2023 Vol. 56, No. 4
Article Contents

CAO Zhengqi, CAI Yitao, ZHOU Xianghui, QI Wenlong, DING Wenxiu. 2023. Geochemical Characteristics of Diorite Porphyrite in Dawu Area, Western Dabie and Its Tectonic Significance. Northwestern Geology, 56(4): 318-328. doi: 10.12401/j.nwg.2022050
Citation: CAO Zhengqi, CAI Yitao, ZHOU Xianghui, QI Wenlong, DING Wenxiu. 2023. Geochemical Characteristics of Diorite Porphyrite in Dawu Area, Western Dabie and Its Tectonic Significance. Northwestern Geology, 56(4): 318-328. doi: 10.12401/j.nwg.2022050

Geochemical Characteristics of Diorite Porphyrite in Dawu Area, Western Dabie and Its Tectonic Significance

More Information
  • Basic magmas can reflect the nature of mantle source region, genetic environment and formation and evolution process. Through the detailed field geological survey and rock geochemical analysis, we discuss the nature, genesis and tectonic environment of the magma source area of regional diorite porphyrite. The geochemical analysis of the whole rock shows that the SiO2 content of the diorite porphyrite samples is 49.97%~55.01%, belonging to the medium−basic rock series, the MgO content is 4.63%~5.49%, and the Mg# content is 60.17~90.19, the Nb/Ta value of the sample is 13.06~18.47, and the Zr/Hf value is 40.09~44.05, indicating that the magma source area of the diorite porphyrate may be from the enriched mantle. In addition, The LREE/HREE ratio is 9.45~13.97, and the diorite porphyrite samples show a steep−right diorite, and they are enriched in high field strength elements (Nb, Ta, Hf, Ti) and rich in large ion lithophile elements Sr. It is suggested that porphyrite may have been influenced by fluid metasomatism of subducted plates during the formation process. The field outcrops show that diorite porphyrite dikes intrude into granitic porphyry dikes (forming age is 130.8±1.8 Ma), so the emplacement time of dikes may be early Cretaceous. In the discrimination diagram of ZrTi tectonic environment, the diorite porphyrite samples fall in the intraplate basalt area. Combined with the regional tectonic background, we believe that the diorite porphyrite should be formed in the post−orogenic extension environment.

  • 加载中
  • [1] 曹正琦. 湖北大悟地区晚中生代脉岩及控矿构造研究[D]. 武汉: 中国地质大学, 2016, 1−147

    Google Scholar

    CAO Zhengqi. Study on Late Mesozoic dike rocks and ore-controlling structures in Dawu area, Hubei Province [D]. Wuhan: China University of Geosciences, 2016, 1-147.

    Google Scholar

    [2] 范裕, 周涛发, 袁峰等. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J]. 岩石学报, 2010, 26(9): 2715-2728

    Google Scholar

    FAN Yu, ZHOU Taofa, YUAN Feng, et al. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances[J]. Acta Petrologica Sinica, 2010, 26(9): 2715-2728.

    Google Scholar

    [3] 葛宁洁, 侯振辉, 李惠民, 等. 大别造山带岳西沙村镁铁超镁铁岩体的锆石U-Pb年龄[J]. 科学通报, 1999, 44(19): 2110-2114 doi: 10.3321/j.issn:0023-074X.1999.19.020

    CrossRef Google Scholar

    GE Ningjie, HOU Zhenghui, LI Huiming, et al. Zircon U-Pb age of mafic ultramafic granites in Yuexisha village, Dabie orogenic belt [J]. Chinese Science Bulletin, 1999, 44 (19): 2110-2114. doi: 10.3321/j.issn:0023-074X.1999.19.020

    CrossRef Google Scholar

    [4] 黄丹峰, 罗照华, 卢欣祥. 大别山北缘金刚台火山岩SHRIMP锆石U- P b年龄及构造意[J]. 地学前缘, 2010, 17(1): 1-9

    Google Scholar

    HUANG Danfeng, LUO Zhaohua, LU Xinxiang. Zircon U-Pb Dating of the Linglong Volcanic Deposit in the Northern Dabie Mountains [J]. Earth Science Frontiers, 2010, 17 (1): 1-9.

    Google Scholar

    [5] 刘清泉, 邵拥军, 张智慧, 等. 大别山姚冲花岗岩锆石U-Pb年龄、Hf同位素及地质意义[J]. 中国有色金属学报, 2015, 25 (2): 479-491 doi: 10.19476/j.ysxb.1004.0609.2015.02.027

    CrossRef Google Scholar

    LIU Qingquan, SHAO Yongjun, ZHANG Zhihui, et al. Zircon U-Pb Age, Hf Isotope and Geochronology Significance of the Yaochong Granite in the Dazhuangzi Gold Deposit, Shandong Province [J]. The Chinese Journal of Nonferrous Metals, 2015, 25 (2): 479-491. doi: 10.19476/j.ysxb.1004.0609.2015.02.027

    CrossRef Google Scholar

    [6] 刘福来, 薛怀民, 许志琴, 等. 大别超高压变质带的进变质, 超高压和退变质时代的准确限定: 以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例[J]. 岩石学报, 2006, 22(7): 1761-1778 doi: 10.3969/j.issn.1000-0569.2006.07.002

    CrossRef Google Scholar

    LIU Fulai, XUE Huaiming, XU Zhiqing, et al. Precise restriction of progressive metamorphic, ultra-high pressure and retrograde metamorphic ages in the Dabie UHP metamorphic belt: A case study of SHRIMP zircon U-Pb dating of eclogites in Shuanghe marble [J]. Acta Petrologica Sinica, 2006, 22(7): 1761-1778. doi: 10.3969/j.issn.1000-0569.2006.07.002

    CrossRef Google Scholar

    [7] 刘军, 息朝庄, 黄波, 等. 柴达木西北缘大通沟南山北闪长岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2022, 55(2): 93−105.

    Google Scholar

    LIU Jun, XI Chaozhuang, HUANG Bo, et al. Geochronology, Geochemistry and Geological Significance of Thediorite in Datonggou Nanshanbei, Northwestern Qaidam Basin[J]. Northwestern Geology, 2022, 55(2): 93−105.

    Google Scholar

    [8] 李曙光, 洪吉安, 李惠民, 等. 大别山辉石岩—辉长岩体的锆石U-Pb年龄及其地质意义[J]. 高校地质学报, 1999, (3): 351-355

    Google Scholar

    LI Shuguang, HONG Jiean, LI Huiming, et al. Zircon U-Pb age of pyroxenite-gabbro pluton in Dabie mountain and its geological significance[J]. Geological Journal of China Universities, 1999, (3): 351-355.

    Google Scholar

    [9] 李曙光, 李秋立, 侯振辉, 等. 大别山超高压变质岩的冷却史及折返机制[J]. 岩石学报, 2005, 21(04): 91-98

    Google Scholar

    LI Shuguang, LI Qiuli, HOU Zhenghui, et al. Cooling-history and reentrant mechanism of ultra-high pressure metamorphic rocks in Dabie Mountains [J]. Acta Petrologica Sinica, 2005,21 (04): 91-98.

    Google Scholar

    [10] 马昌前, 杨坤光, 明厚利, 等. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学: 地球科学, 2003, 33(9): 811-827.

    Google Scholar

    [11] 穆可斌, 裴先治, 李瑞保, 等. 南秦岭白龙江群中花岗岩脉群年代学、地球化学特征及地质意义[J]. 西北地质, 2019, 52(3): 111-135. doi: 10.19751/j. cnki. 61-1149/p. 2019.03. 010

    CrossRef Google Scholar

    MU Kebin, PEI Xianzhi, LI Ruibao, et al. Geochronology, Geochemistry and Geological Significance of the Granite Veins in the Bailongjiang Group, South Qinling[J]. Northwestern Geology, 2019, 52(3): 111-135. doi: 10.19751/j.cnki.61-1149/p.2019.03.010

    CrossRef Google Scholar

    [12] 彭松柏, 刘松峰, 林木森, 等. 华夏早古生代俯冲作用(Ⅱ): 大爽高镁-镁质安山岩新证据[J]. 地球科学, 2016, 41(6): 931-947

    Google Scholar

    PENG Songbo, LIU Songfeng, LIN Mushen, et al. Early Paleozoic subduction in the Cathaysia (Ⅱ): New evidence for Dashuang high magnesium and magnesitic andesite [J]. Earth Science, 2016, 41 (6): 931-947.

    Google Scholar

    [13] 戚学祥, 旷宏伟, 陈培良, 等. 长江中下游燕山期侵入岩地球化学特征及其地质意义[J]. 资源调查与环境, 2002, 23(1): 8

    Google Scholar

    QI Xuexiang, KUANG Hongwei, CHEN Peiliang, et al. Geochemical characteristics and geological significance of Yanshanian intrusive rocks in the middle and lower reaches of the Yangtze River [J]. Resources Survey and Environment, 2002, 23(1): 8.

    Google Scholar

    [14] 任志, 周涛发, 袁峰, 等. 安徽沙坪沟钥矿区中酸性侵入岩期次研究—年代学及岩石化学约束[J]. 岩石学报, 2014, 30 (4): 1097-1116

    Google Scholar

    REN Zhi, ZHOU Taofa, YUAN Feng, et al. Geochronology and Geochemical Constraints of the Xilaokou Gold Deposit, Shandong Province [J]. Acta Petrologica Sinica, 2014, 30 (4): 1097-1116.

    Google Scholar

    [15] 索书田, 桑隆康, 韩郁箐, 等. 大别山前寒武纪变质地体岩石学与构造学[M].武汉: 中国地质大学出版社, 1993

    Google Scholar

    SUO Shutian, SANG Longkang, HAN Yuqing, et al. Petrology and Tectonics of Precambrian Metamorphic Terrane in Dabie Mountains[M].Wuhan: China University of Geosciences Press, 1993.

    Google Scholar

    [16] 孙书勤, 汪云亮, 张成江. 玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J]. 地质论评, 2003, (01): 40-47 doi: 10.3321/j.issn:0371-5736.2003.01.006

    CrossRef Google Scholar

    SUN Shuqing, WANG Yunliang, ZHANG Chengjiang. Discrimination of Th, Nb, Zr in tectonic setting of basaltic rocks [J]. Geological Review, 2003, (01): 40-47. doi: 10.3321/j.issn:0371-5736.2003.01.006

    CrossRef Google Scholar

    [17] 汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413-421

    Google Scholar

    WANG Yunliang, ZHANG Chengjiang, XIU Shuzi. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 2001, 17(3): 413-421.

    Google Scholar

    [18] 王世明, 马昌前, 王琳燕, 等. 大别山早白垩世基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及成因[J]. 地球科学(中国地质大学学报), 2010, (04): 572-584

    Google Scholar

    WANG Shiming, MA Changqian, WANG Lingyan, et al. SHRIMP zircon U-Pb dating and geochemical characteristics of the Early Cretaceous basic dike rocks in the Dabie Mountains, Shandong Province [J]. Journal of China University of Geosciences, 2010, (04): 572-584.

    Google Scholar

    [19] 汪晶, 吴明安, 李小东, 等. 庐枞盆地早白垩世闪长玢岩锆石U-Pb年龄、地球化学特征及其成矿指示意义[J]. Acta Geologica Sinica, 2014, 88(4): 547-561

    Google Scholar

    WANG Jing, WU Mingan, LI Xiaodong, et al. Zircon U-Pb Dating, Geochemical Characteristics of Early-Cretaceous Diorite-Porphyrites in Luzhong Basin and Their Implications for Mineralization[J]. Acta Geologica Sinica, 2014, 88(4): 547-561.

    Google Scholar

    [20] 吴开彬, 邓新, 杨坤光. 北大别白垩纪花岗岩多期侵位与造山带演化的关系[J]. 地球科学, 2013, (S1): 43-52

    Google Scholar

    WU Kaining, DENG Xin, YANG Kunguang. Relationship between multi-stage emplacement of Cretaceous granites and evolution of orogenic belt in Beibei [J]. Earth Science, 2013, (S1): 43-52.

    Google Scholar

    [21] 吴元保, 陈道公, E. DELOULE, 等. 北大别片麻岩的锆石U-Pb年龄离子探针测定及其地质意义[J]. 地质论评, 2001, 47(3): 239-244 doi: 10.3321/j.issn:0371-5736.2001.03.004

    CrossRef Google Scholar

    WU Yuanbao, CHEN Ddaogong, E. Deloule, et al. Zircon U-Pb Dating and Ion Probe Determination of Gneiss in Dazhuangzi Gold Deposit, Shandong Province and Its Geological Significance [J]. Geological Review, 2001, 47(3): 239-244. doi: 10.3321/j.issn:0371-5736.2001.03.004

    CrossRef Google Scholar

    [22] 袁峰, 周涛发, 范裕, 等. 庐枞盆地中生代火山岩的起源、演化及形成背景[J]. 岩石学报, 2008, 24(8): ;1691-1702

    Google Scholar

    YUAN Feng, ZHOU Taofa, FAN Yu, et al. Source, Evolution and Tectonic Setting of Mesozoic Volcanic Rocks in Luzong Basin, Anhui Province[J]. Acta Petrologica Sinica, 2008, 24(8);1691-1702.

    Google Scholar

    [23] 赵子福, 郑永飞, 魏春生, 等. 大别山沙村和椒子岩基性-超基性岩锆石Il-Pb定年、元素和碳氧同位素地球化学研究北大别片麻岩的锆石U-Pb年龄离子探针测定及其地质意义[J]. 高校地质学, 2003, 9: 139-162

    Google Scholar

    ZHAO Zifu, ZHENG Yongfei, WEI Chunsheng, et al. Zircon U-Pb dating, element and carbon and oxygen isotopic geochemistry of shacun hejiaozi basic-ultrabasic rocks in Dabie Mountains and its geological significance [J]. Geology of Universities, 2003, 9: 139-162.

    Google Scholar

    [24] 赵子福, 郑永飞, 魏春生, 等. 大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究[J]. 岩石学报, 2004, 20(5): 1151-1174 doi: 10.3321/j.issn:1000-0569.2004.05.012

    CrossRef Google Scholar

    ZHAO Zifu, ZHENG Yongfei, WEI Chunsheng, et al. Zircon U-Pb dating and oxygen isotopic geochemistry of the Mesozoic magmatic rocks in the Dabie Mountains, Shandong Province [J]. Acta Petrologica Sinica, 2004, 20(5): 1151-1174. doi: 10.3321/j.issn:1000-0569.2004.05.012

    CrossRef Google Scholar

    [25] 俞胜, 赵斌斌, 贾轩, 等.北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 55(4): 267−279.

    Google Scholar

    YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry,Geochronology Characteristics and Tectonic Significance of Yitiaoshan Diorite in the Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology, 2022, 55(4): 267−279.

    Google Scholar

    [26] 张凯, 王居里, 汪佩佩, 等. 南秦岭太平沟铜(金)矿相关花岗岩体锆石U-Pb年代学及岩石成因[J]. 西北地质, 2020, 53(4): 73-85. doi: 10.19751/j.cnki. 61-1149/p. 2020.04. 007.

    CrossRef Google Scholar

    ZHANG Kai, WANG Juli, WANG Peipei, et al. Zircon U-Pb Geochronology and Petrogenesis of Taipinggou Copper (Gold)-related Granites, South Qinling[J]. Northwestern Geology, 2020, 53(4): 73-85. doi: 10.19751/j.cnki.61-1149/p.2020.04.007.

    CrossRef Google Scholar

    [27] Chen B, Jahn B M, Wei C J. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd-Sr iso-tope evidence[J]. Lithos, 2002, 60: 67-88. doi: 10.1016/S0024-4937(01)00077-9

    CrossRef Google Scholar

    [28] David A F, Carl S, Mark F, et al. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho–Bitterroot batholith - ScienceDirect.[J]. Tectonophysics, 2001, 342(3-4): 313-350. doi: 10.1016/S0040-1951(01)00169-X

    CrossRef Google Scholar

    [29] Fernandez A N and Barbarin B. Relative rheology of coeval mafic and felsic magmas: Nature of resulting interaction processes. Shape and mineral fabrics of mafic microgranular enclaves. In: Didier J, Barbarin B (eds. ) [J]. Enclaves and Granite Petrology, Amsterdam-Oxford-New York-Tokyo: Elsevier. 1991, 263−275.

    Google Scholar

    [30] Gibson I L, Kirkpatrick R J, Emmerman R, et al. The trace element composition of the lavas and dikes from a 3-km vertical section through the lava pile of eastern Iceland[J]. Journal of Geoph-ysical Research, 1982, 87: 6532-6546. doi: 10.1029/JB087iB08p06532

    CrossRef Google Scholar

    [31] Gill J. Orogenic andesites and plate tectonics[M]. Springer-Verlag, 1981.

    Google Scholar

    [32] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X

    CrossRef Google Scholar

    [33] Halls H c. The importance and potential of mafic dyke swarms in studies of geodynamic processes[J]. geoscience Canada, 1982, 9(3): 145-154.

    Google Scholar

    [34] Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth Planet. sci. lett, 1998, 161(1-4): 215-230. doi: 10.1016/S0012-821X(98)00152-6

    CrossRef Google Scholar

    [35] Hacker B R and Wang Q C. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China[J]. Tectonics, 1995, 14: 994-1006. doi: 10.1029/95TC00932

    CrossRef Google Scholar

    [36] Hofmann P F. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia[J]. Annual Review of Earth and Planetary Sciences, 1988, 16(1): 543-603. doi: 10.1146/annurev.ea.16.050188.002551

    CrossRef Google Scholar

    [37] Jahn B M, Wu F Y, Lo C H, et al, Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic -Ultramafic intrusion of the northern Dabie complex, central china[J]. Chemical Geology, 1999, 157(1−2): 119−146. doi:10.1016/s0009-2541(98)00197-1.

    Google Scholar

    [38] Leech M L. Arrested orogenic development: eclogitization, delamination, and tectonic collapse[J]. Earth & Planetary Science Letters, 2001, 185(1-2): 149-159.

    Google Scholar

    [39] Maitre RW L, Bateman P, Dudek A, et al. A Classification of Igneous Rocks and Glossary of Terms[M]. Oxford: Blackwell, 1989, 1−193.

    Google Scholar

    [40] Mcculloch M T, Gamble J A, McCulloch, M. T. & Gamble, J. A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358-374[J]. Earth and Planetary Science Letters, 1991, 102(3-4): 358-374. doi: 10.1016/0012-821X(91)90029-H

    CrossRef Google Scholar

    [41] Mcdonough W F, Sun S S. The composition of the Earth[M]. Chemical Geology, 1995, 120(3−4): 223−253.

    Google Scholar

    [42] Ma C Q, Li Z C, Ehlers C, Yang KC and Wang RI. A post-collisional magmatic pluming system; Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China[J]. Lithos, 1998, 45: 431-456. doi:10. 1016/S0024-4937(98):00043-7

    CrossRef Google Scholar

    [43] Pearce J A, Peate D W. Tectonic Implication of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285. doi:10.1146/annurev.ea.23.050195.001343.

    CrossRef Google Scholar

    [44] Pearce T H. The TiO2 - K2O – P diagram : A method of discriminating between oceanic and nonoceanic basalt. [J]. Earth Planet. sci. lett, 1975, 24(3): 419-426. doi: 10.1016/0012-821X(75)90149-1

    CrossRef Google Scholar

    [45] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth & Planetary Science Letters, 1973, 19(2): 290-300.

    Google Scholar

    [46] Poland M p, Fink J H, Tauxe L. Patteens of magma flow in segmented silicic dikes at summer coon volcano, Colorado[J]. AMS and Thin Section Analysis. Earth and Planetary Science Letters, 2004, 219(1-2): 155-169. doi:10.1016/s0012-821x(03)00706-4.

    CrossRef Google Scholar

    [47] Li S, Xiao Y, Liou D, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chemical Geology, 1993, 109(1-4): 89-111. doi: 10.1016/0009-2541(93)90063-O

    CrossRef Google Scholar

    [48] Rapp RP and Watson E B. Dehydration melting of meta-basalt at 8-32kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [49] Rudnik R, Gao S. Composition of the continental crust. In: rudnik, R., ed., The crust Treatise on geochemistry [J]. Elservior, Amsterdam, 2003, 3-164,doi:10.1016/B0-08-043751-6/03016-4.

    CrossRef Google Scholar

    [50] Taylor S R. Mclennan S M. The continental crust: its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.

    Google Scholar

    [51] Whitney D L, Teyssier C, Fayon A K, et al. Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Nide Massif, Turkey[J]. Tectonophysics, 2003, 376(1-2): 37-60. doi: 10.1016/j.tecto.2003.08.009

    CrossRef Google Scholar

    [52] Westerman D S, Dini A, Innocenti F, et al. When and where did hybridization occur ?the case of the monte capanne pluton, italy[J]. Atlantic Geology, 2003, 39(2): 147-162,doi:10.4138/1177.

    CrossRef Google Scholar

    [53] Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7

    CrossRef Google Scholar

    [54] Xu haijin, Ma Chanqian, Ye Kai. Early Cretaceous granitiod and their implications for Collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry [J]. Chem Geol., 2007, 240(3/4): 238-272.

    Google Scholar

    [55] Zhao Z F, Zheng Y F, Wei C S, et al. Zircon U- Pb Age, Element and C-O isotope geochemistry of Post-collisional Mafic-Ultramafic Rocks from the Dabie Orogen in East-central China[J]. Lithos, 2005, 83(1-2): 1-28. doi: 10.1016/j.lithos.2004.12.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(1451) PDF downloads(42) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint