] Roberts M P, Pin C, Clemens J D, et al. Petrogenesis of mafific to felsic plutonic rock associations: the Calc-alkaline Querigut Complex, French Pyrenees[J]. Journal of Petrology, 2000, 41, 809–844.

    Google Scholar

    [64] Rolland Y, Galoyan G, Bosch D, Sosson M, Corsini M, Fornari M, Verati C. Jurassic back-arc and Cretaceous hot-spot series in the Armenian ophiolites: implications for the obduction process[J]. Lithos, 2009, 112, 163-187. doi: 10.1016/j.lithos.2009.02.006

    CrossRef Google Scholar

    [65] Rudnick R L, Gao S. Composition of the continental crust[J]. In, Rudnick R L, Holland H D, Turekian K K, eds.Treatise on Geochemistry[M]. Elsevier-Pergamon, Oxford, 2003: 1−64.

    Google Scholar

    [66] Scherer, E. , Munker, C. , Mezger, K. , Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293, 683-687. doi: 10.1126/science.1061372

    CrossRef Google Scholar

    [67] Selley D, Broughton D, Scott R J, Hitzman M, Bull S W, Large R R, Pollington N. A new look at the geology of the Zambian Copperbelt[J]. Economic Geology, 2005, 100: 965-1000.

    Google Scholar

    [68] Shaw A, Downes H, Thirlwall M F. The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central[J]. Chemical Geology, 1993, 107(1-2): 1-18. doi: 10.1016/0009-2541(93)90098-4

    CrossRef Google Scholar

    [69] Smithies R H, Champion D C. 2000. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology, 41, 1653–1671. doi: 10.1093/petrology/41.12.1653

    CrossRef Google Scholar

    [70] Stein M, Hofmann A W. Mantle plumes and episodic crustal growth[J]. Nature, 1994, 372, 63–68. doi: 10.1038/372063a0

    CrossRef Google Scholar

    [71] Stern R A, Hanson G N. Archean high-Mg granodiorite-a derivative of light rare-earth element-enriched monzodiorite of mantle origin. Journal of Petrology, 1991, 32, 201–238.

    Google Scholar

    [72] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [73] Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures[J]. Earth and Planetary Science Letters, 1982, 60(2): 305-317. doi: 10.1016/0012-821X(82)90009-7

    CrossRef Google Scholar

    [74] Tembo F, Kampunzu A B, Porada H. Tholeiitic magmatism associated with continental rifting in the Lufilian Fold Belt of Zambia[J]. Journal of African Earth Sciences, 1999, 28(2): 403-425. doi: 10.1016/S0899-5362(99)00012-3

    CrossRef Google Scholar

    [75] Unrug R. The Lufilian Arc: a microplate in the Pan-African collision zone of the Congo and the Kalahari cratons[J]. Precambrian Research, 1983, 21(3-4): 181-196. doi: 10.1016/0301-9268(83)90040-2

    CrossRef Google Scholar

    [76] Vielzeuf D, Clemens J D, Pin C, et al. Granites, granulites, and crustal differentiation[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Kluwer, Dordrecht, 1990: 59–85.

    Google Scholar

    [77] Vinyu M L, Hanson R E, Martin M W, Bowring S A, Jelsma H A, Krol M A, Dirks P H G M. U-Pb and 40Ar/39Ar geochronological constraints on the tectonic evolution of the easternmost part of the Zambezi orogenic belt, northeast Zimbabwe[J]. Precambrian Research, 1999, 98(1-2): 67-82. doi: 10.1016/S0301-9268(99)00039-X

    CrossRef Google Scholar

    [78] Wang Q, McDermott F, Xu J, Bellon H, Zhu Y T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1

    CrossRef Google Scholar

    [79] Wang Y J, Zhang A M, Fan W M, Zhang Y H, Zhang Y Z. Origin of paleosubduction-modifified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence[J]. Lithos, 2013, 160, 37-54.

    Google Scholar

    [80] Watters W A. Diorite and associated intrusive and metamorphic rocks between Port William and Paterson Inlet, Stewart Island, and on Ruapuke Island[J]. New Zealand journal of geology and geophysics, 1978, 21(4): 423-442. doi: 10.1080/00288306.1978.10424067

    CrossRef Google Scholar

    [81] Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4): 370-384. doi: 10.1017/S0016756800058222

    CrossRef Google Scholar

    [82] Yuan, H. L. , Gao, S. , Liu, X. M. , Li, H. M. , 2004. Accurate U-Pb age and trace element determination of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28, (3), 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [83] Zhao J H, Zhou M F, Zheng J P, Fang S M. Neoproterozoic crustal growth and reworking of the Northwestern Yangtze Block: constraints from the Xixiang dioritic intrusion, South China[J]. Lithos, 2010, 120(3-4): 439-452. doi: 10.1016/j.lithos.2010.09.005

    CrossRef Google Scholar

    [84] Zhou Y, Liang X, Liang X, Jiang Y, Wang C, Fu J G, Shao T B. U–Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: new clues for the early crustal evolution of southeastern South China[J]. Gondwana Research, 2015, 27(4): 1586-1598. doi: 10.1016/j.gr.2014.01.015

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1121) PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint