2023 Vol. 56, No. 6
Article Contents

CHEN Shumin, XU Honggen, WU Jinhong, MIAO Yu, ZENG Hao, PENG Bo, PAN Siyuan. 2023. Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan. Northwestern Geology, 56(6): 285-300. doi: 10.12401/j.nwg.2023081
Citation: CHEN Shumin, XU Honggen, WU Jinhong, MIAO Yu, ZENG Hao, PENG Bo, PAN Siyuan. 2023. Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan. Northwestern Geology, 56(6): 285-300. doi: 10.12401/j.nwg.2023081

Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan

More Information
  • The exploration in the Tianming Mining Area, Anhua, Hunan, has uncovered the concealed mica−plagioclase lamprophyre. In order to study the relationship between the dike and mineralization, we conducted various studies including petrographic, LA−ICP−MS zircon U−Pb chronology, whole−rock major and trace elements and Sr−Nd isotope composition analyses on the mica-plagioclase lamprophyre. The results indicate that the mica−plagioclase lamprophyre underwent significant carbonate alteration. The diagenesis age is estimated to be no earlier than 104 Ma and may be a response to the Late Yanshanian tectonic−magmatic events in South China Block. The concordant ages of (418.79±1.57) Ma and (2506±14 )Ma document the events of Silurian arc−crust collision of the Yangtze plate and the Cathaysia island arc, and Archaean crustal accretion, respectively, indicating the crystal basement material source. The mica−plagioclase lamprophyre belongs to a high−K calcium−alkaline series with an enriched light rare−earth element (LREE) and depleted heavy rare−earth element (HREE), with Eu negative anomalies and Ce positive anomalies. The rock also has large ionic lithophile and high−field strength elements depleted and high compatible element content. Whole−rock εNd(t) values ranging from −8.28 to −7.61 suggest crust−mantle mixing. Our findings suggest that the mica−plagioclase lamprophyre was formed by mantle magma in the source area with residual hornblende, ilmenite, and/or rutile. It underwent fractional crystallization dominant of plagioclase, was mixed by crust, and finally intruded in near−EW faulting tectonics. Comparison of the Au and Sb contents of dikes in central Hunan, ore−bearing formation, and crust, implies that the dikes and antimony may have deep homology. These findings suggest that the Tianming deposit has antimony mineralization potential. Overall, the study highlights the complex geological processes that lead to the formation of mineral deposits. By using a multidisciplinary approach, it is able to unravel the complex history of the mica−plagioclase lamprophyre and its association with mineralization. These findings can provide valuable insights for future exploration activities in the region.

  • 加载中
  • [1] 柏道远, 贾宝华, 钟响, 等. 湘中南晋宁期和加里东期构造线走向变化成因[J]. 地质力学学报, 2012, 18: 165-177 doi: 10.3969/j.issn.1006-6616.2012.02.007

    CrossRef Google Scholar

    BAI Daoyuan, JIA Baohua, ZHONG Xiang, et al. Potential genesis of the trending changes of Jinning period and caledonian structural lineamens in middle-Southern Hunan[J]. Journal of Geomechanics, 2012, 18: 165-177. doi: 10.3969/j.issn.1006-6616.2012.02.007

    CrossRef Google Scholar

    [2] 柏道远, 李银敏, 钟响, 等. 湖南NW向常德-安仁断裂的地质特征、活动历史及构造性质[J]. 地球科学, 2017, 43: 2496-2517

    Google Scholar

    BAI Daoyuan, LI Yinmin, ZHONG Xiang, et al. Geological features, activity history and tectonic attribute of NW-trending Changde-Anren fault in Hunan[J]. Earth Science, 2017, 43: 2496-2517.

    Google Scholar

    [3] 柏道远, 熊雄, 杨俊, 等. 雪峰造山带中段地质构造特征[J]. 中国地质, 2014, 41: 399-418 doi: 10.3969/j.issn.1000-3657.2014.02.008

    CrossRef Google Scholar

    BAI Daoyuan;XIONG Xiong;YANG Jun, et al. Geological structure characteristics of the middle segment of the Xuefeng orogen[J]. Geology in China, 2014, 41: 399-418. doi: 10.3969/j.issn.1000-3657.2014.02.008

    CrossRef Google Scholar

    [4] 陈卫锋, 陈培荣, 黄宏业, 等. 湖南白马山岩体花岗岩及其包体的年代学和地球化学研究[J]. 中国科学(D辑: 地球科学), 2007, 37(7): 873−893.

    Google Scholar

    [5] 胡楚南 . 桃江县板溪锑矿床地质特征及成矿构造分析[J]. 湖南地质, 1991, 10(4): 317−320+288.

    Google Scholar

    [6] 胡瑞忠, 毕献武, 苏文超, 等. 华南白垩—第三纪地壳拉张与铀成矿的关系[J]. 地学前缘, 2004, 153-160

    Google Scholar

    HU Ruizhong, BI Xianwu, SU Wenchao, et al. The relationship between uranium metallogenesis and crustal extension during the cretaceous—tertiary in South China[J]. Earth Science Frontiers, 2004, 153-160.

    Google Scholar

    [7] 黄建中, 孙骥, 周超, 等. 江南造山带(湖南段)金矿成矿规律与资源潜力[J]. 地球学报, 2020 1-22.

    Google Scholar

    HUANG Jianzhong, SUN Ji, ZHOU Chao, et al. Metallogenic regularity and resource potential of gold deposits of Hunan area in the Jiangnan orogenic belt, South China[J]. Acta Geoscientica Sinica, 2020, 1-22.

    Google Scholar

    [8] 柯昌辉, 王晓霞, 杨阳, 等. 西秦岭地区脉岩成因与金成矿关系——来自李坝金矿年代学、地球化学及Nd-Hf-S同位素的约束[J]. 矿床地质, 2020, 39: 42-62.

    Google Scholar

    KE Changhui, WANG Xiaoxia, YANG Yang, et al. Petrogenesis of dykes and its relationship to gold mineralization in the western Qinling belt: Constraints from zircon U-Pb age, geochemistry and Nd-Hf-S isotopes of Liba gold deposit[J]. Mineral Deposits, 2020, 39: 42-62.

    Google Scholar

    [9] 李建华, 张岳桥, 董树文, 等.华南大陆白垩纪构造-岩浆演化与动力学过程[C].中国地球科学联合学术年会, 2014, 2−5.

    Google Scholar

    [10] 李献华, 赵振华, 桂训唐, 等. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约[J]. 地球化学, 1991, (3): 255−264

    Google Scholar

    LI Xianhua, ZHAO Zhenhua, GUI Xuntang, et al. Sm-Nd isotopic and zircon U-Pb constraints on the age of formation of the precambrian crust in Southeast China[J]. Geochimica, 1991, (3): 255−264.

    Google Scholar

    [11] 李献华. 华南白垩纪岩浆活动与岩石圈伸展———地质年代学与地球化学限制[J]. 北京: 科学出版社, 1999: 264−275.

    Google Scholar

    [12] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    Google Scholar

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, LÜ Pengrui. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    Google Scholar

    [13] 李智明. 锡矿山锑矿成矿机理的探讨[J]. 矿产与地质, 1993, 7(2): 88−93.

    Google Scholar

    [14] 刘继顺. 湘中地区长英质脉岩与锑(金)成矿关系[J]. 有色金属矿产与勘查, 1996, 2-7

    Google Scholar

    LIU Jishun. Relationship between felsic dikes and antimony-gold mineralization in central Hunan[J]. Mineral Exploration, 1996, 2-7.

    Google Scholar

    [15] 卢作祥, 佘宏全. 国内外层控改造型金锑钨综合矿床的成矿特征与成矿机理[J]. 地质科技情报, 1989, 59-65

    Google Scholar

    LU Zuoxiang, XU Hongquan. Minerogenetic features and genetic mechanism of strata-bound Au-Sb-W multiple ore deposits home and abroad[J]. Geological Science and Technology Information, 1989, 59-65.

    Google Scholar

    [16] 路远发, 李文霞. Pb-Sr-Nd-Hf同位素参数计算及程序设计[J]. 华南地质, 2021, 37: 233-245

    Google Scholar

    LU Yuanfa, LI Wenxia. Calculation and Program Design for Pb-Sr-Nd-Hf Isotopic Parameters[J]. South China Geology, 2021, 37: 233-245.

    Google Scholar

    [17] 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 459-464

    Google Scholar

    LU Yuanfa. GeoKit——A geochemical toolkit for Microsoft Excel[J]. GEOCHIMICA, 2004, 459-464.

    Google Scholar

    [18] 毛景文, 谢桂青, 李晓峰, 等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, 45-55

    Google Scholar

    MAO Jingwen, XIE Guiqing, LI Xiaofeng, et al. Mesozoic large scale mineralization and multiple lithospheric extension in South China[J]. Earth Science Frontiers, 2004, 45-55.

    Google Scholar

    [19] 潘灿军, 鲍振襄, 包觉敏. 湘西符竹溪金矿地质特征及成矿作用[J]. 地质找矿论丛, 2015, 30: 53-59 doi: 10.6053/j.issn.1001-1412.2015.01.007

    CrossRef Google Scholar

    PAN Chanjun, BAO Zhenxiang, BAO Juemin. Geological characteristics and metallogenesis of Fuahuxi gold deposit in the West Hunan province[J]. Contributions to Geology and Mineral Resources Research, 2015, 30: 53-59. doi: 10.6053/j.issn.1001-1412.2015.01.007

    CrossRef Google Scholar

    [20] 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23: 1-23

    Google Scholar

    PAN Guichang, LU Songnian, XIAO Qinghui, et al. Division of tectonic stages and tectonic evolution in China[J]. Earth Science Frontiers, 2016, 23: 1-23.

    Google Scholar

    [21] 彭渤, 陈广浩. 湖南锑金矿成矿大爆发: 现象与机制[J]. 大地构造与成矿学, 2000, 24(4): 357−364.

    Google Scholar

    [22] 彭建堂. 湖南雪峰地区金成矿演化机理探讨[J]. 大地构造与成矿学, 1999, 3-5

    Google Scholar

    PENG Jiantang. Gold mineralization and its evolution in the Xuefeng district, Hunan[J]. Geotectonica et Metallogenia, 1999, 3-5.

    Google Scholar

    [23] 权正钰, 王甫仁, 胡能勇, 等. 雪峰弧形构造带与金锑矿成矿关系[R]. 长沙: 湖南省地质研究所, 1997

    Google Scholar

    [24] 任纪舜, 李崇. 华夏古陆及相关问题——中国南部前泥盆纪大地构造[J]. 地质学报, 2016, 90: 607-614 doi: 10.3969/j.issn.0001-5717.2016.04.001

    CrossRef Google Scholar

    REN Jishun, LI Chong. Cathaysia old land and relevant problems: pre-devonian tectonics of southern China[J]. Acta Geologica Sinica, 2016, 90: 607-614. doi: 10.3969/j.issn.0001-5717.2016.04.001

    CrossRef Google Scholar

    [25] 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31: 1035-1053 doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    SHU Liangshu. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31: 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003

    CrossRef Google Scholar

    [26] 王川, 彭建堂, 徐接标, 等. 湘中白马山复式岩体成因及其成矿效应[J]. 岩石学报, 2021, 37: 805-829

    Google Scholar

    WANG Chuan, PENG Jiantang, XU Jiebiao, et al. Petrogenesis and metallogenic effect of the Baimashan granitic complex in central Hunan, South China. Acta Petrologica Sinica, 2021, 37: 805-829.

    Google Scholar

    [27] 王孝磊, 周金城, 陈昕, 等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 2017, 36: 714-735+696 doi: 10.3969/j.issn.1007-2802.2017.05.003

    CrossRef Google Scholar

    WANG Xiaolei, ZHOU Jincheng, CHEN Xin, et al. Formation and evolution of the Jiangnan orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36: 714-735+696. doi: 10.3969/j.issn.1007-2802.2017.05.003

    CrossRef Google Scholar

    [28] 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.

    Google Scholar

    WANG Zitong, WANG Genghou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 586−600.

    Google Scholar

    [29] 文志林, 邓腾, 董国军, 等. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 2016, 40: 281-294

    Google Scholar

    WEN Zhilin, DENG Teng, DONG Guojun, et al. Characteristics of ore-controlling structures of Wangu gold deposit in Northeastern Hunan Province[J]. Geotectonica et Metallogenia, 2016, 40: 281-294.

    Google Scholar

    [30] 吴良士, 胡雄伟. 湖南锡矿山地区云斜煌斑岩及其花岗岩包体的意义[J]. 地质地球化学, 2000, 51-55

    Google Scholar

    WU Liangshi, HU Xiongwei. Xikuangshan mica-plagioclase lamprophyre and its granite inclusions, Hunan Province[J]. Geology-Geochemistry, 2000, 51-55.

    Google Scholar

    [31] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589−1604.

    Google Scholar

    [32] 徐耀明, 蒋少涌, 朱志勇, 等. 九瑞矿集区山上湾矿区石英闪长玢岩和花岗闪长斑岩的年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28: 3306-3324

    Google Scholar

    XU Yaoming, JIANG Shaoyong, ZHU Zhiyong, et al. Geochronology, geochemistry and mineralization of the quartz diorite-porphyrite and granodiorite porphyry in the Shanshangwan area of the Jiurui ore district, Jiangxi Privince[J]. Acta Petrologica Sinica, 2012, 28: 3306-3324.

    Google Scholar

    [33] 姚振凯, 朱蓉斌. 湖南符竹溪金矿床地质特征和成矿预测[J]. 铀矿地质, 1995,11(6): 344−349+356.

    Google Scholar

    [34] 张国震, 张永, 辛后田, 等. 内蒙古北山老硐沟金多金属矿床闪长玢岩年代学、地球化学及其成矿意义[J]. 矿床地质, 2021, 40: 555-573

    Google Scholar

    ZHANG Guozhen, ZHANG Yong, XIN Houtian, et al. Geochronology and geochemistry of diorite porphyrite from Laodonggou gold-polymetallic deposit, Beishan, Inner Mongolia, and its metallogenic significance[J]. Mineral Deposits, 2021, 40: 555-573.

    Google Scholar

    [35] 张培烈, 王根厚, 冯翼鹏, 等. 古特提斯洋闭合时限: 来自南羌塘唐古拉岩浆带查吾拉岩体的证据[J]. 成都理工大学学报(自然科学版), 2022, 49(3): 311−323.

    Google Scholar

    ZHANG Peilie, WANG Genghou, FENG Jipeng, et al. Closure time of the Paleo-Tethys Ocean: Evidence from the southern Qiangtang Tanggula magmatic belt, Xizang, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(3): 311−323.

    Google Scholar

    [36] 张岳桥, 徐先兵, 贾东, 等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘, 2006, 16: 234-247 doi: 10.3321/j.issn:1005-2321.2006.02.022

    CrossRef Google Scholar

    ZHANG Yueqiao, XU Xianbin, JIA Dong, et al. Deformation record of the change from Indosinian collision-related tectonic system to Yanshanian subduction-related tectonic system in South China during the Early Mesozoic[J]. Earth Science Frontiers, 2006, 16: 234-247. doi: 10.3321/j.issn:1005-2321.2006.02.022

    CrossRef Google Scholar

    [37] 张志远, 谢桂青, 李惠纯, 等. 湖南龙山锑金矿床白云母~(40)Ar-~(39)Ar年代学及其意义初探[J]. 岩石学报, 2018, 34: 2535-2547

    Google Scholar

    ZHANG Zhiyuan, XIE Guiqing, LI Huichun, et al. Preliminary study on muscovite 40Ar-39Ar geochronology and its significance of the Longshan Sb-Au deposit in Hunan Province[J]. Acta Petrologica Sinica, 2018, 34: 2535-2547.

    Google Scholar

    [38] 赵军红, 彭建堂, 胡瑞忠, 等. 湖南板溪脉岩的年代学、岩石学、地球化学及其构造环境[J]. 地球学报, 2005, 525-534

    Google Scholar

    ZHAO Junhong, PENG Jiantang, HU Ruizhong, et al. Chronology, petrology, geochemistry and tectonic environment of Banxi quartz porphyry dikes, Hunan Province[J]. Acta Geocientica Sinica, 2005, 525-534.

    Google Scholar

    [39] 赵玉锁, 杨立强, 陈永福, 等. 黑龙江金厂铜金矿床闪长玢岩地球化学及锆石U-Pb年代学[J]. 岩石学报, 2012, 28: 451-467

    Google Scholar

    ZHAO Yusuo, YANG Liqiang, CHEN Yongfu, et al. Geochemisry and zircon U-Pb geochronology of the diorite porphyry associated with the Jinchang Cu-Au deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 2012, 28: 451-467.

    Google Scholar

    [40] 曾昊, 吴绍安, 陈澍民, 等. 雪峰弧金锑矿资源勘查年度进展报告[R]. 长沙: 中国地质调查局长沙自然资源综合调查中心, 2020.

    Google Scholar

    [41] CHEN J, Jahn B-M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 1998, 284: 101-133. doi: 10.1016/S0040-1951(97)00186-8

    CrossRef Google Scholar

    [42] CHEN S-M, ZHOU Y-X, LI B, et al. Genesis of Chaxi Gold Deposit in Southwestern Hunan Province, Jiangnan Orogen (South China): Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations[J]. Minerals, 2022, 12: 867.

    Google Scholar

    [43] Compston W, Williams I, Kirschvink J, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 1992, 149: 171-184. doi: 10.1144/gsjgs.149.2.0171

    CrossRef Google Scholar

    [44] Creaser R A, Erdmer P, Stevens R A, et al. . Tectonic affinity of Nisutlin and Anvil assemblage strata from the Teslin tectonic zone, northern Canadian Cordillera: Constraints from neodymium isotope and geochemical evidence[J]. Tectonics, 1997, 16: 107-121. doi: 10.1029/96TC03317

    CrossRef Google Scholar

    [45] Davidson J, Turner S, Handley H, et al. Amphibole “sponge” in arc crust? [J] Geology, 2007, 35: 787-790.

    Google Scholar

    [46] DENG J, QING F-W. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2015, 36: 219-274.

    Google Scholar

    [47] FENG Y, ZHANG Y, XIE Y, et al. Ore-forming mechanism and physicochemical evolution of Gutaishan Au deposit, South China: Perspective from quartz geochemistry and fluid inclusions[J]. Ore Geology Reviews, 2020, 119: 103382. doi: 10.1016/j.oregeorev.2020.103382

    CrossRef Google Scholar

    [48] Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis [J]. Ore Geology Reviews, 2001 18: 1-75. doi: 10.1016/S0169-1368(01)00016-6

    CrossRef Google Scholar

    [49] Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram[J]. Journal of Petrology, 2007, 48: 2341-2357. doi: 10.1093/petrology/egm062

    CrossRef Google Scholar

    [50] Hoskin P, Black L. Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon[J]. Journal of metamorphic Geology, 2000, 18: 423-439. doi: 10.1046/j.1525-1314.2000.00266.x

    CrossRef Google Scholar

    [51] Kay R W, Mahlburg-Kay S. Creation and destruction of lower continental crust[J]. Geologische Rundschau, 1991, 80: 259-278. doi: 10.1007/BF01829365

    CrossRef Google Scholar

    [52] LI W, XIE G-Q, MAO J-W, et al. Muscovite 40Ar/39Ar and in situ sulfur isotope analyses of the slate-hosted Gutaishan Au–Sb deposit, South China: Implications for possible Late Triassic magmatic-hydrothermal mineralization[J]. Ore Geology Reviews, 2018, 101: 839-853. doi: 10.1016/j.oregeorev.2018.08.006

    CrossRef Google Scholar

    [53] LI X-H. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 2000, 18: 293-305. doi: 10.1016/S1367-9120(99)00060-7

    CrossRef Google Scholar

    [54] LIU W-G, WEI S, ZHANG J, et al. An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 953-960. doi: 10.1039/D0JA00035C

    CrossRef Google Scholar

    [55] LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [56] Ludwig R. Isoplot a plotting and regression program for radiogenic-isotope data, version 2.57[R]. U.S . Geologic Survey, 1992, 40.

    Google Scholar

    [57] Mcdonough W F, SUN S-S. The composition of the Earth[J]. Chemical Geology, 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [58] Rollinson H R. Using geochemical data: evaluation, presentation, interpretation London Longman Scientific and Technical[J]. Mineralogical Magazine, 1994, 58: 523-523.

    Google Scholar

    [59] Schmidberger S S, Simonetti A, Heaman L M, et al. Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada[J]. Earth and Planetary Science Letters, 2007, 254: 55-68. doi: 10.1016/j.jpgl.2006.11.020

    CrossRef Google Scholar

    [60] SUN S-S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [61] Taylor S R, McLennan S M. The continental crust, its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Blackwell Scientific Publishinq, Oxford,1985: 12−29.

    Google Scholar

    [62] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of geophysics, 1995, 33: 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [63] Unterschutz J L, Creaser R A, Erdmer P, et al. North American margin origin of Quesnel terrane strata in the southern Canadian Cordillera: Inferences from geochemical and Nd isotopic characteristics of Triassic metasedimentary rocks[J]. Geological Society of America Bulletin, 2002, 114: 462-475. doi: 10.1130/0016-7606(2002)114<0462:NAMOOQ>2.0.CO;2

    CrossRef Google Scholar

    [64] Vermeesch P. IsoplotR: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9: 1479-1493.

    Google Scholar

    [65] Wasserburg G J, Jacobsen S B, Depaolo D J, et al. Precise determination of SmNd ratios, Sm and Nd isotopic abundances in standard solutions[J]. Geochimica et Cosmochimica Acta, 1981, 45: 2311-2323.

    Google Scholar

    [66] Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28: 459-469. doi: 10.1016/0012-821X(76)90207-7

    CrossRef Google Scholar

    [67] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [68] XIAO J, PENG J, HU A, et al. Characteristics of fluid inclusions of the Xingfengshan Gold Deposit, central Hunan, and its genetic implications[J]. GEOLOGICAL REVIEW, 2020, 66: 1376.

    Google Scholar

    [69] XU D, DENG T, CHI G, et al. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting[J]. Ore Geology Reviews, 2017, 88: 565-618. doi: 10.1016/j.oregeorev.2017.02.004

    CrossRef Google Scholar

    [70] ZHANG L, YANG L-Q, Groves D I, et al. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 2019, 115: 103173. doi: 10.1016/j.oregeorev.2019.103173

    CrossRef Google Scholar

    [71] ZHANG S-B, ZHENG Y-F. Formation and evolution of Precambrian continental lithosphere in South China[J]. Gondwana Research, 2013, 23: 1241-1260. doi: 10.1016/j.gr.2012.09.005

    CrossRef Google Scholar

    [72] ZHAO G. Jiangnan Orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 2015, 27: 1173-1180. doi: 10.1016/j.gr.2014.09.004

    CrossRef Google Scholar

    [73] ZHENG Y-F, ZHAO Z-F, WU Y-B, et al. . Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231: 135-158. doi: 10.1016/j.chemgeo.2006.01.005

    CrossRef Google Scholar

    [74] Zindler A, Hart S. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1679) PDF downloads(146) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint