2023 Vol. 56, No. 2
Article Contents

WU Shukuan, CHEN Guochao, LI Jiqing, CHEN Xiaozhen, LI Ruibao, WEI Junqi. 2023. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun. Northwestern Geology, 56(2): 92-108. doi: 10.12401/j.nwg.2022043
Citation: WU Shukuan, CHEN Guochao, LI Jiqing, CHEN Xiaozhen, LI Ruibao, WEI Junqi. 2023. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun. Northwestern Geology, 56(2): 92-108. doi: 10.12401/j.nwg.2022043

Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun

More Information
  • The study of Triassic granitic rocks in East Kunlun mainly focuses on the large granite batholith with the characteristics of I−type granite, while the study of a small amount of peraluminous granite is less. The LA−ICP−MS zircon U−Pb dating of The Zhanhongshan rhyolite porphyry shows that the crystallization age of the Zhanhongshan rhyolite porphyry is 245±1 Ma. The Zhanhongshan rhyolite porphyry is characterized by high silica (SiO2=74.50%~75.59%), rich Na (Na2O=4.04%~4.06%), high Na2O/K2O ratio (1.26~1.76), and aluminum saturation index (A/CNK=1.07~1.14), which indicate weak peraluminous medium potassium and high potassium calc−alkaline series. The rocks is characterized by low REE content with obvious fractionation of LREE and HREE, slight negative and positive Eu anomalies (δEu=0.80~1.06), also enrichment of LILE and depletion of HFSE. They have enriched Hf isotopic compositions with εHf (t) isotope values of −4.7~+0.9. It is concluded that the peraluminous Zhanhongshan rhyolite porphyry has the characteristics of I−type granite, which is the result of the underplating of the subducted oceanic crust through mantle−derived magma and partial melting with the addition of foreign fluid, and has arc magmatic geochemical characteristics. Combined with the previous data, the study shows that the East Kunlun area was in the subduction stage of the Paleo−Tethys ocean in the Early Triassic.

  • 加载中
  • 陈国超, 裴先治, 李瑞保, 等. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义[J]. 地质学报, 2013, 87(2): 178–196 doi: 10.3969/j.issn.0001-5717.2013.02.004

    CrossRef Google Scholar

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Zircon U-Pb Geochronology Geochemical Characteristics and Geological Sinificance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun[J]. Acta Geologica Sinica, 2013, 87(2): 178–196. doi: 10.3969/j.issn.0001-5717.2013.02.004

    CrossRef Google Scholar

    陈国超, 裴先治, 李瑞保, 等. 东昆仑古特提斯后碰撞阶段伸展作用: 来自晚三叠世岩浆岩的证据[J]. 地学前缘, 2019, 26(4): 191–208

    Google Scholar

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Lithospheric extersion of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons[J]. Earth Science Frontiers, 2019, 26(4): 191–208.

    Google Scholar

    陈国超, 裴先治, 李瑞保, 等. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 2020, 27(4): 33–48

    Google Scholar

    CHEN Guochao, PEI Xianzhi, LI Ruibao, et al. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers, 2020, 27(4): 33–48.

    Google Scholar

    陈能松, 孙敏, 王勤燕, 等. 东昆仑造山带昆中带的独居石电子探针化学年龄: 多期构造变质事件记录[J]. 科学通报, 2007, 52(11): 1297–1306 doi: 10.3321/j.issn:0023-074X.2007.11.014

    CrossRef Google Scholar

    CHEN Nengsong, SUN Min, WANG Qinyan, et al. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen: Records of multi-tectonometamorphic events[J]. Chinese Science Bulletin, 2007, 52(11): 1297–1306. doi: 10.3321/j.issn:0023-074X.2007.11.014

    CrossRef Google Scholar

    陈有炘, 裴先治, 李瑞保, 等. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质, 2011, 25(3): 510–521 doi: 10.3969/j.issn.1000-8527.2011.03.013

    CrossRef Google Scholar

    CHEN Youxin, PEI Xianzhi, LI Ruibao, et al. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Bel[J]. Geoscience, 2011, 25(3): 510–521. doi: 10.3969/j.issn.1000-8527.2011.03.013

    CrossRef Google Scholar

    邓红宾, 何龙, 姚波, 等. 东昆仑造山带低山头二长花岗岩形成时代及岩石地球化学特征[J]. 西北地质, 2018, 51(4): 60–69 doi: 10.3969/j.issn.1009-6248.2018.04.008

    CrossRef Google Scholar

    DENG Hongbin, HE Long, YAO Bo, et al. Formation Age and Geochemical Characteristics of Dishantou Monzonitic Granite in Estern Kunlun Orogenic Belt[J]. Northwestern Geology, 2018, 51(4): 60–69. doi: 10.3969/j.issn.1009-6248.2018.04.008

    CrossRef Google Scholar

    邓文兵, 裴先治, 刘成军, 等. 东昆仑东段香日德地区察汗陶勒盖正长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(5): 687–699 doi: 10.3969/j.issn.1671-2552.2016.05.006

    CrossRef Google Scholar

    DENG Wenbin, PEI Xianzhi, LIU Chengjun, et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance[J]. Geological Bulletin of China, 2016, 35(5): 687–699. doi: 10.3969/j.issn.1671-2552.2016.05.006

    CrossRef Google Scholar

    付彦文, 薛万文, 王涛, 等. 青海东昆南构造带战红山地区中酸性火山岩的发现及其地质特征[J]. 矿物岩石, 2019, 39(4): 78–85 doi: 10.19719/j.cnki.1001-6872.2019.04.09

    CrossRef Google Scholar

    FU Yanwen, XUE Wanwen, WANG Tao, et al. Discovery and geological characteristics of Intermediate acid volcanic rocks in the Zhanhongshan area, East Kunnan tectonic belt, Qinghai[J]. Journal Mineralogy Petrology, 2019, 39(4): 78–85. doi: 10.19719/j.cnki.1001-6872.2019.04.09

    CrossRef Google Scholar

    郭安林, 张国伟, 孙延贵, 等. 阿尼玛卿蛇绿岩带OIB和MORB 的地球化学及空间分布特征: 玛积雪山古洋脊热点构造证据[J]. 中国科学(D辑), 2007, 36(7): 618–629.

    Google Scholar

    GUO Anlin, ZHANG Guowei, SUN Yangui, et al. Geochemistry and spatial distribution of OIB and MORB in A'nyemaqen ophiolite zone: Evidence of Majixueshan ancient ridgecentered hotspot[J]. Science in China(Series D), 2007, 50(2): 197–208.

    Google Scholar

    何凡, 宋述光. 东昆仑金水口地区格林威尔期超高温麻粒岩[J]. 岩石学报, 2020, 36(4): 1030–1040 doi: 10.18654/2095-8927/004

    CrossRef Google Scholar

    HE Fan and SONG Shuguang. The Grenvillian⁃aged UHT granulite in Jinshuikou region, East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 2020, 36(4): 1030–1040. doi: 10.18654/2095-8927/004

    CrossRef Google Scholar

    李积清, 张鑫利, 王涛, 等. 东昆仑战红山地区花岗斑岩LA-ICP-MS锆石U-Pb测年及岩石地球化学特征[J]. 西北地质, 2021, 54(1): 30–40

    Google Scholar

    LI Jiqing, ZHANG Xinli, WANG Tao, et al. Zircon U-Pb Dating and Geochemical Characteristics of Granite Porphyry in Zhanhongshan Area, East Kunlun[J]. Northwestern Geology, 2021, 54(1): 30–40.

    Google Scholar

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘, 2012, 19(5): 244–254

    Google Scholar

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun[J]. Earth Science Frontiers, 2012, 19(5): 244–254.

    Google Scholar

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段下三叠统洪水川组沉积序列与盆地构造原型恢复[J]. 地质通报, 2015, 34(12): 2302–2314 doi: 10.3969/j.issn.1671-2552.2015.12.016

    CrossRef Google Scholar

    LI Ruibao, PEI Xianzhi, LI Zuochen, et al. The depositional sequence and prototype basin for Lower Triassic Hongshuichuan Formation in the eastern segment of East Kunlun Mountains[J]. Geological Bulletin of China, 2015, 34(12): 2302–2314. doi: 10.3969/j.issn.1671-2552.2015.12.016

    CrossRef Google Scholar

    李瑞保, 裴先治, 李佐臣, 等. 东昆仑东段古特提斯洋俯冲作用—乌妥花岗岩体锆石U-Pb年代学和地球化学证据[J]. 岩石学报, 2018, 34(11): 3399–3421.

    Google Scholar

    LI Ruibao, PEI Xianzhi, PEI Lei, et al. The Early Triassic Andean-type Halagatu granitoids pluton in the East Kunlun orogen, northern Tibet Plateau: Response to the northward subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 2018, 62, 212–226.

    Google Scholar

    罗照华, 柯珊, 曹永清, 等. 东昆仑印支晚期幔源岩浆活动[J]. 地质通报, 2002, 21(6): 292–297 doi: 10.3969/j.issn.1671-2552.2002.06.003

    CrossRef Google Scholar

    LUO Zhaohua, KE Shan, CAO Yongqing, et al. Indosinian mantle-derived magmatism in the East Kunlun[J]. Geological Bulletin of China, 2002, 21(6): 292–297. doi: 10.3969/j.issn.1671-2552.2002.06.003

    CrossRef Google Scholar

    马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555–3568

    Google Scholar

    MA Changqian, XIONG Fuhao, YIN Shuo, et al. Intensity and cyclicity of orogenic magmatism: An example form a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2015, 31(12): 3555–3568.

    Google Scholar

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403–414 doi: 10.3969/j.issn.1006-7493.2007.03.010

    CrossRef Google Scholar

    MO Xuanxue, LUO Zhaohua, DENG Jinfu, et al. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007, 13(3): 403–414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    CrossRef Google Scholar

    裴先治, 胡楠, 刘成军, 等. 东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析[J]. 地质论评, 2015, 61(2): 307–323

    Google Scholar

    PEI Xianzhi, HU Nan, LIU Chengjun, et al. Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region[J]. Geological Review, 2015, 61(2): 307–323.

    Google Scholar

    裴先治, 李瑞保, 李佐臣, 等. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 2018, 43(12): 4498–4520

    Google Scholar

    PEI Xianzhi, LI Ruibao, LI Zuochen, et al. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen[J]. Earth Science, 2018, 43(12): 4498–4520.

    Google Scholar

    钱兵, 高永宝, 李侃, 等. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J]. 岩石学报, 2015, 31(9): 2508–2520

    Google Scholar

    QIAN Bing, GAO Yongbao, LI Kan, et al. Zircon- U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granite intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang[J]. Acta Petrologica Sinca, 2015, 31(9): 2508–2520.

    Google Scholar

    王珂, 王连训, 马昌前, 等. 东昆仑加鲁河中三叠世含石榴石二云母花岗岩的成因及地质意义[J]. 地球科学, 2020, 45(2): 400–418

    Google Scholar

    WANG Ke, WANG Lianxun, MA Changqian, et al. Petrogenesis and Geological Implications of the Middle Triassic Garnet-Bearing Two-Mica Granite from Jialuhe Region, East Kunlun[J]. Earth Science, 2020, 45(2): 400–418.

    Google Scholar

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007a, 23(2): 185–220 doi: 10.3969/j.issn.1000-0569.2007.02.001

    CrossRef Google Scholar

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007a, 23(2): 185–220. doi: 10.3969/j.issn.1000-0569.2007.02.001

    CrossRef Google Scholar

    吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007b, 23(6): 1217–1238 doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granite[J]. Acta Petrologica Sinica, 2007b, 23(6): 1217–1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745–765

    Google Scholar

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 2017, 47(7): 745–765.

    Google Scholar

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589–604.

    Google Scholar

    WU Yuanbao and ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589–1604.

    Google Scholar

    殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学, 1997, 22(4): 339–342 doi: 10.3321/j.issn:1000-2383.1997.04.001

    CrossRef Google Scholar

    YIN Hongfu and ZHANG Kexin. Characteristics of the Eastern Kunlun Orogenic belt[J]. Earth Science, 1997, 22(4): 339–342. doi: 10.3321/j.issn:1000-2383.1997.04.001

    CrossRef Google Scholar

    于淼, 丰成友, 何书跃, 等. 祁漫塔格造山带——青藏高原北部地壳演化窥探[J]. 地质学报, 2017, 91(4): 703–723 doi: 10.3969/j.issn.0001-5717.2017.04.001

    CrossRef Google Scholar

    YU Miao, FENG Chengyou, HE Shuyue, et al. The Qiman Tagh Orogen as A Window to the Crustal Evolution of the Northern Tibetan Plateau[J]. Acta Geologica Sinica, 2017, 91(4): 703–723. doi: 10.3969/j.issn.0001-5717.2017.04.001

    CrossRef Google Scholar

    余能, 金巍, 葛文春, 等. 东昆仑金水口过铝花岗岩的地球化学研究[J]. 世界地质, 2005, 24(2): 123–128 doi: 10.3969/j.issn.1004-5589.2005.02.004

    CrossRef Google Scholar

    YU Neng, JIN Wei, GE Wenchun, et al. Geochemical study on peraluminous granite from Jinshuikou in East Kunlun[J]. Global Geology, 2005, 24(2): 123–128. doi: 10.3969/j.issn.1004-5589.2005.02.004

    CrossRef Google Scholar

    袁洪林, 吴福元, 高山, 等. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J]. 科学通报, 2003, 48(14): 1511–1520 doi: 10.3321/j.issn:0023-074X.2003.14.008

    CrossRef Google Scholar

    YUAN Honglin, WU Fuyuan, GAO Shan, et al. U-Pb age determination of zircon from Cenozoic intrusions in northeast China and analysis of rare earth elements[J]. Chinese Science Bulletin, 2003, 48(14): 1511–1520. doi: 10.3321/j.issn:0023-074X.2003.14.008

    CrossRef Google Scholar

    张新远, 李五福, 欧阳光文, 等. 东昆仑东段青海战红山地区早三叠世火山岩的发现及其地质意义[J]. 地质通报, 2020, 39(5): 631–641 doi: 10.12097/j.issn.1671-2552.2020.05.004

    CrossRef Google Scholar

    ZHANG Xinyuan, LI Wufu, OUYANG Guangwen, et al. The discovery of Early Triassic volcanic rocks in Zhanhongshan area of Qinghai Province in the eastern section of East Kunlun Mountain and its geological significance[J]. Geological Bulletin of China, 2020, 39(5): 631–641. doi: 10.12097/j.issn.1671-2552.2020.05.004

    CrossRef Google Scholar

    张照伟, 钱兵, 王亚磊, 等. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示[J]. 西北地质, 2020, 53(3): 153–168 doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    CrossRef Google Scholar

    ZHANG Zhaowei, QIAN Bing, WANG Yalei, et al. Understanding of the Metallogenic Ore-Bearing Mechanism and Its Indication of Prospecting Direction in Xiarihamu Magmatic Ni-Co Sulfide Deposit, East Kunlun Orogenic Belt [J]. Northwestern China, 2020, 53(3): 153–168. doi: 10.19751/j.cnki.61-1149/p.2020.03.013

    CrossRef Google Scholar

    赵旭, 付乐兵, 魏俊浩, 等. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约[J]. 地球科学, 2018, 43(2): 354–370

    Google Scholar

    ZHAO Xu, FU Lebing, WEI Junhao, et al. Geochemical Characteristics of Annage Hornblende Gabbro from East Kunlun Orogenic Belt and Its Constraints on Evolution of Paleo-Tethys Ocean[J]. Earth Science, 2018, 43(2): 354–370.

    Google Scholar

    Altherr F F, Holl A, Hegner E, et al. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany)[J]. Lithos, 2000, 50: 51–73.

    Google Scholar

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59–79.

    Google Scholar

    Annen C, Blundy J D and Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3): 505–539. doi: 10.1093/petrology/egi084

    CrossRef Google Scholar

    Barbarin B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts[J]. Lithos, 2005, 80: 155–177. doi: 10.1016/j.lithos.2004.05.010

    CrossRef Google Scholar

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97: 1–29. doi: 10.1016/j.lithos.2006.12.007

    CrossRef Google Scholar

    Boynton W V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P, ed. Rare earth element geochemistry[J]. Amsterdam Elsevier, 1984: 63–114.

    Google Scholar

    Cashman K V, Sparks R S J and Blundy J D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes[J]. Science, 2017, 355(6331): eaag3055. doi: 10.1126/science.aag3055

    CrossRef Google Scholar

    Castillo P R. An overview of adakites petrogenesis[J]. Chinese Science Bulletin, 2006, 51: 257–268. doi: 10.1007/s11434-006-0257-7

    CrossRef Google Scholar

    Castro A. Tonalite-granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis[J]. Earth-Science Reviews, 2013, 124: 68–95. doi: 10.1016/j.earscirev.2013.05.006

    CrossRef Google Scholar

    Castro A. A non-basaltic experimental cotectic array for calc-alkaline batholiths[J]. Lithos, 2021, 382–383: 105929.

    Google Scholar

    Chapman J B, Runyon S E, Shields J E, et al. The North American Cordilleran Anatectic Belt[J]. Earth-Science Reviews, 2021, 215: 103576. doi: 10.1016/j.earscirev.2021.103576

    CrossRef Google Scholar

    Chappell B W, White A J R and Wyborn D. The importance of residual source material (restite) in granite petrogenesis[J]. Journal of Petrology, 1987, 28(6): 11–38.

    Google Scholar

    Chappell B W and White A J R. I-and S-type granites in the Lachland Fold Belt[J]. Mineralogy Magazine Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1–26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    Chappell B W and White A J. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489–499. doi: 10.1046/j.1440-0952.2001.00882.x

    CrossRef Google Scholar

    Chappell B W, Bryant C J and Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153: 142–153. doi: 10.1016/j.lithos.2012.07.008

    CrossRef Google Scholar

    Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 2008, 1: 64–67. doi: 10.1038/ngeo.2007.51

    CrossRef Google Scholar

    Chen J J, Wei J H, Fu L B, et al. Multiple sources of the Early Mesozoic Gouli batholith. Eastern Kunlun Orogenic Belt. , northern Tibetan Plateau: Linking continental crustal growth with oceanic subduction[J]. Lithos, 2017, 292–293: 161–178.

    Google Scholar

    Clemens J D and Stevens G. The enigmatic sources of I-type granites: The peritectic connexion[J]. Lithos, 2011, 126: 174–181. doi: 10.1016/j.lithos.2011.07.004

    CrossRef Google Scholar

    Clemens J D, Stevens G. What controls chemical variation in granitic magmas?[J]. Lithos, 2012, 134–135: 317–329.

    Google Scholar

    Clemens J D, Stevens G and Bryan S E. Conditions during the formation of granitic magmas by crustal melting–hot or cold; drenched, damp or dry?[J]. Earth-Science Reviews, 2020, 200: 102982. doi: 10.1016/j.earscirev.2019.102982

    CrossRef Google Scholar

    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to south–eastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80: 189–200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    Collins W J, Huang H Q and Jiang X Y. Water-fluxed crustal melting produces Cordilleran batholiths[J]. Geology, 2016, 44, G37398.1.

    Google Scholar

    Collins W J, Murphy J B, Johnson T E, et al. Critical role of water in the formation of continental crust[J]. Nature Geoscience, 2020, 13, 331–338. doi: 10.1038/s41561-020-0573-6

    CrossRef Google Scholar

    Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469–500. doi: 10.2113/0530469

    CrossRef Google Scholar

    Dong Y P, He D F, Sun S S, et al. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231–261. doi: 10.1016/j.earscirev.2017.12.006

    CrossRef Google Scholar

    Frost C D, Bell J M, Frost B R, et al. Crustal growth by magmatic underplating: isotopic evidence from the northern Sherman batholith[J]. Geology, 2001, 29: 515–518.

    Google Scholar

    Gao P, Zheng Y F, Zhao Z F. Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis[J]. Lithos, 2016, 266: 133–157.

    Google Scholar

    Guo X Z, Jia Q Z, Lv X B, et al. The Permian Sn metallogenic event and its geodynamic setting in East Kunlun, NW China: Evidence from zircon and cassiterite geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Xiaowolong skarn Sn deposit[J]. Ore Geology Reviews, 2020, 118: 103370. doi: 10.1016/j.oregeorev.2020.103370

    CrossRef Google Scholar

    Huang H, Niu Y L, Nowell G, et al. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 2014, 370: 1–18. doi: 10.1016/j.chemgeo.2014.01.010

    CrossRef Google Scholar

    Hawkesworth C J and Kemp A I S. Evolution of the continental crust[J]. Nature, 2006, 443: 811–817. doi: 10.1038/nature05191

    CrossRef Google Scholar

    Jackson M D, Blundy J and Sparks R S J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust[J]. Nature, 2018, 564: 405–409. doi: 10.1038/s41586-018-0746-2

    CrossRef Google Scholar

    Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon [J]. Science, 2007, 315: 980–983.

    Google Scholar

    Lee C T A and Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393: 266–274. doi: 10.1016/j.jpgl.2014.02.044

    CrossRef Google Scholar

    Lee C T A and Morton D M. High silica granites: terminal porosity and crystal settling in shallow magma chambers[J]. Earth and Planetary Science Letters, 2015, 409: 23–31. doi: 10.1016/j.jpgl.2014.10.040

    CrossRef Google Scholar

    Li R B, Pei X Z, Li Z C, et al. Late Silurian to Early Devonian volcanics in the East Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean[J]. Journal of Geodynamics, 2020a, 140: 101780. doi: 10.1016/j.jog.2020.101780

    CrossRef Google Scholar

    Li Y J, Wei J H, Santosh M, et al. Anisian granodiorites and mafic microgranular enclaves in the eastern Kunlun Orogen, NW China: Insights into closure of the eastern Paleo–Tethys[J]. Geological Journal, 2020b, 55(9): 1–21.

    Google Scholar

    Li Z C, Pei X Z, Bons P D, et al. Petrogenesis and tectonic setting of the early-middle triassic subduction-related granite in the eastern segment of East Kunlun: evidences from petrology, geochemistry, and zircon U-Pb-Hf isotopes [J]. International Geology Review, 2022, 22(5): 698-721.

    Google Scholar

    Ludwig K R. Isoplot 3.0: A Geochronological toolkit for Microsoft Excel[J]. Berkeley: Berkeley Geochronology Center, 2003, 1–70.

    Google Scholar

    Maniar P D and Piccoli P M . Tectonic discrimination in of granitoids[J]. Geological Society of America Bulletin, 1989, 1: 635–643.

    Google Scholar

    Patiño Douce A E and Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4): 689–710. doi: 10.1093/petroj/39.4.689

    CrossRef Google Scholar

    Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of the granitic magmas[J]. Geological Society London Special Publications, 1999, 168(1): 55–75. doi: 10.1144/GSL.SP.1999.168.01.05

    CrossRef Google Scholar

    Petford N and Atherton M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491–1521. doi: 10.1093/petrology/37.6.1491

    CrossRef Google Scholar

    Rapp R P. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability[J]. Journal of Geophysical Research: Solid Earth, 1995a, 100(B8): 15601–15610. doi: 10.1029/95JB00913

    CrossRef Google Scholar

    Rapp R P and Watson E B. Dehydration melting of metabasalt an 8–32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995b, 36(4): 891–31. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    Rollinson H R. Using geochemical data: evaluation, presentation, interpretation[M]. Longman Group UK Ltd, New York, 1993: 1–352.

    Google Scholar

    Rudnick R L, Gao S. Composition of the continental crust[M]. In: Treatise on Geochemistry. volume 3. Elsevier, 2003: 1–64.

    Google Scholar

    Shao F L, Niu Y L, Liu Y, et al. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implicationsa[J]. Lithos, 2017, 282: 33–44.

    Google Scholar

    Stern C R and Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123: 263–281. doi: 10.1007/s004100050155

    CrossRef Google Scholar

    Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148: 635–661. doi: 10.1007/s00410-004-0632-9

    CrossRef Google Scholar

    Song K, Ding Q F, Zhang Q, et al. Zircon U–Pb geochronology, Hf isotopes, and whole‐rock geochemistry of Hongshuihe Early to Middle Triassic quartz diorites and granites in the Eastern Kunlun Orogen, NW China: Implication for petrogenesis and geodynamics[J]. Geological Journal, 2019, 55(2): 1–22.

    Google Scholar

    Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. In: Sunders AD, Norry MJ, Magmatism in the Ocean Basins, Geological Society Special Publication, 1989: 313–345.

    Google Scholar

    Thompson A B. Fluid-absent metamorphism[J]. Journal of the Geological Society, 1983, 140: 533–547. doi: 10.1144/gsjgs.140.4.0533

    CrossRef Google Scholar

    Villaros A, Stevens G and Buick I S. Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite[J]. Lithos, 2009, 112: 217–235. doi: 10.1016/j.lithos.2009.02.011

    CrossRef Google Scholar

    Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters,1983,64:295-304.

    Google Scholar

    Whalen J B, Currie K L and Chappell B W. A-type granites: Geochemical characteristics discrimination and petrogeneisis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407–419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    Wilson M. Igneous Petrogenesis[M]. London: Springer, 1989: 295–323.

    Google Scholar

    Xia R, Deng J, Qing M, et al. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys[J]. Lithos, 2015, 234–235: 47–70.

    Google Scholar

    Xia R, Deng J, Qing M, et al. Petrogenesis of ca 240 Ma intermediate and felsic intrusions in the Nan’getan: Implications for crust–mantle interaction and geodynamic process of the East Kunlun Orogen[J]. Ore Geology Reviews, 2017, 90: 1099–1119. doi: 10.1016/j.oregeorev.2017.04.002

    CrossRef Google Scholar

    Xin W, Sun F Y, Zhang Y T, et al. Mafic-intermediate igneous rocks in the East Kunlun Orogenic Belt. , northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic[J]. Lithos, 2019, 346–347: 105159.

    Google Scholar

    Xion F H, Ma C Q, Jiang H G, et al. Petrogenetic and tectonic significance of Permian calcalkaline lamprophyres, East Kunlun orogenic belt, Northern Qinghai-Tibet Plateau[J]. International Geology Review, 2013, 55(14): 1817–81834. doi: 10.1080/00206814.2013.804683

    CrossRef Google Scholar

    Xiong F H, Ma C Q, Zhang J Y, et al. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau[J]. Journal of the Geological Society, 2014, 171(6): 847–863. doi: 10.1144/jgs2013-038

    CrossRef Google Scholar

    Xiong F H, Ma C Q, Chen B, et al. Intermediate-mafic dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A window into paleo-arc magma feeding system[J]. Lithos, 2019: 340–341: 152–165.

    Google Scholar

    Yu M, Dick M, Feng C Y, Li B, et al. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 2020, 191(2): 104168.

    Google Scholar

    Zhao X, Wei J H, Fu L B, et al. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen[J]. Lithos, 2020, 360–361: 105446.

    Google Scholar

    Zheng Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10: 1223–1254. doi: 10.1016/j.gsf.2019.02.003

    CrossRef Google Scholar

    Zhou H Z, Zhang D H, Wei J H, et al. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling[J]. Gondwana Research, 2020, 84: 52–70. doi: 10.1016/j.gr.2020.02.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(2132) PDF downloads(148) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint