2023 Vol. 56, No. 5
Article Contents

ZHU Sainan, ZHAO Hui, WEI Yunjie, ZHENG Jianfeng, WANG Wenpei, ZHANG Nan. 2023. Experimental Study on Triaxial Mechanical Properties of High−Temperature Frozen Loess under Different Moisture Content and Confining Pressure in Yili, Xinjiang. Northwestern Geology, 56(5): 140-150. doi: 10.12401/j.nwg.2023006
Citation: ZHU Sainan, ZHAO Hui, WEI Yunjie, ZHENG Jianfeng, WANG Wenpei, ZHANG Nan. 2023. Experimental Study on Triaxial Mechanical Properties of High−Temperature Frozen Loess under Different Moisture Content and Confining Pressure in Yili, Xinjiang. Northwestern Geology, 56(5): 140-150. doi: 10.12401/j.nwg.2023006

Experimental Study on Triaxial Mechanical Properties of High−Temperature Frozen Loess under Different Moisture Content and Confining Pressure in Yili, Xinjiang

More Information
  • In order to explore the influence of moisture content and confining pressure on the physical and mechanical properties of high−temperature frozen loess, taking the loess as the research object in Yili valley, Xinjiang. The mineral composition and physical properties of loess, as well as the triaxial compression tests under different moisture content and confining pressure were carried out. The results show that the content of silt and clay is high in Yili loess, which is sensitive to freezing−thawing. At low water content, the failure mode is strain softening and brittle shear failure, while at saturated water content, the failure mode is strain hardening and plastic bulging deformation failure. The softening coefficient decreases gradually with water content increasing. With the increase of water content, the peak residual friction angle gradually decreases, the peak residual cohesion gradually increases, and the deformation modulus increases. With the increase of confining pressure, the elastic modulus and characteristic parameters of damage evolution gradually decrease, and the damage mechanics constitutive model introduced can better describe the whole process of stress and strain of high−temperature frozen loess under different water content and confining pressure. The research results can provide mechanical parameters and theoretical basis for the study of mechanism of freeze−thaw landslide in Yili Valley.

  • 加载中
  • [1] 曹文贵, 赵衡, 张永杰, 等. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. 岩土力学, 2011, 32(3): 647-654 doi: 10.3969/j.issn.1000-7598.2011.03.002

    CrossRef Google Scholar

    CAO Wengui, ZHAO Heng, ZHANG Yongjie, et al. Strain softening and hardening damage constitutive model for rock considering effect of volume change and its parameters determination method[J]. Rock and Soil Mechanics, 2011, 32(3): 647-654. doi: 10.3969/j.issn.1000-7598.2011.03.002

    CrossRef Google Scholar

    [2] 崔托维奇. 冻土力学[M]. 北京: 科学出版社, 1985

    Google Scholar

    Tsytovich H A. The mechanics of frozen ground [M]. Beijing: Science Press, 1985.

    Google Scholar

    [3] 葛修润, 任建喜, 蒲毅彬, 等. 岩石细观损伤扩展规律的CT实时试验[J]. 中国科学E辑: 技术科学, 2000, 30(2): 104-111

    Google Scholar

    GE Xiurun, REN Jianxi, PU Yibin, et al. Real-Time CT test of meso-damage propagation law of rock [J]. Science in China, 2000, 30(2): 104-111.

    Google Scholar

    [4] 赖远明, 李双洋, 高志华, 等. 高温冻结粘土单轴随机损伤本构模型及强度分布规律[J]. 冰川冻土, 2007, 29(6): 969-976 doi: 10.3969/j.issn.1000-0240.2007.06.017

    CrossRef Google Scholar

    LAI Yuanming, LI Shuangyang, GAO Zhihua, et al. Stochastic damage constitutive model for warm frozen soil under uniaxial compression and its strength distribution[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 969-976. doi: 10.3969/j.issn.1000-0240.2007.06.017

    CrossRef Google Scholar

    [5] 赖远明, 张耀, 张淑娟, 等. 超饱和含水率和温度对冻结砂土强度的影响[J]. 岩土力学, 2009, 30(12): 3665-3670 doi: 10.3969/j.issn.1000-7598.2009.12.018

    CrossRef Google Scholar

    LAI Yuanming, ZHANG Yao, ZHANG Shujuan, et al. Experimental study of strength of frozen sandy soil under different water contents and temperatures[J]. Rock and Soil Mechanics, 2009, 30(12): 3665-3670. doi: 10.3969/j.issn.1000-7598.2009.12.018

    CrossRef Google Scholar

    [6] 刘世伟, 张建明. 高温冻土物理力学特性研究现状[J]. 冰川冻土, 2012, 34(1): 120-129

    Google Scholar

    LIU Shiwei, ZHANG Jianming. Review on physic-mechanical properties of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 120-129.

    Google Scholar

    [7] 马芹永, 郁培阳, 袁璞. 干湿循环对深部粉砂岩蠕变特性影响的试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 593-600 doi: 10.13722/j.cnki.jrme.2017.0711

    CrossRef Google Scholar

    MA Qinyong, YU Peiyang, YUAN Pu. Experimental study on creep properties of deep siltstone under cyclic wetting and drying[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 593-600. doi: 10.13722/j.cnki.jrme.2017.0711

    CrossRef Google Scholar

    [8] 马巍, 吴紫汪, 常小晓, 盛煜. 剪应力强度和平均法向应力对冻土变形的相互影响[J]. 自然科学进展, 1998, 8(1): 77-81 doi: 10.3321/j.issn:1002-008X.1998.01.014

    CrossRef Google Scholar

    MA Wei, WU Ziwang, CHANG Xiaoxiao, et al. The influence of shear stress strength and mean normal stress on the frozen soils deformation [J]. Progress in Nature Science, 1998, 8(1): 77-81. doi: 10.3321/j.issn:1002-008X.1998.01.014

    CrossRef Google Scholar

    [9] 马巍, 吴紫汪, 盛煜. 冻土的蠕变及蠕变强度[J]. 冰川冻土, 1994, 16(2): 113-118

    Google Scholar

    MA Wei, WU Ziwang SHENG Yu. Creep and creep strength of frozen soil[J]. Journal of Glaciolgy and Geocryology, 1994, 16(2): 113-118.

    Google Scholar

    [10] 马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995, 17(5): 7-11 doi: 10.3321/j.issn:1000-4548.1995.05.002

    CrossRef Google Scholar

    MA Wei, WU Ziwang SHENG Yu. Effect of confining pressure on strength behaviour of frozen soil[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 7-11. doi: 10.3321/j.issn:1000-4548.1995.05.002

    CrossRef Google Scholar

    [11] 马巍, 王大雁. 中国冻土力学研究50a回顾与展望[J]. 岩土工程学报, 2012, 34(4): 625-640

    Google Scholar

    MA Wei, WANG Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 625-640.

    Google Scholar

    [12] 宁建国, 朱志武. 含损伤的冻土本构模型及耦合问题数值分析[J]. 力学学报, 2007, 39(1): 70-76 doi: 10.3321/j.issn:0459-1879.2007.01.009

    CrossRef Google Scholar

    NING Jianguo, ZHU Zhiwu. Constitutive model of frozen soil with damage and numerical simulation of the coupled problem[J]. Chinese Joumal of Theoretical and Applied Mechanics, 2007, 39(1): 70-76. doi: 10.3321/j.issn:0459-1879.2007.01.009

    CrossRef Google Scholar

    [13] 任建喜, 葛修润. 单轴压缩岩石损伤演化细观机理及其本构模型研究[J]. 岩石力学与工程学报, 2001, 20(4): 425-431 doi: 10.3321/j.issn:1000-6915.2001.04.001

    CrossRef Google Scholar

    REN Jianxi, GE Xiurun. Study of rock meso-damage evolution law and its constitutive model under uniaxial compression loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4): 425-431. doi: 10.3321/j.issn:1000-6915.2001.04.001

    CrossRef Google Scholar

    [14] 宋友桂, 史正涛. 伊犁盆地黄土分布与组成特征[J]. 地理科学, 2010, 30(2): 267-272 doi: 10.13249/j.cnki.sgs.2010.02.011

    CrossRef Google Scholar

    SONG Yougui, SHI Zhengtao. Distribution and compositions of loess sediments in Yili Basin, central Asia[J]. Scientia Geographica Sinica, 2010, 30(2): 267-272. doi: 10.13249/j.cnki.sgs.2010.02.011

    CrossRef Google Scholar

    [15] 苏凯, 张建明, 刘世伟, 等. 高温-高含冰量冻土压缩变形特性研究[J]. 冰川冻土, 2013, 35(2): 369-375

    Google Scholar

    SU Kai, ZHANG Jianming, LIU Shiwei, et al. Compressibility of warm and ice-rich frozen soil[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 369-375.

    Google Scholar

    [16] 王海芝, 王颂, 周剑, 等. 樟木堆积体斜坡动力稳定性与极限承载力评价[J]. 西北地质, 2022, 55(1): 262-273 doi: 10.19751/j.cnki.61-1149/p.2022.01.023

    CrossRef Google Scholar

    WANG Haizhi, WANG Song, ZHOU Jian, et al. Dynamic stability analysis and ultimate bearing capacity evaluation of Zhangmu landslide deposit[J]. Northwestern Geology, 2022, 55(1): 262-273. doi: 10.19751/j.cnki.61-1149/p.2022.01.023

    CrossRef Google Scholar

    [17] 维亚洛夫 C C. 冻土流变学[M]. 北京: 中国铁道出版社, 2005

    Google Scholar

    VAYALOV C C. Rhelogy of Frozen Soil [M]. Beijing: China Railway Publishing House, 2005.

    Google Scholar

    [18] 吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191

    Google Scholar

    WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191.

    Google Scholar

    [19] 徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007, 26(7): 1297-1312 doi: 10.3321/j.issn:1000-6915.2007.07.001

    CrossRef Google Scholar

    XU Zhangjian, LIN Zaiguan, ZHANG Maosheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1297-1312. doi: 10.3321/j.issn:1000-6915.2007.07.001

    CrossRef Google Scholar

    [20] 颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12): 4421-4428 doi: 10.16285/j.rsm.2017.1839

    CrossRef Google Scholar

    YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428. doi: 10.16285/j.rsm.2017.1839

    CrossRef Google Scholar

    [21] 尹光华, 王兰民, 袁中夏, 等. 新疆伊犁黄土的物性指标、动力学特性与滑坡[J]. 干旱区地理, 2009, 32(6): 899-905

    Google Scholar

    YIN Guanghua, WANG Lanmin, YUAN Zhongxia, et al. Physical index, dynamic property and landslide of Ili loess[J]. Arid Land Geography, 2009, 32(6): 899-905.

    Google Scholar

    [22] 叶玮, 矢吹真代, 赵兴有. 中国西风区与季风区黄土沉积特征对比研究[J]. 干旱区地理, 2005, 28(6): 789-794 doi: 10.3321/j.issn:1000-6060.2005.06.013

    CrossRef Google Scholar

    YE Wei, SADAYO Yabuki, ZHAO Xinyou. Comparison of the sedimentary features of loess between the westerly and monsoon regions in China[J]. Arid Land Geography, 2005, 28(6): 789-794. doi: 10.3321/j.issn:1000-6060.2005.06.013

    CrossRef Google Scholar

    [23] 张艳玲, 陈亮, 闫金凯, 等. 基于DAN-W模型的高速远程滑坡灾变过程分析[J]. 西北地质, 2021, 54(1): 204-211 doi: 10.19751/j.cnki.61-1149/p.2021.01.018

    CrossRef Google Scholar

    ZHANG Yanling, CHEN Liang, YAN Jinkai, et al. Study on the catastrophic process of rapid and long Run-out landslides based on DAN-W[J]. Northwestern Geology, 2021, 54(1): 204-211. doi: 10.19751/j.cnki.61-1149/p.2021.01.018

    CrossRef Google Scholar

    [24] 张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476

    Google Scholar

    ZHANG Huimei, YANG Gengshe. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476.

    Google Scholar

    [25] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019

    Google Scholar

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019.

    Google Scholar

    [26] 朱赛楠, 李滨, 冯振. 三峡库区侏罗系泥岩CT损伤特性试验研究[J]. 水文地质工程地质, 2016, 43(1): 72-78 doi: 10.16030/j.cnki.issn.1000-3665.2016.01.11

    CrossRef Google Scholar

    ZHU Sainan, LI Bin, FENG Zhen. Research on CT damage characteristics of the Jurassic mudstones in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 72-78. doi: 10.16030/j.cnki.issn.1000-3665.2016.01.11

    CrossRef Google Scholar

    [27] 朱赛楠, 殷跃平, 王文沛, 等. 新疆伊犁河谷黄土滑坡冻融失稳机理研究[J]. 地球学报, 2019, 40(2): 339-349 doi: 10.3975/cagsb.2018.061904

    CrossRef Google Scholar

    ZHU Sainan, YIN Yueping, WANG Wenpei, et al. Mechanism of freeze-thaw loess landslide in Yili River valley, Xinjiang[J]. Acta Geoscientica Sinica, 2019, 40(2): 339-349. doi: 10.3975/cagsb.2018.061904

    CrossRef Google Scholar

    [28] 朱元林, 张家懿. 冻土的弹性变形及压缩变形[J]. 冰川冻土, 1982, 4(3): 29-39

    Google Scholar

    ZHU Yuanlin, ZHANG Jiayi. Elastic and compressive deformation of frozen soils[J]. Journal of Glaciology and Geocryology, 1982, 4(3): 29-39.

    Google Scholar

    [29] CHAMBERLAIN E J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979, 13(1/2/3/4): 73-92.

    Google Scholar

    [30] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous ductile media[R]. Office of Scientific and Technical Information (OSTI), 1975.

    Google Scholar

    [31] JESSBERGER H L. A state-of-the-art report. Ground freezing: mechanical properties, processes and design[J]. Engineering Geology, 1981, 18(1/2/3/4): 5-30.

    Google Scholar

    [32] OTHMAN M A, BENSON C H. Effect of freeze–thaw on the hydraulic conductivity and morphology of compacted clay[J]. Canadian Geotechnical Journal, 1993, 30(2): 236-246. doi: 10.1139/t93-020

    CrossRef Google Scholar

    [33] TING J M, TORRENCE MARTIN R, LADD C C. Mechanisms of strength for frozen sand[J]. Journal of Geotechnical Engineering, 1983, 109(10): 1286-1302. doi: 10.1061/(ASCE)0733-9410(1983)109:10(1286)

    CrossRef Google Scholar

    [34] ZHENG Bo. Investigation for the deformation of embankment underlain by warm and ice-rich permafrost[J]. Cold Regions Science and Technology, 2010, 60(2): 161-168. doi: 10.1016/j.coldregions.2009.08.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(4)

Article Metrics

Article views(1245) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint