2024 Vol. 57, No. 5
Article Contents

ZHANG Ziyao, ZHANG Yihu, XU Lei, WANG Huaitao. 2024. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling. Northwestern Geology, 57(5): 232-247. doi: 10.12401/j.nwg.2023013
Citation: ZHANG Ziyao, ZHANG Yihu, XU Lei, WANG Huaitao. 2024. Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling. Northwestern Geology, 57(5): 232-247. doi: 10.12401/j.nwg.2023013

Geochronology, Geochemistry and Tectonic Significance of Late Triassic Adakite Granites in Tanchang-Zhouqu area of West Qinling

More Information
  • The west Qinling orogenic belt is located in the west of Qinling-Dabie orogenic belt. The study of granites is of great significance for understanding the tectonic evolution of the central orogenic belt. In this paper, Petrography, LA-ICP-MS zircon U-Pb chronology and geochemistry of the Yanmaiceng and Hanban granitoids in the Tanchang-Zhouqu area of the Western Qinling Mountains were studied. The results show that the Yanmaiceng monzodiorite and HanBan granodiorite are characterized by high Al2O3, MgO, Mg# < 45, rich in Na and poor in K. The main –granites are subalkaline–alkaline series, quasi-aluminous~weakly peraluminous I-type granites, which are highly enriched in LREE, weak negative Eu anomaly, and enriched in LILE such as Th, K, U. The elements of Nb, Ta, P and Ti in HFSE were strongly depleted. Zircon U-Pb isotopic dating shows that the Yanmaiceng and Hanban granitoid were formed at (219.4±1.5) Ma and (222.1±1.9) Ma, respectively, and emplaced in the middle of Late Triassic. According to the geological, geochemical and chronological characteristics, the granites in the study area are in a post-collision environment, which may have been formed in the crust thickening, and the lower lithospheric mantle detachment occurred, resulting in the upwelling and thickening of the asthenosphere and the partial melting of the lower crust.

  • 加载中
  • [1] 邓晋福, 刘厚祥, 赵海玲, 等. 燕辽地区燕山期火成岩与造山模型[J]. 现代地质, 1996, 10(02): 137-148

    Google Scholar

    DENG Jinfu, LIU Houxiang, ZHAO Hailing et al. Yanshanian igneous rocks and orogeny model in Yanshan-Liaoning area[J]. Geoscience, 1996, 10(02): 137-148.

    Google Scholar

    [2] 冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带结构造山过程及动力学[M]. 西安: 西安地图出版社, 2002, 1−263

    Google Scholar

    [3] 冯益民, 曹宣铎, 张二朋, 等. 西秦岭造山带的演化、构造格局和性质[J]. 西北地质, 2003, 36(01): 1-10 doi: 10.3969/j.issn.1009-6248.2003.01.001

    CrossRef Google Scholar

    FENG Yimin, CAO Xuanduo, ZHANG Erpeng, et al. Tectonic evolution framework and nature of the West Qinling Orogenic Belt[J]. Northwestern Geology, 2003, 36(01): 1-10. doi: 10.3969/j.issn.1009-6248.2003.01.001

    CrossRef Google Scholar

    [4] 冯小明, 李注苍, 齐建宏. 西秦岭德乌鲁岩体成因及地质意义——来自岩石地球化学的证据[J]. 岩石矿物学杂志, 2021, 40(02): 347-362 doi: 10.3969/j.issn.1000-6524.2021.02.012

    CrossRef Google Scholar

    FENG Xiaoming, LI Zhucang, QI Jianhong. The origin and geological significance of the Dewulu pluton in West Qinling: Evidence from petrogeochemistry[J]. Acta Petrologica ET Mineralogica, 2021, 40(02): 347-362. doi: 10.3969/j.issn.1000-6524.2021.02.012

    CrossRef Google Scholar

    [5] 黄雄飞, 莫宣学, 喻学惠, 等. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2013, 29(11): 3968-3980

    Google Scholar

    HUANG Xiongfei, MO Xuanxue, YU Xuehui, et al. Zircon U-Pb chronology, geochemistry of the Late Triassic acid volcanic rocks in Tanchang area, West Qinling and their geological signicance[J]. Acta Petrologica Sinica, 2013, 29(11): 3968-3980.

    Google Scholar

    [6] 李永军, 李注苍, 丁仨平, 等. 西秦岭温泉花岗岩体岩石学特征及岩浆混合标志[J]. 地球科学与环境学报, 2004, 23(03): 7-12 doi: 10.3969/j.issn.1672-6561.2004.03.002

    CrossRef Google Scholar

    LI Yongjun, LI Zhucang, DING Sanping, et al. Petrology fetures and magma mingling marks of the Wenquan granite from western Qinling[J]. Journal of Earth Sciences and Environment, 2004, 23(03): 7-12. doi: 10.3969/j.issn.1672-6561.2004.03.002

    CrossRef Google Scholar

    [7] 金维浚, 张旗, 何登发, 等. 西秦岭埃达克岩的SHRIMP定年及其构造意义[J]. 岩石学报, 2005, 21(03): 959-966 doi: 10.3321/j.issn:1000-0569.2005.03.033

    CrossRef Google Scholar

    JIN Weijun, ZHANG Qi, HE Dengfa, et al. SHRIMP dating of adakites in western Qinling and their implications[J]. Acta Petrologica Sinica, 2005, 21(03): 959-966. doi: 10.3321/j.issn:1000-0569.2005.03.033

    CrossRef Google Scholar

    [8] 李曙光, 孙卫东, 张国伟, 等. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭合时代的证据[J]. 中国科学(D辑: 地球科学), 1996, 26(03): 223-230

    Google Scholar

    LI Shuguang, SUN Weidong, ZHANG Guowei, et al. Chronology and geochemistry of metamorphic rocks from Heigouxia vally in the Mian-Lue tectonic zone, South Qinling evidence for a Paleozoic ocean basin and its close time[J]. Science in China(Series D), 1996, 26(03): 223-230.

    Google Scholar

    [9] 柳小明, 高山, 袁洪林, 等. 193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(03): 408-418 doi: 10.3969/j.issn.1000-0569.2002.03.017

    CrossRef Google Scholar

    LIU Xiaoming, GAO Shan, YUAN Honglin, et al. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS[J]. Acta Petrologica Sinica, 2002, 18(03): 408-418. doi: 10.3969/j.issn.1000-0569.2002.03.017

    CrossRef Google Scholar

    [10] 刘明强. 甘肃西秦岭舟曲憨班花岗岩体的单颗粒锆石U-Pb年龄及地质意义[J]. 地质科学, 2012, 47(03): 899-907 doi: 10.3969/j.issn.0563-5020.2012.03.023

    CrossRef Google Scholar

    LIU Mingqiang. Single-grain zircon U-Pb ages and geological significance of the Hanban granite from Zhouqu(Gansu)in[J]. Earth Science, 2012, 47(03): 899-907. doi: 10.3969/j.issn.0563-5020.2012.03.023

    CrossRef Google Scholar

    [11] 穆可斌, 裴先治, 李瑞保, 等. 南秦岭白龙江群中花岗岩脉群年代学、地球化学特征及地质意义[J]. 西北地质, 2019, 52(03): 111-135 doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    CrossRef Google Scholar

    MU Kebin, PEI Xianzhi, LI Ruibao, et al. Geochronology, geochemistry and geological significance of the granite veins in the Bailongjiang Group, South Qinling[J]. Northwestern Geology, 2019, 52(03): 111-135. doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    CrossRef Google Scholar

    [12] 裴先治, 张国伟, 赖绍聪, 等. 西秦岭南缘勉略构造带主要地质特征[J]. 地质通报, 2002, 21(8-9): 486-494

    Google Scholar

    PEI Xianzhi, ZHANG Guowei, LAI Shaocong, et al. Main geological feature of the Mianlue tectonic belt on the southern maigin of the West Qinling[J]. Geological Bulletin of China, 2002, 21(8-9): 486-494

    Google Scholar

    [13] 邱庆伦, 龚全胜, 卢书伟, 等. 甘肃夏河地区印支期埃达克岩的厘定及其意义[J]. 甘肃地质, 2008, 17(03): 6-12

    Google Scholar

    QIU Qinglun, GUN Quansheng, LU Shuwei, et al. Geochemical characteristics and geological significance of adakitic granitoids in Xiahe county of Gansu Province[J]. Gansu Geology, 2008, 17(03): 6-12.

    Google Scholar

    [14] 王晓霞, 王涛, 张成立. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学: 地球科学, 2015, 45(08): 1109-1125

    Google Scholar

    WANG Xiaoxia, WANG Tao, ZHANG Chengli. Granitic magmatism and orogenic belt evolution in Qinling Orogenic Belt[J]. Science China: Earth Sciences, 2015, 45(08): 1109-1125.

    Google Scholar

    [15] 韦萍, 莫宣学, 喻学惠, 等. 西秦岭夏河花岗岩的地球化学、年代学及地质意义[J]. 岩石学报, 2013, 29(11): 3981-3992

    Google Scholar

    WEI Ping, MO Xuanxue, YU Xuehui et al. Geochemistry, chronology and geological significance of the granitoids in Xiahe, West Qinling[J]. Acta Petrologica Sinica, 2013, 29(11): 3981-3992.

    Google Scholar

    [16] 肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002, 1– 294.

    Google Scholar

    [17] 徐多勋, 杨拴海, 李瑞保, 等. 西秦岭西段塔洞花岗闪长岩体年代学、地球化学特征及其地质意义[J]. 地球科学与环境学报, 2015, 37(03): 22-33 doi: 10.3969/j.issn.1672-6561.2015.03.005

    CrossRef Google Scholar

    XU Duoxun, YANG Shuanhai, LI Ruibao, et al. Geochronological, geochemical characteristics and geological significance of Tadong granodiorite pluton in the west section of West Qinling[J]. Journal of Earth Sciences and Evironment, 2015, 37(03): 22-33. doi: 10.3969/j.issn.1672-6561.2015.03.005

    CrossRef Google Scholar

    [18] 徐学义, 陈隽璐, 高婷, 等. 西秦岭北缘花岗质岩浆作用及构造演化[J]. 岩石学报, 2014, 30(02): 371-389

    Google Scholar

    XU Xueyi, CHEN Juanlu, GAO Ting, et al. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane, NW China[J]. Acta Petrologica Sinica, 2014, 30(02): 371-389.

    Google Scholar

    [19] 张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 14(03): 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003

    CrossRef Google Scholar

    ZHANG Chenli, WANG Tao, WANG Xiaoxia, et al. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 14(03): 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    CrossRef Google Scholar

    [20] 张国伟, 董云鹏, 赖绍聪, 等. 秦岭-大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学(D辑: 地球科学), 2003, 33(12): 1121-1135

    Google Scholar

    ZHANG Guowei, DONG Yunpeng, LAI Shaocun, et al. Mianlue Orogenic and Suture in the southern margin of Qinling-Dabie Orogenic Belt[J]. Science in China(Series D), 2003, 33(12): 1121-1135.

    Google Scholar

    [21] 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001, 1–806

    Google Scholar

    [22] 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭—松潘大陆构造结[J]. 地学前缘, 2004, 11(03): 23-32 doi: 10.3321/j.issn:1005-2321.2004.03.004

    CrossRef Google Scholar

    ZHANG Guowei, GUO Anlin, YAO Anping. Western Qinling-Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 2004, 11(03): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004

    CrossRef Google Scholar

    [23] 张宏飞, 靳兰兰, 张利, 等. 西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J]. 中国科学(D辑: 地球科学), 2005, (10): 10-22

    Google Scholar

    ZHANG Hongfei, JIN Lanlan, ZHANG Li et al. Geochemistry of granitoids and limitation of Pb-Sr-Nd isotope composition on basement properties and tectonic properties in the Western Qinling Mountains[J]. Science in China(Series D), 2005, (10): 10-22.

    Google Scholar

    [24] 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(09): 2249-2269 doi: 10.3321/j.issn:1000-0569.2006.09.001

    CrossRef Google Scholar

    ZHANG Qi, WANG Yan, LI Chengdong, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(09): 2249-2269. doi: 10.3321/j.issn:1000-0569.2006.09.001

    CrossRef Google Scholar

    [25] 张旗, 殷先明, 殷勇, 等. 西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题[J]. 岩石学报, 2009, 25(12): 3103-3122

    Google Scholar

    ZHANG Qi, YIN Xianming, YIN Yong, et al. Issues on metallogenesis and prospecting of gold and copper deposits related to adakite and Himalayan type granite in west Qinling[J]. Acta Petrologica Sinica, 2009, 25(12): 3103-3122.

    Google Scholar

    [26] 张旗, 李承东. 花岗岩: 地球动力学意义[M]. 北京: 海洋出版社, 2012, 1–268.

    Google Scholar

    [27] 郑永飞, 龚冰, 赵子福, 等. 大别-苏鲁造山带超高压变质岩原岩性质: 锆石氧同位素和U-Pb年龄证据[J]. 科学通报, 2003, 48(2): 110-119

    Google Scholar

    ZHENG Yongfei, GONG Bing, ZHAO Zifu,et al. Protolith properties of ultrahigh pressure metamorphic rocks in the Dabie-Sulu orogenic belt: evidence from zircon oxygen isotopes and U-Pb age[J]. Chinese Science Bulletin, 2003, 48(2): 110-119.

    Google Scholar

    [28] Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [29] Beard J S, Lofgern G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    CrossRef Google Scholar

    [30] Cao Xiaofeng, LvXinbiao, Yao Shuzhen, et al. LA–ICP–MS U–Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China[J]. Ore Geology Reviews, 2011, 43(1): 120-131. doi: 10.1016/j.oregeorev.2010.03.004

    CrossRef Google Scholar

    [31] Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    [32] David K, Schiano P, Alleger C J. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes[J]. Earth and Planetary Science Letters, 2000, 178(3-4): 285-301. doi: 10.1016/S0012-821X(00)00088-1

    CrossRef Google Scholar

    [33] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [34] Dong Yunpeng, Zhang Guowei, Neubaue R F, et al. Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Science, 2011, 41(3): 213-237. doi: 10.1016/j.jseaes.2011.03.002

    CrossRef Google Scholar

    [35] Dong Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009

    CrossRef Google Scholar

    [36] Dong Yunoeng, SUN Shengsi, Santosh M, et al. Central China orogenic belt and amalgamation of East Asian continents[J]. Gondwana Research, 2021, 100: 131-194. doi: 10.1016/j.gr.2021.03.006

    CrossRef Google Scholar

    [37] DONG Yunpeng, ZHANG Xiaoning, LIU Xiaomin, et al. Propagation tectonics and multiple accretionary processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences, 2015, 104: 84-98.

    Google Scholar

    [38] Douce A E P, Mccarthy T C. Melting of crustal rocks during continental collision and subduction. Hacher B R, Liu J G. When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks [M]. Springer, Dordrecht, 1998: 27-55.

    Google Scholar

    [39] Jiang Yaohui, Jin Guodong, Liao Shiyong, et al. Geochemical and Sr–Nd–Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: implications for a continental arc to continent–continent collision[J]. Lithos, 2010, 117(1-4): 183-197. doi: 10.1016/j.lithos.2010.02.014

    CrossRef Google Scholar

    [40] Johannes W, Holtz F. Petrogenesis and experimental petrology of granitic rocks[M]. Springer, Science & Business Media, 2012.

    Google Scholar

    [41] Jochum K P, Pfander J, Snow J E, et al. Nb/Ta in mantle and crust[J]. Eos Transactions American Geophysical Union, 1997, 78, 804.

    Google Scholar

    [42] Kroner A, Zhang Guowei, Sun Y. Granulites in the Tongbai area, Qinling belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia[J]. Tectonics, 1993, 12(1): 245-255. doi: 10.1029/92TC01788

    CrossRef Google Scholar

    [43] Li Nuo, Chen Yanjing, Santosh M, et al. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: implication for termination of the northernmost paleo-Tethys[J]. Gondwana Research, 2015, 27(1): 244-257. doi: 10.1016/j.gr.2013.09.017

    CrossRef Google Scholar

    [44] Li Xiaowei, Mo Xuanxue, Huang Xiongfei, et al. U–Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: Petrogenesis and geodynamic implications[J]. Journal of Asian Earth Sciences, 2015, 97: 38-50. doi: 10.1016/j.jseaes.2014.10.017

    CrossRef Google Scholar

    [45] Luo Biji, Zhang Hongfei, Xu Wangchun, et al. The Middle Triassic Meiwu Batholith, West Qinling, Central China: implications for the evolution of compositional diversity in a composite Batholith[J]. Journal of Petrology, 2015, 56(6): 1139-1172. doi: 10.1093/petrology/egv032

    CrossRef Google Scholar

    [46] Mattauer M, Matte P, Malavieille J, et al. Tectonics of the Qinling belt: build-up and evolution of eastern Asia[J]. Nature, 1985, 317(6037): 496-500. doi: 10.1038/317496a0

    CrossRef Google Scholar

    [47] Meng Qingren, Zhang Guowei. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 1999, 27(2): 123-126. doi: 10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2

    CrossRef Google Scholar

    [48] Niu Yaoling, O'hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4).

    Google Scholar

    [49] Patino D A E, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689-710. doi: 10.1093/petroj/39.4.689

    CrossRef Google Scholar

    [50] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [51] Pfander J A, Munker C, Stracke A, et al. Nb/Ta and Zr/Hf in ocean island basalts—implications for crust–mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 2007, 254(1-2): 158-172. doi: 10.1016/j.jpgl.2006.11.027

    CrossRef Google Scholar

    [52] Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3-4): 259-276. doi: 10.1016/j.lithos.2009.03.007

    CrossRef Google Scholar

    [53] Qin Jiangfeng, Lai Shaocong, Grapes R, et al. Origin of LateTriassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implications for subduction of continental crust[J]. Lithos, 2010, 120(3-4): 347-367. doi: 10.1016/j.lithos.2010.08.022

    CrossRef Google Scholar

    [54] Rudnick R L, Gao Shan, Holland H D, et al. Composition of the continental crust[J]. The crust, 2003, 3: 1-64.

    Google Scholar

    [55] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa[J]. Chemical Geology, 1999, 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [56] Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9

    CrossRef Google Scholar

    [57] SUN S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [58] Sun Weidong, Li Shuguang, Chen Yadong, et al. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie orogenic belt[J]. The Journal of Geology, 2002, 110(4): 457-468. doi: 10.1086/340632

    CrossRef Google Scholar

    [59] Wang Xiaoxia, Wang Tao, Zhang Chengli. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72: 129-151. doi: 10.1016/j.jseaes.2012.11.037

    CrossRef Google Scholar

    [60] Wu Yuanbao, Zheng Yongfei. Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007

    CrossRef Google Scholar

    [61] Xiong Xiaolin, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis[J]. Chemical Geology, 2005, 218(3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014

    CrossRef Google Scholar

    [62] Xiong Xiaolin, Zhu Laiming, Zhang Guowei, et al. Geology and geochemistry of the Triassic Wenquan Mo deposit and Mo-mineralized granite in the Western Qinling Orogen, China[J]. Gondwana Research, 2016, 30: 159-178. doi: 10.1016/j.gr.2015.09.013

    CrossRef Google Scholar

    [63] Yin Q, Jagote, Kroner A. Precambrian(?)blue-schist-bearing ecologite belt in central China[J]. Terra Abstract, 1991, 3: 85-86.

    Google Scholar

    [64] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U‐Pb age and trace element determinations of zircon by laser ablation‐inductively coupled plasma‐mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [65] Zhang Hongfei, Jin Lanlan, Zhang Li, et al. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity[J]. Science in China Series D: Earth Sciences, 2007, 50(2): 184-196. doi: 10.1007/s11430-007-2015-3

    CrossRef Google Scholar

    [66] Zhu Laiming, Zhang Guowei, Chen Yanjing, et al. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit[J]. Ore Geology Reviews, 2011, 39(1-2): 46-62. doi: 10.1016/j.oregeorev.2010.10.001

    CrossRef Google Scholar

    [67] Zhu Laiming, Zhang Guowei, Yang Tao, et al. Geochronology, petrogenesis and tectonic implications of the Zhongchuan granitic pluton in the Western Qinling metallogenic belt, China[J]. Geological Journal, 2013, 48(4): 310-334. doi: 10.1002/gj.2444

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(411) PDF downloads(1) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint