2025 Vol. 58, No. 1
Article Contents

LI Hao, DU Wenqiang, ZHANG Chao, LI Zhinan, WEI Daiying, WU Hao. 2025. Formation Age, Petrogenesis and Geological Significance of Late Jurassic Granodiorites in Kayico Area, Northern Tibet. Northwestern Geology, 58(1): 81-92. doi: 10.12401/j.nwg.2023020
Citation: LI Hao, DU Wenqiang, ZHANG Chao, LI Zhinan, WEI Daiying, WU Hao. 2025. Formation Age, Petrogenesis and Geological Significance of Late Jurassic Granodiorites in Kayico Area, Northern Tibet. Northwestern Geology, 58(1): 81-92. doi: 10.12401/j.nwg.2023020

Formation Age, Petrogenesis and Geological Significance of Late Jurassic Granodiorites in Kayico Area, Northern Tibet

More Information
  • The widely distributed Middle-Late Jurassic magmatic rocks in south margin of Southern Qiangtang block display complex geochemical compositions, providing an ideal research object for the tectonic evolution of Bangong-Nujiang Suture Zone. In this paper, zircon U-Pb dating, whole rock geochemistry and zircon Lu-Hf isotopes of Kayico granodiorites were analyzed. The investigated granodiorites yielded zircon ages of 158 Ma, coeval with the regional Middle-Late Jurassic magmatic rocks. Geochemically, the granodiorites were characterized by high SiO2 and total alkalis (Na2O+K2O) contents, but low MgO and TiO2 contents, with depletion in Eu、Sr、Ba, suggesting a geochemical affinity with calc alkaline I-type granites. Combined with the regional research data, it is thus concluded that these granodiorites were derived by partial melting of the ancient metaigneous lower crust, followed by vary degree of crystallization differentiation. Our research favor that the Middle-Late Jurassic magmatic rocks in Southern Qiangtang block were generated in an arc setting during the northward subduction of Bangong-Nujiang oceanic lithosphere. Furthermore, considering the preexisting geochemical data, the granitic rocks of Kayico area can be divided into two groups of calc-alkaline I-type granites and highly fractionated granites, which were derived by the different end-members of the crystal mush process within the shallow crust.

  • 加载中
  • [1] 董宇超, 李才, 王明, 等. 西藏改则县多不扎地区上侏罗统对望山组的建立及意义[J]. 地质通报, 2016, 35(8): 1263-1270 doi: 10.3969/j.issn.1671-2552.2016.08.007

    CrossRef Google Scholar

    DONG Yuchao, LI Cai, WANG Ming, et al. Establishment of Upper Jurassic Duiwangshan Formation in Duobuza area, Gerze County, Tibet, and its significance [J]. Geological Bulletin of China, 2016, 35(8): 1263-1270. doi: 10.3969/j.issn.1671-2552.2016.08.007

    CrossRef Google Scholar

    [2] 范建军, 张博川, 刘海永, 等. 班公湖-怒江洋早-中侏罗世洋内俯冲: 来自洞错蛇绿岩的证据[J]. 岩石学报, 2019, 35(10): 3048-3064 doi: 10.18654/1000-0569/2019.10.06

    CrossRef Google Scholar

    FAN Jianjun, ZHANG Bochuan, LIU Yonghai, et al. Early-Middle Jurassic intra-oceanic subduction of the Bangong-Nujiang oceanic lithosphere: Evidence of the Dong Co ophiolite [J]. Acta Petrologica Sinica, 2019, 35(10): 3048-3064. doi: 10.18654/1000-0569/2019.10.06

    CrossRef Google Scholar

    [3] 李小波, 王保弟, 刘函, 等. 西藏达如错地区晚侏罗世高镁安山岩——班公湖-怒江洋壳俯冲消减的证据[J]. 地质通报, 2015, 34(Z1): 251-261

    Google Scholar

    LI Xiaobo, WANG Baodi, LIU Han, et al. The Late Jurassic high-Mg andesites in the Daru Tso area, Tibet: Evidence for the subduction of the Bangong Co-Nujiang River oceanic lithosphere [J]. Geological Bulletin of China, 2015, 34(Z1): 251-261.

    Google Scholar

    [4] 李艳广, 靳梦琪, 汪双双, 等. 2023: LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274–282.

    Google Scholar

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274–282.

    Google Scholar

    [5] 李永飞, 王娟. 羌塘地块南界班公湖-丁青断裂构造带火山岩地球化学及其形成构造环境[J]. 西北地质, 2005, 38(1): 15-25 doi: 10.3969/j.issn.1009-6248.2005.01.002

    CrossRef Google Scholar

    LI Yongfei, WANG Juan. Geochemistry of the volcanic rock association from Bangong lake-Dingqing suture zone of the south boundary in Qiangtang block and its tectonic setting [J]. Northwestern Geology, 2005, 38(1): 15-25. doi: 10.3969/j.issn.1009-6248.2005.01.002

    CrossRef Google Scholar

    [6] 李志军, 李晨伟, 高一鸣, 等. 西藏狮泉河蛇绿岩中侏罗世晚期(ca. 163Ma)OIB型辉绿岩及高镁闪长岩年代学及地球化学特征: 早期洋壳俯冲产物?[J]. 岩石学报, 2019, 35(03): 816-832 doi: 10.18654/1000-0569/2019.03.12

    CrossRef Google Scholar

    LI Zhijun, LI Chenwei, GAO Yiming, et al. Geochronology and geochemistry characteristics of the late Mid-Jurassic (ca. 163Ma) OIB-type diabase and high-Mg diorites in Shiquanhe ophiolite: Products of early stage oceanic crust subduction? [J]. Acta Petrologica Sinica, 2019, 35(03): 816-832. doi: 10.18654/1000-0569/2019.03.12

    CrossRef Google Scholar

    [7] 刘海永, 唐菊兴, 王雨, 等. 西藏安多纳茸矿区石英闪长玢岩成因及地质意义[J]. 地球科学, 2022, 47(03): 1059-1077

    Google Scholar

    LIU Haiyong, TANG Juxing, WANG Yu, et al. Petrogenesis and Geological Significance of Quartz diorite porphyry in Narong mining area, Tibet [J]. Earth Science, 2022, 47(03): 1059-1077.

    Google Scholar

    [8] 刘海永, 岳鋆璋, 顿珠旺堆, 等. 青藏高原中部麻米地区晚侏罗世火山岩岩石成因及其地质意义[J]. 地球科学, 2019, 44(7): 2368-2378

    Google Scholar

    LIU Yonghai, YUE Yunzhang, DUNZHU Wangdui, et al. Petrogenesis and Geological Significance of Late Jurassic Volcanic Rocks in Mami Area, Central Tibetan Plateau [J]. Earth Science, 2019, 44(7): 2368-2378.

    Google Scholar

    [9] 孙巍, 许逢明, 吴大天, 等. 大兴安岭中部扎赉特旗晚三叠世A型花岗岩的发现及其地质意义[J]. 西北地质, 2022, 56(2): 80-91. doi: 10.12401/j.nwg.2022027 .

    CrossRef Google Scholar

    SUN Wei, XU Fengming, WU Datian, et al. Discovery and Geological Significance of Late Triassic A–Type Granite in Jalaid Banner, Middle of Great Xing’an Range[J]. Northwestern Geology, 2022, 56(2): 80-91. doi: 10.12401/j.nwg.2022027.

    CrossRef Google Scholar

    [10] 唐跃, 翟庆国, 胡培远, 等. 班公湖-怒江缝合带西段拉果错蛇绿岩中斜长岩成因及其对中特提斯洋演化的制约[J]. 地质通报, 2021, 40(08): 1265-1278

    Google Scholar

    TAN Yue, ZHAI Qingguo, HU Peiyuan, et al. Petrogenesis of anorthosite in the Laguoco ophiolite, western part of the BangongNujiang suture zone and its constraint to the evolution of the Meso-Tethys Ocean [J]. Geological Bulletin of China, 2021, 40(08): 1265-1278.

    Google Scholar

    [11] 王亮, 王凯, 张翔, 等. 南祁连扎子沟埃达克岩年代学、地球化学特征及地质意义[J]. 西北地质, 2022, 55(1): 39-49 doi: 10.19751/j.cnki.61-1149/p.2022.01.003

    CrossRef Google Scholar

    WANG Liang, WANG Kai, ZHANG Xiang, et al. Geochronological and Geochemical Characteristics of the Zhazigou Adakite in South Qilian and the Geological Significance [J]. Northwestern Geology, 2022, 55(1): 39-49. doi: 10.19751/j.cnki.61-1149/p.2022.01.003

    CrossRef Google Scholar

    [12] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220 doi: 10.3969/j.issn.1000-0569.2007.02.001

    CrossRef Google Scholar

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology [J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. doi: 10.3969/j.issn.1000-0569.2007.02.001

    CrossRef Google Scholar

    [13] 吴浩, 徐祖阳, 严维兵, 等. 西藏中部聂尔错地区辉绿岩锆石U-Pb年龄与地球化学特征: 对新特提斯洋板片断离的指示[J/OL]. 中国地质, 2020

    Google Scholar

    WU Hao, XU Zuyang, YAN Weibing, et al. Zircon U-Pb ages and geochemical characteristics of diabase in Nie’erco area, central Tibet: Implication for Neo-Tethyan slab breakoff [J/OL]. China Geology, 2020.

    Google Scholar

    [14] Bachmann O, Bergantz G W. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes [J]. Journal of Petrology, 2004, 45: 1565-1582. doi: 10.1093/petrology/egh019

    CrossRef Google Scholar

    [15] Chappell B W, White A J R. Two contrasting granite types [J]. Pacific Geology, 1974, 8: 173-174.

    Google Scholar

    [16] Chappell B W, White A J R. I– and S– type granites in the Lachlan Fold Belt [J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1-26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    [17] Chappell B W, White A J R. Two contrasting granite types: 25 years later [J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x

    CrossRef Google Scholar

    [18] Fan Jianjun, Li Cai, Wang Ming. Remnants of a Late Triassic ocean island in the Gufeng area, northern Tibet: Implications for the opening and early evolution of the Bangong–Nujiang Tethyan Ocean [J]. Journal of Asian Earth Sciences, 2017, 135: 35-50. doi: 10.1016/j.jseaes.2016.12.015

    CrossRef Google Scholar

    [19] Fan J J, Niu Y, Liu Y M, et al. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141−135 Ma ocean island within the Bangong−Nujiang Suture Zone, Tibetan Plateau [J]. Geological Society of America Bulletin, 2021, 133(9–10): 1875-1889.

    Google Scholar

    [20] Hildreth W. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems [J]. Journal of Volcanology & Geothermal Research, 2004, 136: 169-198.

    Google Scholar

    [21] Kapp P, Decelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet [J]. Geological Society of America Bulletin, 2007, 119(7-8): 917-933. doi: 10.1130/B26033.1

    CrossRef Google Scholar

    [22] Kapp P, Decelles P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses [J]. American Journal of Science, 2019, 319(3): 159-254. doi: 10.2475/03.2019.01

    CrossRef Google Scholar

    [23] Le Maitre R W, Bateman P, Dudek A, et al. A classification of igneous rocks and a glossary of terms [M]. Oxford, Blackwell, 1989.

    Google Scholar

    [24] Li X H, Li Z X, Li W X, et al. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? [J]. Lithos, 2007, 96(s1–2): 186-204.

    Google Scholar

    [25] Li Shimin, Zhu Dicheng, Wang Qing, et al. Northward subduction of Bangong–Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet [J]. Lithos, 2014, 205(9): 284-297.

    Google Scholar

    [26] Li Shimin, Zhu Dicheng, Wang Qing, et al. Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: Records of the Bangong–Nujiang oceanic ridge subduction during the Late Jurassic [J]. Lithos, 2016, 262: 456-469. doi: 10.1016/j.lithos.2016.07.029

    CrossRef Google Scholar

    [27] Liu Y, Zhai Q, Hu P, et al. Subduction initiation of the Bangong–Nujiang Tethys Ocean, Tibetan Plateau [J]. Journal of Asian Earth Sciences, 2022, 238: 105394. doi: 10.1016/j.jseaes.2022.105394

    CrossRef Google Scholar

    [28] Liu Yongsheng, Hu Zhaochu, Gao Shan, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [29] Liu Yongsheng, Gao, Shan, Hu Zhaochu, et al. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths [J]. Journal of Petrology, 2010, 51(1-2): 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [30] Liu Deliang, Huang Qishuai, Fan Shuaiquan, et al. Subduction of the Bangong–Nujiang Ocean: constraints from granites in the Bangong Co area, Tibet [J]. Geological Journal, 2014, 49: 188-206. doi: 10.1002/gj.2510

    CrossRef Google Scholar

    [31] Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley: Geochronology Center Special Publication, 2003.

    Google Scholar

    [32] Middlemost E A K. Naming materials in the magma/igneous rock system [J]. Earth-Science Review, 1994, 74: 193-227.

    Google Scholar

    [33] Pan Guitang, Wang Liquan, Li Rongshe, et al. Tectonic evolution of the Qinghai-Tibet Plateau [J]. Journal of Asian Earth Sciences, 2012, 53(2): 3-14.

    Google Scholar

    [34] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru [J]. Journal of Petrology, 1996, 37: 1491-1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    [35] Qian Q, Hermann J, Dong F, et al. Episodic formation of Neotethyan ophiolites (Tibetan plateau): Snapshots of abrupt global plate reorganizations during major episodes of supercontinent breakup? [J]. Earth-Science Reviews, 2020, 203: 103144. doi: 10.1016/j.earscirev.2020.103144

    CrossRef Google Scholar

    [36] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [37] Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation [M]. Longman Scientific Technical, London, 1993.

    Google Scholar

    [38] Shand S J. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-deposits with a Chapter on Meteorite [M]. New York: John Wiley and Sons, 1943.

    Google Scholar

    [39] Sun S S. McDonough W F. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins [J]. Geological Society, London, Special Publications, 1989, 42: 528-548.

    Google Scholar

    [40] Sun Peng, Dan Wei, Wang Qiang, et al. Zircon U–Pb geochronology and Sr–Nd–Hf–O isotope geochemistry of Late Jurassic granodiorites in the southern Qiangtang block [J]. Journal of Asian Earth Sciences, 2020, 192: 104235. doi: 10.1016/j.jseaes.2020.104235

    CrossRef Google Scholar

    [41] Sylvester P J. Post-collisional strongly peraluminous granites [J]. Lithos, 1998, 45(s1-4): 29-44.

    Google Scholar

    [42] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [43] Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, et al. Highly fractionated granites: Recognition and research [J]. Science China Earth Sciences, 2017, 60(7): 1201-1219. doi: 10.1007/s11430-016-5139-1

    CrossRef Google Scholar

    [44] Wu Hao, Xie Chaoming, Li Cai, et al. Tectonic shortening and crustal thickening in subduction zones: Evidence from Middle–Late Jurassic magmatism in Southern Qiangtang, China [J]. Gondwana Research, 2016, 39: 1-13. doi: 10.1016/j.gr.2016.06.009

    CrossRef Google Scholar

    [45] Wu Hao, Li Cai, Yu Yunpeng, et al. Age, origin, and geodynamic significance of high-Al plagiogranites in the Labuco area of central Tibet [J]. Lithosphere, 2018, 10(2): 351-363. doi: 10.1130/L711.1

    CrossRef Google Scholar

    [46] Wu Hao, Chen Jingwen, Wang Qiang, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in central Tibet [J]. American Journal of Science, 2019a, 319(2): 105-121.

    Google Scholar

    [47] Wu Hao, Sun Shulin, Liu Haiyong, et al. An Early Cretaceous slab window beneath central Tibet, SW China: evidence from OIB-like alkaline gabbro in the Duolong area [J]. Terra Nova, 2019b, 31(1): 67-75.

    Google Scholar

    [48] Yang Zongyong, Wang Qiang, Hao Lulu, et al. Subduction erosion and crustal material recycling indicated by adakites in central Tibet [J]. Geology, 2021, 49(6): 708-712. doi: 10.1130/G48486.1

    CrossRef Google Scholar

    [49] Zhu Dicheng, Li Shilin, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction [J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    [50] Zhu Dicheng, Zhao Zhidan, Niu Yaoling, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth [J]. Earth & Planetary Science Letters, 2011, 301(1): 241-255.

    Google Scholar

    [51] Zong Keqing, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(153) PDF downloads(19) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint