2024 Vol. 57, No. 1
Article Contents

LIN Qin, GUO Yonggang, WU Shengjie, ZANG Yeqi, WANG Guowen. 2024. Evaluation of Landslide Susceptibility by Optimization Integrated Machine Learning Algorithm Based on Gradient Boosting: Take Both Banks of Yarlung Zangbo River and Niyang River as Examples. Northwestern Geology, 57(1): 12-22. doi: 10.12401/j.nwg.2023031
Citation: LIN Qin, GUO Yonggang, WU Shengjie, ZANG Yeqi, WANG Guowen. 2024. Evaluation of Landslide Susceptibility by Optimization Integrated Machine Learning Algorithm Based on Gradient Boosting: Take Both Banks of Yarlung Zangbo River and Niyang River as Examples. Northwestern Geology, 57(1): 12-22. doi: 10.12401/j.nwg.2023031

Evaluation of Landslide Susceptibility by Optimization Integrated Machine Learning Algorithm Based on Gradient Boosting: Take Both Banks of Yarlung Zangbo River and Niyang River as Examples

More Information
  • The geological structures on both banks of the Yarlung Zangbo river and the Niyang river are active, and landslides occur frequently. The landslide susceptibility assessment can effectively reduce the damage to human life and property caused by disasters. This paper studies the performances of Weighted Random Forests, XGBoost and LightGBM algorithms based on Gini coefficient in landslide susceptibility. Select 188 landslide samples and 7 influencing factors, and use the 50–fold cross–validation method to train the model. During the training process, the feature selection algorithm is considered at the same time, and the Bayesian method is used to optimize the hyperparameters. Analysis of forecast results at the level. The results show that landslide is most likely to occur within the elevation of 32~1 544 m and 2 722~3 752 m, the gradient of 30°~40°, and the distance of 200 m from the fault zone, river and road. The extremely high and high landslide prone areas account for 12.14% and 12.41% respectively, and the low and extremely low landslide prone areas account for 26.47% and 29.55% respectively. More than half of the areas in Nyingchi prefecture are not prone to landslide disasters. Among all models, LightGBM model performs best, with AUC value of 0.843 2, accuracy of 0.853 1, and F1 score of 0.834 5. Damu township and Bangxin township in Motuo county, Danniang, Lilong, Zhaxi Raodeng township in Linzhi county, Long village in Lang county, and Jiangda township in Gongbujiangda county are positioned in extraordinarily high–risk areas, with a excessive likelihood of landslides. Corresponding prevention and control measures should be taken in these areas.

  • 加载中
  • [1] 贾俊, 毛伊敏, 孟晓捷, 等. 深度随机森林和随机森林算法的滑坡易发性评价对比—以汉中市略阳县为例[J]. 西北地质, 2023, 56(3): 239−249. doi: 10.12401/j.nwg.2023084

    CrossRef Google Scholar

    JIA Jun, MAO Yimin, MENG Xiaojie, et al. Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County, Hanzhong City[J]. Northwestern Geology, 2023, 56(3): 239−249. doi: 10.12401/j.nwg.2023084

    CrossRef Google Scholar

    [2] 康孟羽, 朱月琴, 陈晨, 等. 基于多元非线性回归和BP神经网络的滑坡滑动距离预测模型研究[J]. 地质通报, 2022, 41(12): 2281−2289.

    Google Scholar

    KANG Mengyu, ZHU Yueqin, CHEN Chen, et al. Research on landslide sliding distance prediction model based on multiple nonlinear regression and BP neural network[J]. Geological Bulletin of China, 2022, 41(12): 2281−2289.

    Google Scholar

    [3] 孟晓捷, 张新社, 曾庆铭, 等. 基于加权信息量法的黄土滑坡易发性评价——以1: 5万天水市麦积幅为例[J]. 西北地质, 2022, 55(2): 249−259.

    Google Scholar

    MENG Xiaojie, ZHANG Xinshe, ZENG Qingming, et al. The Susceptibility Evaluation of Loess Landslide Based on Weighted Information Value Method: Taking 1: 50 000 Map of Maiji District of Tianshui City As an Example[J]. Northwestern Geology, 2022, 55(2): 249−259.

    Google Scholar

    [4] 乔德京, 王念秦, 郭有金, 杨盼盼. 加权确定性系数模型的滑坡易发性评价[J]. 西安科技大学学报, 2020, 40(02): 259-267

    Google Scholar

    QIAO Dejing, WANG Nianqin, GUO Youjin, et al, Landslide susceptibility assessment based on weighted certainty factor model[J]. Journal of Xi'an University of Science and Technology, 2020, 40(02): 259-267.

    Google Scholar

    [5] 沈玲玲, 刘连友, 许冲, 王静璞. 基于多模型的滑坡易发性评价——以甘肃岷县地震滑坡为例[J]. 工程地质学报, 2016, 24(01): 19-28 doi: 10.13544/j.cnki.jeg.2016.01.003

    CrossRef Google Scholar

    SHEN Lingling, LIU Lianyou, XU Chong, et al. Multi-models based landslide susceptibility evaluation—illustrated with landslides triggered by minxian earthquake[J]. Journal of Engineering Geology, 2016, 24(01): 19-28. doi: 10.13544/j.cnki.jeg.2016.01.003

    CrossRef Google Scholar

    [6] 苏立彬, 郭永刚, 吴悦, 杨永涛. 基于DEM的尼洋河流域地貌形态分析[J]. 中国水土保持科学, 2020, 18(03): 12-21 doi: 10.16843/j.sswc.2020.03.002

    CrossRef Google Scholar

    SU Libin, GUO Yonggang, WU Yue, et al. Analysis of geomorphology of Niyang River Basin based on digital elevation model[J]. soil and water conservation science, 2020, 18(03): 12-21. doi: 10.16843/j.sswc.2020.03.002

    CrossRef Google Scholar

    [7] 王瑞琪, 王学良, 刘海洋, 等. 基于精细 DEM 的崩塌滑坡灾害识别及主控因素分析——以雅鲁藏布江缝合带加查-朗县段为例[J]. 工程地质学报, 2019, 27(5): 1146-1152

    Google Scholar

    WANG Ruiqi, WANG Xueliang, LIU Haiyang, et al. Identification and main controlling factor analysis of collapse and landslide based on fine dem——taking jiacha-langxian section of yarlung zangbo suture zone as an example[J]. Journal of Engineering Geology, 2019, 27(5): 1146-1152.

    Google Scholar

    [8] 武辰爽. 基于GIS的川藏铁路林芝段地质灾害危险性评价[D]. 拉萨: 西藏大学, 2021

    Google Scholar

    WU Chenshuang. Evaluation of Geological Hazard Risk Based on Geological Information System in Nyingchi of Sichuan-Tibet Railway[D]. Lasa: Tibet University, 2021.

    Google Scholar

    [9] 杨创奇, 陶攀, 杨正. 基于逻辑回归树耦合熵指数模型的滑坡易发性分区——以陕西省延安市吴起县滑坡为例[J]. 人民长江, 2022, 53(05): 128-134

    Google Scholar

    YANG Chuangqi, TAO Pan, YANG Zheng. Landslide susceptibility zoning based on logistic regression tree coupled entropy index model: case of landslide in Wuqi County, Yan'an City, Shaanxi Province[J]. People's Yangtze River, 2022, 53(05): 128-134.

    Google Scholar

    [10] 张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(8): 1595-1610 doi: 10.13722/j.cnki.jrme.2020.0029

    CrossRef Google Scholar

    ZHANG Qikai, LING Sixiang, LI Xiaoning, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595-1610. doi: 10.13722/j.cnki.jrme.2020.0029

    CrossRef Google Scholar

    [11] 张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(02): 260-270

    Google Scholar

    ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of Regional Landslide Susceptibility Assessment Based on BP Neural Network[J]. Northwest Geology, 2022, 55(02): 260-270.

    Google Scholar

    [12] 张琪, 巨能攀, 张成强, 等. 库水位变化时陡倾软弱顺层岩质滑坡变形机制[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 206−217.

    Google Scholar

    ZHANG Qi, JU Nengpan, ZHANG Chengqiang, et al. Landslide deformation mechanism of steep weak bedding rock under the variation of reservoir water level[J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(2): 206−217.

    Google Scholar

    [13] 张文龙, 张振凯, 杨帅. 勉略宁地区地质灾害危险性智能评价和区划研究[J]. 西北地质, 2023, 56(1): 276−283.

    Google Scholar

    ZHANG Wenlong, ZHANG Zhenkai, YANG Shuai. Study on Intelligent Evaluation and Zoning of Geohazards Risk in Mianluening Area[J]. Northwestern Geology, 2023, 56(1): 276−283.

    Google Scholar

    [14] 赵永辉. 雅鲁藏布江流域嘎贡沟巨型滑坡变形破坏模式及演化过程研究[J]. 防灾科技学院学报, 2019, 21(04): 1-7 doi: 10.3969/j.issn.1673-8047.2019.04.001

    CrossRef Google Scholar

    ZHAO Yonghui. Deformation and Failure Model and Evolution Process of Giant Landslides in Gagong Valley in the Yarlung Zangbo River Basin[J]. Journal of Institute of Disaster Prevention, 2019, 21(04): 1-7. doi: 10.3969/j.issn.1673-8047.2019.04.001

    CrossRef Google Scholar

    [15] 赵永辉. 雅鲁藏布江公路滑坡发育特征及破坏机理研究[J]. 公路, 2021, 66(4): 6 -10.

    Google Scholar

    ZHAO Yonghui. Research on Development Characteristics and Failure Process of Highway Landslide along the Yarlung Zangbo River[J]. Highway, 2021, 66(4): 6-10.

    Google Scholar

    [16] 周硼焜, 张洪波, 赵伟华, 等. 基于Massflow的西南山区某大型岩质滑坡-碎屑流运动模拟研究[J]. 成都理工大学学报(自然科学版), 2023, 50(3): 361−368.

    Google Scholar

    ZHOU Pengkun, ZHANG Hongbo, ZHAO Weihua, et al. Study of a large-scale rock landslide-debris flow in the southwest mountainous region of China based on Massflow numerical simulation[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(3): 361−368.

    Google Scholar

    [17] Alsahaf A, Azzopardi G, Ducro B, et al. Predicting Slaughter Weight in Pigs with Regression Tree Ensembles[C]. APPIS, 2018: 1−9.

    Google Scholar

    [18] Arabameri A, Pradhan B, Rezaei K, et al. Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR–RF integrated model and multiresolution DEMs[J]. Remote Sensing, 2019, 11(9): 999. doi: 10.3390/rs11090999

    CrossRef Google Scholar

    [19] Batar A K, Watanabe T. Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan region: Recent developments, gaps, and future directions[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 114. doi: 10.3390/ijgi10030114

    CrossRef Google Scholar

    [20] Disha R A, Waheed S. Performance analysis of machine learning models for intrusion detection system using Gini Impurity-based Weighted Random Forest (GIWRF) feature selection technique[J]. Cybersecurity, 2022, 5(1): 1-22. doi: 10.1186/s42400-021-00103-8

    CrossRef Google Scholar

    [21] Hong H, Liu J, Bui D T, et al. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)[J]. Catena, 2018, 163: 399-413. doi: 10.1016/j.catena.2018.01.005

    CrossRef Google Scholar

    [22] Inan M S K, Ulfath R E, Alam F I, et al. Improved sampling and feature selection to support extreme gradient boosting for PCOS diagnosis[C]. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, 2021: 1046−1050.

    Google Scholar

    [23] Khan H, Shafique M, Khan M A, et al. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan[J]. The Egyptian Journal of Remote Sensing and Space Science, 2019, 22(1): 11-24. doi: 10.1016/j.ejrs.2018.03.004

    CrossRef Google Scholar

    [24] Kouhartsiouk D, Perdikou S. The application of DInSAR and Bayesian statistics for the assessment of landslide susceptibility[J]. Natural Hazards, 2021, 105(3): 2957-2985. doi: 10.1007/s11069-020-04433-7

    CrossRef Google Scholar

    [25] Lee D H, Kim Y T, Lee S R. Shallow landslide susceptibility models based on artificial neural networks considering the factor selection method and various non-linear activation functions[J]. Remote Sensing, 2020, 12(7): 1194. doi: 10.3390/rs12071194

    CrossRef Google Scholar

    [26] Polykretis C, Chalkias C. Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models[J]. Natural hazards, 2018, 93(1): 249-274. doi: 10.1007/s11069-018-3299-7

    CrossRef Google Scholar

    [27] Rehman A, Song J, Haq F, et al. Multi-Hazard Susceptibility Assessment Using the Analytical Hierarchy Process and Frequency Ratio Techniques in the Northwest Himalayas, Pakistan[J]. Remote Sensing, 2022, 14(3): 554. doi: 10.3390/rs14030554

    CrossRef Google Scholar

    [28] Taalab K, Cheng T, Zhang Y. Mapping landslide susceptibility and types using Random Forest[J]. Big Earth Data, 2018, 2(2): 159-178. doi: 10.1080/20964471.2018.1472392

    CrossRef Google Scholar

    [29] Tanyas H, Rossi M, Alvioli M, et al. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides[J]. Geomorphology, 2019, 327: 126-146. doi: 10.1016/j.geomorph.2018.10.022

    CrossRef Google Scholar

    [30] Tien Bui D, Shahabi H, Shirzadi A, et al. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia[J]. Remote Sensing, 2018, 10(10): 1527. doi: 10.3390/rs10101527

    CrossRef Google Scholar

    [31] Zeng H, Yang C, Zhang H, et al. A lightGBM-based EEG analysis method for driver mental states classification[J]. Computational Intelligence and Neuroscience, 2019.

    Google Scholar

    [32] Zweifel L, Samarin M, Meusburger K, et al. Investigating causal factors of shallow landslides in grassland regions of Switzerland[J]. Natural Hazards and Earth System Sciences, 2021, 21(11): 3421-3437. doi: 10.5194/nhess-21-3421-2021

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(4)

Article Metrics

Article views(1553) PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint