2023 Vol. 56, No. 6
Article Contents

HUANG Jinting, NING Bohan, SUN Kui, LI Zongze, WANG Jiawei, SONG Ge. 2023. Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation. Northwestern Geology, 56(6): 176-185. doi: 10.12401/j.nwg.2023005
Citation: HUANG Jinting, NING Bohan, SUN Kui, LI Zongze, WANG Jiawei, SONG Ge. 2023. Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation. Northwestern Geology, 56(6): 176-185. doi: 10.12401/j.nwg.2023005

Contribution of Groundwater in Zhiluo Aquifer to Mine Water in Shennan Mining Area: Numerical Simulation

  • Illustration water sources and ratio from different aquifers has significant means to mining water management. In this paper, based on the hydrogeological data, mining water and ratio of the height of the fractured zone to the mining height of typical mine area in Shennan mining area, a numerical simulation model was set up. Totally, 7 layers including aquifer and aquiclude are contained in the model. And it predicted the groundwater flow field of Quaternary and Zhiluo aquifer groundwater in Jurassic system very well via the model calibration. Furthermore, simulation results shows that mining action affects Zhiluo aquifer groundwater directly. For example, Zhiluo aquifer groundwater contributes nearly 94.82 percentage when mining water quantity reaches 117743.52 m3/d in Ningtiaota mining area.

  • 加载中
  • [1] 曹虎麒. 陕北典型煤矿开采引起含水层破坏机理物理模拟试验研究[D]. 西安: 长安大学, 2015

    Google Scholar

    CAO Huqi. Study on failure mechanism physical experiment ofaquifers in northern Shaanxi typical mine [D]. Xi’an: Chang’an University, 2015.

    Google Scholar

    [2] 陈佩. 煤矿采空区不同部位岩层裂隙率与其渗透性关系的实验研究[D]. 太原: 太原理工大学, 2016.

    Google Scholar

    CHEN Pei. Experimental study on the relationship between fracture rate and permeability of rock strata in different parts of coal mine goaf [D]. Taiyuan: Taiyuan University of Technology, 2016.

    Google Scholar

    [3] 杜臻, 张茂省, 冯立, 等. 鄂尔多斯盆地煤炭采动的生态系统响应机制研究现状与展望[J]. 西北地质, 2023, 56(3): 78−88.

    Google Scholar

    DU Zhen, ZHANG Maosheng, FENG Li, et al. Research Status and Prospect of Ecosystem Response Mechanism to Coal Mining in Ordos Basin[J]. Northwestern Geology, 2023, 56(3): 78−88.

    Google Scholar

    [4] 冯更辰, 郝俊杰, 谭俊, 等. VISUAL MODFLOW模型在白涧铁矿区矿井涌水量预测中的应用[J]. 中国岩溶, 2011, (3): 271-277

    Google Scholar

    Feng Gengchen, Hao Junjie, Tan Jun, et al. Application of VISUAL MODFLOW model in prediction of mine water inflow in Baijian iron mine area [J]. China Karst, 2011, ( 3 ) : 271-277

    Google Scholar

    [5] 冯立, 张鹏飞, 张茂省, 等. 新时期榆林煤矿区生态保护修复与综合治理策略及路径探索[J]. 西北地质, 2023, 56(3): 19−29.

    Google Scholar

    FENG Li, ZHANG Pengfei, ZHANG Maosheng, et al. Strategies and Practical Paths for Ecological Restoration and Comprehensive Management in Yulin Coal Mining Area in the New Era[J]. Northwestern Geology, 2023, 56(3): 19-29.

    Google Scholar

    [6] 冯书顺, 王国瑞, 马自强, 等. 基于Visual Modflow的矿井涌水量预测模拟研究[J]. 煤炭技术, 2016, (2): 239-242

    Google Scholar

    Feng Shushun, Wang Guorui, Ma Ziqiang, et al. Research on simulation of mine water inflow forecast based on Visual Modflow [J]. Coal technology, 2016, (2) : 239-242

    Google Scholar

    [7] 韩朝辉, 王郅睿, 田辉, 等. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(4): 263−273.

    Google Scholar

    HAN Chaohui, WANG Zhirui, TIAN Hui, et al. Hydrochemical Characteristics and Genesis of Groundwater in the Hanzhong Basin[J]. Northwestern Geology, 2023, 56(4): 263−273.

    Google Scholar

    [8] 全国煤化工信息站. 国务院办公厅发布《能源发展战略行动计划(2014-2020年)》[J]. 煤化工, 2014, (6): 71-71.

    Google Scholar

    [9] 郭贤才. 陕西省煤炭资源简况[J]. 西北地质, 1990(03): 61-63

    Google Scholar

    Guo Xiancai. Coal Resources in Shaanxi Province [J]. Northwest Geology, 1990 ( 03 ): 61-63.

    Google Scholar

    [10] 侯恩科, 夏玉成, 樊怀仁, 等. 矿井陷落柱的成因分析及其预测[J]. 西北地质, 1994(02): 18-22

    Google Scholar

    Hou Enke, Xia Yucheng, Fan Huairen, et al. Cause analysis and prediction of mine collapse column [J]. Northwest Geology, 1994 ( 02 ): 18-22.

    Google Scholar

    [11] “能源领域咨询研究”综合组. 中国煤炭清洁高效可持续开发利用战略研究[J]. 中国工程科学, 2015, 17(9): 1-5

    Google Scholar

    The Comprehensive Research Group for Energy Consulting and Research. Strategic research on clean, efficient and sustainable and utilization of coal in China [J]. China Engineering Science, 2015, 17 ( 9 ): 1-5.

    Google Scholar

    [12] 申涛, 马雄德, 戴国锋. 浅埋煤层开采的矿井水来源判别[J]. 中国煤炭地质, 2011, 23(10): 35-38

    Google Scholar

    Shen Tao, Ma Xiongde, Dai Guofeng. Source discrimination of mine water from shallow buried coal seam mining [J]. China Coal Geology, 2011, 23 ( 10 ): 35-38.

    Google Scholar

    [13] 唐涛. 我国区域能源协调发展战略中重大能源生产基地建设研究[D]. 成都: 四川省社会科学院, 2011

    Google Scholar

    TANG Tao. Research on the construction of major energy production bases in China 's regional energy coordinated development strategy [D]. Chengdu: Sichuan Academy of Social Sciences, 2011.

    Google Scholar

    [14] 杨彦利, 李娟. 基于MODFLOW对陶二煤矿矿井涌水量预测研究[J]. 西部探矿工程, 2018, 30(02): 139-141+146

    Google Scholar

    Yang Yanli, Li Juan. Prediction of Mine Water Inflow in Taoer Coal Mine Based on MODFLOW [J]. Western Exploration Engineering, 2018, Vol. 30 ( 2 ) : 139-141+146

    Google Scholar

    [15] 杨志. 陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D]. 徐州: 中国矿业大学, 2019.

    Google Scholar

    YANG Zhi. Study on the characteristics eco-geological environment and mining effect mechanism in Yushen coal mine district of northern Shaanxi [D]. Xuzhou: China University of Mining and Technology, 2019.

    Google Scholar

    [16] 伊茂森. 神东矿区浅埋深煤层关键层理论及其应用研究[D]. 徐州: 中国矿业大学, 2008.

    Google Scholar

    YI Maosen. Study and application of key strata theory in shallow seam of Shendong mining area [D]. Xuzhou: China University of Mining and Technology, 2008.

    Google Scholar

    [17] 张保建. 基于Visual Modflow的台格庙勘查区矿井涌水量预测[J]. 煤炭科学技术, 2015, 43(S1): 146-149+172

    Google Scholar

    Zhang Baojian. Mine water inflow forecast based on Visual Modflow in Taigemiao exploration area [J]. Coal Science and Technology, 2015, 43(S1): 146-149+172

    Google Scholar

    [18] Xie Y, Qi J, Zhang R, et al. Toward a Carbon-Neutral State: A Carbon–Energy–Water Nexus Perspective of China’s Coal Power Industry[J]. Energies, 2022, 15(12): 4466. doi: 10.3390/en15124466

    CrossRef Google Scholar

    [19] Liu S, Dai S, Zhang W, et al. Impacts of underground coal mining on phreatic water level variation in arid and semiarid mining areas: a case study from the Yushenfu mining area, China[J]. Environmental earth sciences, 2022(9): 81.

    Google Scholar

    [20] Xu S, Zhang Y, Shi H, et al. Impacts of Aquitard Properties on an Overlying Unconsolidated Aquifer in a Mining Area of the Loess Plateau: Case Study of the Changcun Colliery, Shanxi[J]. Mine Water and the Environment, 2020, 39(1): 121-134. doi: 10.1007/s10230-019-00649-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(5)

Article Metrics

Article views(993) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint