2024 Vol. 57, No. 3
Article Contents

ZHAO Junbin, WEI Rongzhu, ZHANG Chenglong, YAN Tao, GAO Yuhui, DU Yanwei. 2024. Mesozoic-Cenozoic Tectonic Evolution in the Central Taiyue Mountain: Constraints from Apatite Fission Track Analysis. Northwestern Geology, 57(3): 237-250. doi: 10.12401/j.nwg.2023051
Citation: ZHAO Junbin, WEI Rongzhu, ZHANG Chenglong, YAN Tao, GAO Yuhui, DU Yanwei. 2024. Mesozoic-Cenozoic Tectonic Evolution in the Central Taiyue Mountain: Constraints from Apatite Fission Track Analysis. Northwestern Geology, 57(3): 237-250. doi: 10.12401/j.nwg.2023051

Mesozoic-Cenozoic Tectonic Evolution in the Central Taiyue Mountain: Constraints from Apatite Fission Track Analysis

More Information
  • In order to shed light on the tectonic evolution processes of the north China block, we applied apatite fission track thermochronology method to the central Taiyue Mountain as a major mountain range in Shanxi massif. The results reveal that since the late middle Jurassic the central Taiyue Mountain experienced a pulsed uplift and exhumation at shallow crustal levels, which could be summarized as four rapid uplift and exhumation stages at 165~112 Ma, 103~85 Ma, 80~50 Ma and since ~28 Ma. These fission track ages show a positive correlation with the altitude, and the exhumation rate is estimated as ~8.4 m/Ma. The denudation rate increases gradually from 14.9~18.1 m/Ma since the late early Cretaceous to 50.5~64.7 m/Ma since the Eocene, reflecting the episodic and accelerated uplift and exhumation of the central Taiyue Mountains since the late Early Cretaceous. The Mesozoic-Cenozoic uplift history of the central Taiyue Mountain has a certain consistency with the evolution history of the Taihang Mountain, Lüliang Mountain in Shanxi massif, which is also coupled with the rapid subsidence of the Fenwei rift valley.

  • 加载中
  • [1] 柏道远, 孟德保, 刘耀荣, 等. 青藏高原北缘昆仑山中段构造隆升的磷灰石裂变径迹记录[J]. 中国地质, 2003, 30(3): 240-246 doi: 10.3969/j.issn.1000-3657.2003.03.003

    CrossRef Google Scholar

    BAI Daoyuan, MENG Debao, LIU, Yaorong, et al. Apatite fission track records of the tectonic uplift of the central segment fo the Kunlun Mountains on the northern margin of the Qinghai-Tibet Plateau[J]. Geology in China, 2003, 30(3): 240-246. doi: 10.3969/j.issn.1000-3657.2003.03.003

    CrossRef Google Scholar

    [2] 柴金钟, 高宇辉, 王瑞军, 等. 1: 5万洪洞县测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2019.

    Google Scholar

    [3] 陈平, 柴东浩. 山西地块石炭纪铝土矿沉积地球化学研究[M]. 太原: 山西科学技术出版社, 1997

    Google Scholar

    CHEN Ping, CHAI Donghao. Sedimentary Geochemistry of Carboniferous Bauxite Deposits in S hanxi Massif[M]. Taiyuan: Shanxi Science and Techonology Press, 1997.

    Google Scholar

    [4] 邓涛, 王伟铭, 岳乐平, 等. 新近系保德阶建阶研究新进展[J]. 地层学杂志, 2004, 28(1): 41-47 doi: 10.3969/j.issn.0253-4959.2004.01.005

    CrossRef Google Scholar

    DENG Tao, WANG Weiming, YUE Leping, et al. New advances in the Establishment of the Neogene Baode stage[J]. Journal of Stratigraphy, 2004, 28(1): 41-47. doi: 10.3969/j.issn.0253-4959.2004.01.005

    CrossRef Google Scholar

    [5] 董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11): 1449-1461 doi: 10.3321/j.issn:0001-5717.2007.11.001

    CrossRef Google Scholar

    DONG Shuwen, ZHANG Yueqiao, LONG Changxiang, et al. Jurassic Tectonic Revolution i n Chi na and New Interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 2007, 81(11): 1449-1461. doi: 10.3321/j.issn:0001-5717.2007.11.001

    CrossRef Google Scholar

    [6] 董树文, 张岳桥, 李海龙, 等. “燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年[J]. 中国科学: 地球科学, 2019, 49: 913-938

    Google Scholar

    DONG Shuwen, ZHANG Yueqiao, LI Hailong, et al. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia-Commemorating 90th years of the “Yanshan Orogeny” [J]. Science China Earth Sciences, 2019, 49: 913-938.

    Google Scholar

    [7] 董挨管, 杜艳伟, 杨俊才, 等. 1: 5万张兰镇测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2019.

    Google Scholar

    [8] 冯子睿, 袁万明, 袁二军. 青海省都兰东北部多金属矿床锆石裂变径迹年代学分析[J]. 中国矿业, 2020, 29(S1): 284-286+293.

    Google Scholar

    FENG Zirui, YUAN Wanming, YUAN Erju. Zircon fission track dating evidence in polymetallic ore district, north-eastern Dulan, Qinghai provinc[J]. China Mining Magazine, 2020, 29(S1): 284- 286+293.

    Google Scholar

    [9] 韩伟, 李玉宏, 刘溪, 等. 鄂尔多斯盆地东南南召地区中生代以来的构造演化研究——来自低温热年代学的证据[J]. 地质学报, 2020, 94(10): 2834-2843 doi: 10.3969/j.issn.0001-5717.2020.10.004

    CrossRef Google Scholar

    HAN Wei, LI Yuhong, LIU Xi, et al. Tectonic evolution since the Mesozoic of the Nanzhao area in southeast of the Ordos Basin: evidence from low-temperature thermal chronology[J]. Acta Geologica Sinica, 2020, 94(10): 2834-2843. doi: 10.3969/j.issn.0001-5717.2020.10.004

    CrossRef Google Scholar

    [10] 黄志刚, 任战利, 高龙刚. 鄂尔多斯盆地东南缘白垩纪以来构造演化的裂变径迹证据[J]. 地球物理学报, 2016, 59(10): 3753-3764

    Google Scholar

    HUANG Zhigang, REN Zhanli, GAO Longgang. Evidence from detrital zircon and apatite fission track for tectonic evolution since Cretaceous in southeastern margin of Ordos basin[J]. Chinese Journal of Geophysics, 2016, 59(10): 3753-3764.

    Google Scholar

    [11] 雷永良, 钟大赉, 季建清, 等. 东喜马拉雅构造结更新世两期抬升―剥露事件的裂变径迹证据[J]. 第四纪研究, 2008(04): 584-590 doi: 10.3321/j.issn:1001-7410.2008.04.010

    CrossRef Google Scholar

    LEI Yongliang, ZHONG Dalai, JI Jianqing, et al. Fission Track Evidence for two Pleistocene upl Ift- exhumation Events in the eastern himalayan Syntaxis[J]. Quaternary Sciences, 2008(04): 584-590. doi: 10.3321/j.issn:1001-7410.2008.04.010

    CrossRef Google Scholar

    [12] 李洪颜, 徐义刚, 黄小龙, 等. 华北克拉通北缘晚古生代活化: 山西宁武―静乐盆地上石炭统太原组碎屑锆石U-Pb测年及Hf同位素证据[J]. 科学通报, 2009(5): 632-640.

    Google Scholar

    LI Hongyan, XU Yigang, HUANG Xiaolong, et al. Activation of northern margin of the North China Craton in Late Paleozoic: Evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle basin[J]. Chinese Science Bulletin, 2009(5): 632- 640.

    Google Scholar

    [13] 李建星, 刘池洋, 岳乐平, 等. 吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨[J]. 中国地质, 2015, 42(4): 960-972 doi: 10.3969/j.issn.1000-3657.2015.04.013

    CrossRef Google Scholar

    LI Jianxing, LIU Chixang, YUE Leping, et al. Apatite fission track evidence for the Cenozoic uplift of the Lüliang Mountains and a discussion on the uplift mechanism[J]. Geology in China, 2015, 42(4): 960-972. doi: 10.3969/j.issn.1000-3657.2015.04.013

    CrossRef Google Scholar

    [14] 李建星, 岳乐平, 刘池洋, 等. 中新世以来吕梁山及邻区构造―沉积演化[J]. 地层学杂志, 2013, 37(01): 93-100

    Google Scholar

    LI Jianxing, YUE Leping, LIU Chiyang, et al. The Tectonic-Sedimentary Evolution of the Lüliang Mountains since the Miocene[J]. Journal of Stratigraphy, 2013, 37(01): 93-100.

    Google Scholar

    [15] 李庶波, 王岳军, 张玉芝, 等. 南太行山中新生代隆升过程: 磷灰石裂变径迹证据[J]. 大地构造与成矿学, 2015(03): 84-93

    Google Scholar

    LI Shubo, WANG Yuejun, ZHANG Yuzhi, et al. Meso-Cenozoic Uplifting of South Taihang Mountains: Constraints from Apatite Fission Track Data[J]. Geotectonica et Metallogenia, 2015, (03): 84-93.

    Google Scholar

    [16] 李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造―岩浆响应[J]. 科学通报, 2018, 63(16): 1550-1593 doi: 10.1360/N972017-01113

    CrossRef Google Scholar

    LI Sanzhong, SUO Yanhui, LI Xiyao, et al. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chin Sci Bull, 2018, 63: 1550-1593. doi: 10.1360/N972017-01113

    CrossRef Google Scholar

    [17] 林伟, 曾纪培, 孟令通, 等. 伸展构造与华北克拉通破坏——花岗岩磁组构和变质核杂岩的构造分析[J]. 中国科学: 地球科学, 2021, 51(9): 1558-1593.

    Google Scholar

    LIN Wei, ZENG Jipei, MENG Lingtong, et al. Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex[J]. Science China: Earth Sciences, 2021, 64(9): 1557-1589.

    Google Scholar

    [18] 刘康, 魏荣珠, 续世超. 山西隆起区燕山期构造变形特征[J]. 中国地质调查, 2019, 6(02): 58- 67.

    Google Scholar

    LIU Kang, WEI Rongzhu, XU Shichao. Structure deformation characteristics of Shanxi uplift area during Yanshan movement period[J]. Geological Survey of China, 2019, 6(02): 58- 67.

    Google Scholar

    [19] 罗照华, 魏阳, 辛后田, 等. 太行山中生代板内造山作用与华北大陆岩石圈巨大减薄[J]. 地学前缘, 2006, 13(6): 52-63 doi: 10.3321/j.issn:1005-2321.2006.06.008

    CrossRef Google Scholar

    LUO Zhaohua, WEI Yang, XIN Houtian, et al. The Mesozoic intraplate orogeny of the Taihang Mountains and the thinning of the continental lithosphere in North China[J]. EarthScience Frontiers, 2006, 13(6): 52-63. doi: 10.3321/j.issn:1005-2321.2006.06.008

    CrossRef Google Scholar

    [20] 马晓军, 梁积伟, 李建星, 等. 鄂尔多斯盆地中西部中新生代构造抬升及演化[J]. 西北地质, 2019, 52(4): 127-136 doi: 10.3969/j.issn.1009-6248.2019.04.010

    CrossRef Google Scholar

    MA Xiaojun, LIANG Jiwei, LI Jianxing, et al. Meso-cenozoic Tectonic Uplift and Evolution of Central and Western Ordos Basin[J]. Northwestern Geology, 2019, 52(4): 127-136. doi: 10.3969/j.issn.1009-6248.2019.04.010

    CrossRef Google Scholar

    [21] 孟元库, 汪新文, 李波, 等. 华北克拉通中部沁水盆地热演化史与山西高原中新生代岩石圈构造演化[J]. 西北地质, 2015, 48(2): 159-168 doi: 10.3969/j.issn.1009-6248.2015.02.016

    CrossRef Google Scholar

    MENG Yuanku, WANG Xinwen, LI Bo, et al. Thermal Evolution History of Qinshui Basin in the Middle of North China Cratonand Mesozoic-Cenozoic Lithosphere Tectonic Evolution in Shanxi Plateau[J]. Northwestern Geology, 2015, 48(2): 159-168. doi: 10.3969/j.issn.1009-6248.2015.02.016

    CrossRef Google Scholar

    [22] 庆建春, 季建清, 王金铎, 等. 五台山新生代隆升剥露的磷灰石裂变径迹研究[J]. 地球物理学报, 2008(02): 384-392

    Google Scholar

    QING Jianchun, JI Jianqing, WANG Jinduo, et al. Apatite fission track study of Cenozoic uplifting and exhumation of Wutai Mountain, China[J]. Chinese J. Geophys. 2008, 51(2): 384-392.

    Google Scholar

    [23] 任星民, 朱文斌, 朱晓青, 等. 山西吕梁山地区中―新生代隆升剥露过程: 磷灰石裂变径迹证据[J]. 地球科学与环境学报, 2015(4): 63-73 doi: 10.3969/j.issn.1672-6561.2015.04.010

    CrossRef Google Scholar

    REN Xingmin, ZHU Wenbin, ZHU Xiaoqing, et al. Mesozoic-Cenozoic Uplift-exhumation History in Lüliangshan Area of Shanxi: Evidences from Apatite Fission Track[J]. Journal of Earth Sciences and Environment, 2015(4): 63-73. doi: 10.3969/j.issn.1672-6561.2015.04.010

    CrossRef Google Scholar

    [24] 孙蓓蕾, 曾凡桂, 刘超, 等. 太原西山煤田新生代隆升史的磷灰石裂变径迹约束[J]. 地质学报, 2017, 91(01): 43-54 doi: 10.3969/j.issn.0001-5717.2017.01.003

    CrossRef Google Scholar

    SUN Beilei, ZENG Fangui, LIU Chao, et al. Cenozoic Uplift History of the Xishan Coalfield and Constraints from Apatite Fission Track Dating[J]. Acta Geologica Sinica, 2017, 91(01): 43-54. doi: 10.3969/j.issn.0001-5717.2017.01.003

    CrossRef Google Scholar

    [25] 孙迪, 李秋根, 陈隽璐, 等. 山西五台绿岩带柏枝岩组条带状铁建造(BIFs)成因及其环境意义[J]. 西北地质, 2021, 54(4): 16-41 doi: 10.19751/j.cnki.61-1149/p.2021.04.002

    CrossRef Google Scholar

    SUN Di, Li Qiugen, CHEN Junlu, et al. The Origin and Environmental Significance of Banded Iron Formations in the Baizhiyan Formation of Wutai Greenstone Belt, Shaanxi Province[J]. Northwestern Geology, 2021, 54(4): 16-41. doi: 10.19751/j.cnki.61-1149/p.2021.04.002

    CrossRef Google Scholar

    [26] 孙建博, 陈刚, 章辉若, 等. 鄂尔多斯盆地中新生代构造事件的峰值年龄及其沉积响应[J]. 西北地质, 2006, 39(3): 91-96 doi: 10.3969/j.issn.1009-6248.2006.03.013

    CrossRef Google Scholar

    SUN Jianbo, CHEN Gang, ZHANG Huiruo, et al. Peak Ages and Sedimentary Responses of the Mesozo ic-Cenozoic Tectonic Events in Ordos Basin[J]. Northwestern Geology, 2006, 39(3): 91-96. doi: 10.3969/j.issn.1009-6248.2006.03.013

    CrossRef Google Scholar

    [27] 汤艳杰, 英基丰, 赵月鹏, 等. 华北克拉通岩石圈地幔特征与演化过程[J]. 中国科学: 地球科学, 2021, 51(9): 1489-1503.

    Google Scholar

    TANG Yanjie, YING Jifeng, ZHAO Yuepeng, et al. Nature and secular evolution of the lithospheric mantle beneath the North China Craton[J]. Science China Earth Sciences, 2021, 64(9): 1492-1503.

    Google Scholar

    [28] 田朋飞, 袁万明, 杨晓勇. 热年代学基本原理, 重要概念及地质应用[J]. 地质论评, 2020, 66(04): 975-1004

    Google Scholar

    TIAN Pengfei, YUAN Wanming, YANG Xiaoyong. The basics, essential concepts and geological applications of thermochronology[J]. Geological Review, 2020, 66(04): 975-1004.

    Google Scholar

    [29] 王建强, 刘池洋, 赵红格, 等. 鄂尔多斯盆地西南部三叠纪末抬升剥蚀事件及热年代学记录[J]. 岩石学报, 2020, 36(04): 238-251 doi: 10.18654/2095-8927/014

    CrossRef Google Scholar

    WANG Jianqiang1, LIU Chiyang, ZHAO Hongge, et al. Uplift and exhumation events and thermochronological constraints at the end of Triassic in southwestern Ordos Basin[J]. Acta Petrologica Sinica, 2020, 36(04): 238-251. doi: 10.18654/2095-8927/014

    CrossRef Google Scholar

    [30] 王瑜, 孙立新, 周丽云, 等. 燕山运动与华北克拉通破坏关系的讨论[J]. 中国科学: 地球科学, 2018, 48(5): 521-535.

    Google Scholar

    Wang Y, Sun L X, Zhou L Y, et al. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China[J]. Science China Earth Sciences, 2018, 61: 499-514.

    Google Scholar

    [31] 魏荣珠, 李好斌, 徐朝雷, 等. 对山西隆起区中新生代构造演化的认识[J]. 中国地质调查, 2017, 4(01): 24-34 doi: 10.19388/j.zgdzdc.2017.01.04

    CrossRef Google Scholar

    WEI Rongzhu, LI Haobin, XU Chaolei, et al. Review on Meso-Cenozoic tectonic evolution in Shanxi uplift[J]. Geological Survey of China, 2017, 4(01): 24-34. doi: 10.19388/j.zgdzdc.2017.01.04

    CrossRef Google Scholar

    [32] 魏荣珠, 杨鹏生, 魏云峰, 等. 1: 5万清徐县测区区域地质调查报告[R]. 太原: 山西省地质调查院, 2021.

    Google Scholar

    [33] 卫彦升, 冯志强, 闫涛, 等. 华北板块中部中生代构造演化―以山西为例[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1127-1152

    Google Scholar

    WEI yansheng, FENG Zhiqiang, YAN Tao, et al. Mesozoic Tectonic Evolution of the Central North China Craton: A Case Study from the Shanxi Province[J]. Journal of Jilin University(Earth Science Edition), 2022, 52(4): 1127-1152.

    Google Scholar

    [34] 吴中海, 吴珍汉. 鄂尔多斯、沁水盆地晚新生代隆升―剥蚀历史[J]. 地质科技情报, 2001(03): 16- 20.

    Google Scholar

    WU Zhonghai, WU Zhenghan. Ordos and Qinshui Basin History of Uplift-Denudation[J]. Geological Science and Technology Information, 2001(03): 16-20.

    Google Scholar

    [35] 杨进辉, 许蕾, 孙金凤, 等. 华北克拉通破坏与岩浆―成矿的深部动力学过程[J]. 中国科学: 地球科学, 2021, 51(9): 1401−1419.

    Google Scholar

    YANG Jinhui, XU Lei, SUN Jinfeng, et al. Geodynamics of decratonization and related magmatism and mineralization in the North China Craton[J]. Science China: Earth Sciences, 2021, 64(9): 1409−1427.

    Google Scholar

    [36] 杨巍然, 王国灿, 李长安. 造山带中―新生代隆升作用构造年代学研究新进展[J]. 地质科技情报, 1999, 18(4): 19-22

    Google Scholar

    YANG Weiran, WANG Guocan, LI Chang’an. Progresses of the study on the Tectono-Chronology of the Mesozoic-Cenozoic uplifting in orogenic Belt[J]. Geological Science and Technology Information, 1999, 18(4): 19-22.

    Google Scholar

    [37] 翟明国. 华北克拉通构造演化[J]. 地质力学学报, 2019, 25(5): 722-745 doi: 10.12090/j.issn.1006-6616.2019.25.05.063

    CrossRef Google Scholar

    ZHAI Mingguo. Tectonic Evolution of the North China Craton[J]. Journal of Geomechanics, 2019, 25(5): 722-745. doi: 10.12090/j.issn.1006-6616.2019.25.05.063

    CrossRef Google Scholar

    [38] 张文高, 陈正乐, 蔡琳博, 等. 西天山白垩纪隆升―剥露的裂变径迹证据[J]. 地质学报, 2017, 91(03): 510-522.

    Google Scholar

    ZHANG Wengao, CHEN Zhengle, CAI Linbo, et al. Cretaceous Uplifting-Exhumation Process of west Tianshan: Evidence from Apatite Fission Track[J]. Acta Geologica Sinica, 2017, 91(03): 510- 522.

    Google Scholar

    [39] 赵俊峰, 刘池洋, 王晓梅, 等. 吕梁山地区中―新生代隆升演化探讨[J]. 地质论评, 2009, 55(05): 663- 672.

    Google Scholar

    Zhao Junfeng, Liu Chiyang, Wang Xiaomei, et al. Uplifting and Evolution Characteristics in the Lüliang Mountain and Its Adjacent Area during the Meso-Cenozoic[J]. Geological Review, 2009, 55 (05): 663- 672.

    Google Scholar

    [40] 赵俊峰, 刘池洋, Nigel MOUNTNEY, 等. 吕梁山隆升时限与演化过程研究[J]. 中国科学: 地球科学, 2015, 45(10): 1427-1438

    Google Scholar

    ZHAO Junfeng, LIU Chiyang, Mountney N, et al. Timing of uplift and evolution of the Lüliang Mountains, North China Craton[J]. Science China: Earth Sciences, 2015, 45(10): 1427-1438.

    Google Scholar

    [41] 赵祯祥, 杜晋锋. 山西大地构造划分、成矿旋回与演化[R]. 太原: 山西省地质调查院, 2004.

    Google Scholar

    [42] 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356

    Google Scholar

    ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 49(9): 1346-1356.

    Google Scholar

    [43] Brown R, Gleadow A. Fission track thermochronology and the long-term denudational response to tectonics[M]. Geomorphology and Global Tectonics, 2000: 57−75.

    Google Scholar

    [44] DV Díaz, S Omodeo-Salé, Ulyanov A, et al. Insights into the Thermal History of North-Eastern Switzerland-Apatite Fission Track Dating of Deep Drill Core Samples from the Swiss Jura Mountains and the Swiss Molasse Basin[J]. Geosciences (Switzerland), 2020, 11(10): 1-21.

    Google Scholar

    [45] Ma Q, Xu Y G. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth-Science Reviews, 2021, 213: 1-11.

    Google Scholar

    [46] Erhan Gülyüz. Apatite fission track dating of the Beypazar Granitoid: insight for the inception of collision along the Northern Neotethys, Turkey[J]. Geodinamica Acta, 2020, 32(1): 1-10. doi: 10.1080/09853111.2020.1809824

    CrossRef Google Scholar

    [47] Gelder I, Willingshofer E, Andriessen P, et al. Cooling and Vertical Motions of Crustal Wedges Prior to, During, and After Lateral Extrusion in the Eastern Alps: New Field Kinematic and Fission Track Data from the Mur‐Mürz Fault System[J]. Tectonics, 2020, 39(3): 1-26.

    Google Scholar

    [48] Gleadow A J W. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Cont Min Pet, 1986, 94(4): 405-415. doi: 10.1007/BF00376334

    CrossRef Google Scholar

    [49] Green, Paul F. On the thermo-tectonic evolution of Northern England: evidence from fission track analysis[J]. Geological Magazine, 1986, 123(05): 493-506. doi: 10.1017/S0016756800035081

    CrossRef Google Scholar

    [50] Green P F. A new look at statistics in fission track dating[J]. Nuclear Tracks, 1981, 5: 77-86. doi: 10.1016/0191-278X(81)90029-9

    CrossRef Google Scholar

    [51] Ketcham R A. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data[J]. Reviews in Mineralogy and Geochemistry. 2005, 58(1): 275-314.

    Google Scholar

    [52] Ketcham R A, Donelick R A, Balestrieri M L, et al. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 2009, 284 (3-4): 504-515. doi: 10.1016/j.jpgl.2009.05.015

    CrossRef Google Scholar

    [53] Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J]. Chemical geology, 1987, 65(1): 1-13. doi: 10.1016/0168-9622(87)90057-1

    CrossRef Google Scholar

    [54] Liang C, Neubauer F, Liu Y, et al. Diachronous onset and polyphase cooling of the Taili-Yiwulüshan metamorphic core complex corridor, NE China, and its relationships to the formation of adjacent extensional basins[J]. Gondwana Research, 2020, 102: 271-298.

    Google Scholar

    [55] Lin W, Faure M, Chen Y, et al. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt[J]. Gondwana Research, 2013, 23(1): 54-77. doi: 10.1016/j.gr.2012.02.013

    CrossRef Google Scholar

    [56] Pan B, Hu Z, Wang J, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River[J]. Geomorphology, 2011, 125(1): 225-238. doi: 10.1016/j.geomorph.2010.09.019

    CrossRef Google Scholar

    [57] Pt A, Xy B, Wy A. Formation and preservation of the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia: Insights from evidences of petrogenesis, geochemistry and apatite fission track dating - ScienceDirect[J]. Solid Earth Sciences, 2020, 1–18.

    Google Scholar

    [58] Sun Y, Kohn B P, Boone S C, et al. Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology[J]. Minerals, 2021, 11(2): 1-24.

    Google Scholar

    [59] Wu F Y, Yang J H, Xu Y G, et al. Destruction of the North China Craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 173-195. doi: 10.1146/annurev-earth-053018-060342

    CrossRef Google Scholar

    [60] Yang J H, Wu F Y, Wilde S A, et al. Mesozoic decratonization of the North China block[J]. Geology, 2008, 36(6): 467-470. doi: 10.1130/G24518A.1

    CrossRef Google Scholar

    [61] Zhu G, Jiang D, Zhang B, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(497) PDF downloads(52) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint